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Planetary waves in a

rotating global ocean

J.A. Rickard

A theoretical study is made of the free periods of oscillation of

a global layer of inviscid, incompressible fluid under the action

of gravitational and Coriolis forces. The leading approximations

to the eigenvalues are found to be sensitive to variations in the

Froude number and also to the shape of the globe. It is shown

that for oceanic and atmospheric motions displaying essentially

the same features as the model, it is not sufficient to consider

the motion as horizontally non-divergent.

1. Introduction

Stewartson and Rickard [5] analysed the free oscillations of an

incompressible, inviscid fluid contained between two rotating, rigid

concentric spherical shells. An extension to the case of rigid spheroidal

boundaries was given by Rickard [4].

It is the purpose of this paper to extend the analysis to the

corresponding 'free-surface' problem; that is, to consider the slow

periodic oscillations of a layer of fluid under the action of gravitational

and Coriolis forces, when the fluid is assumed to cover the whole surface

of the rotating globe. In particular, we wish to show that, for

atmospheric and oceanic motions based on this model, it is not sufficient

to consider the motion as non-divergent as have many other models display-

ing essentially the same features.

The problem is formulated for the case of an arbitrary shaped
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126 J.A. Rickard

spheroidal globe, but only the special case when the globe is spherical is

considered in detail. Other cases will be treated in a later paper.

The manner in which the eigenvalues vary as functions of the Froude

number, F , suggests that surface topography is likely to play an

important role in any studies of the free periods of oscillation of a

rotating fluid layer. This point will also be covered in further detail in

a later paper.

2. Formulation of the problem

Consider a thin layer of incompressible, inviscid fluid bounded

internally by the rigid spheroid defined by (2.7), and whose outer surface

is free, which is rotating as if rigid with angular velocity ft about an

axis Oz where 0 is the centre of the spheroid. We shall assume that

the acceleration due to gravity, g , is constant and purely radial. A

small disturbance is given to the steady motion and we wish to determine

the periods of free oscillation of the subsequent motion of the fluid. Let

Cff, 6, <)>) denote spherical polar coordinates in which the line 6 = 0

coincides with the axis of rotation Oz , and let fw_, ua, u.) denote the
v n D (p

corresponding components of the velocity U , measured relative to a set of

axes rotating about Oz with angular velocity ft .

The equation of continuity is

(2.1) divu = 0 ,

and, neglecting squares and products of u , the equation of momentum

reduces to

(2.2) ||- + 20 x u = -grad p ,

where

(2.3) p = ^ - %ft2i?2sin26 + gR ,

p i s the pressure and p the density of the fluid. I t may easily be

verif ied that these equations are separable in (j> and t '• indeed i f Q

i s one of the dependent variables M_, UD, U. or p , then Q may be
n 0 (p

expressed in the form
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(2.M Q = U{q(R, 6)ein"i'+i0iH} ,

where m is an integer, which may be either positive or negative, o>* is

a constant to be found, and q(R, 9) is a function of R and 6 only.

From now on when the exponential factors are omitted it will be understood

that the real part is to be taken. Further let us write

u = cos6 , a)* = fJu , UQ - U ,

(2.5)

u. = iV , uT} = ———r , p = (iURsinB)P .
* R [l-M2r

The governing equations then reduce to

(2.6b) uU - 2VV = (l-y
2) 1̂ - - uP ,

(2.6c) 0)7 - 2uE/ = -mP + 2W* ,

and the equation of continuity to

(2.6d) S2HL+ W* _ (i_y
2) M. + yy _ mV = 0 .

We shall now suppose that the inner rigid spheroidal boundary is

defined by

(2.7) R = b + %(a+2?)fe1(l-y
2) ,

where a, b , and k are constants. The boundary condition to be

satisfied on this rigid boundary is that the normal component of velocity

should vanish, or equivalently

(2.8) ^ ffl-b-Ma+fc^tl-u2)] = 0 ,

where R = b + k(a+b)k-. (l-JJ ) , where D/Dt denotes differentiation

following the motion of the fluid. On using (2.5), (2.8) reduces to

%fc Aa+b)\i{l-M2)u
(2.9) W* = — 5- ,

b+kk [ )
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where W*, U are to be evaluated at R = b + %(a+b) (l-u2)

Let us now define a non-dimensional Froude number

and the free surface by

(2.11) R = a + k(a+b)FR{l-V
2) + n(6 , <(>, t) ,

where n(6, <Ji, t) is some function of 9, <j>, t to be determined, and

squares and products of n will be neglected.

For the Earth F n is approximately h x 10~ and we shall assume
ii

here that F « 1 .

The kinematic and dynamic,boundary conditions at the free surface are

(2.13) pressure = p = constant.

On neglecting squares and products of r\, U,VtW*,P, (2.12) reduces to

•}_ T.I* 'SMl-L-f

(2.1U)

and on substituting (2.13) into (2.3) and using Taylor's Theorem to expand

P\a+%(a+b)FR(l-]i )+n, u in ascending powers of n we obtain a second

condition on the free surface in terms of r| , which, on differentiation

with respect to t gives

If we now write

(2.16) £ = 2= | , i? = *(o*i)(i+ec) , V* » esr , Ffl = eF ,

then (2.1U), (2.15) may be written
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(2.18) |

respectively, where U, W, P are evaluated at

vZ)/? = a + k(a+b)FR[l-vZ) ,

(2.19) 5 =

As a consequence of (2.16), the boundary condition on the inner rigid

spheroidal boundary, (2.9), reduces to

(2.20)

where

(2.21) EXj_ = ̂  ,

and U, W are evaluated at t, = -1 + £JL (l-u ) .

The free surface boundary conditions (2.17), (2.18) may be combined

to give the single boundary condition

(2.22) [ y ( l - ( ( ) ] [ ( ) (

= a)F(l-u2)[l+e+%ei'(l-p2)]2P ,

where U, W, P are evaluated at Z, = 1 + %f(l-u2) .

Following Stewar+son and Rickard [5], Rickard [4], we now attempt to

set up an analytic expansion procedure with the aim of finding some

properties of free oscillations in fluid layers of finite depth. We shall

assume expansions of the form

(2.23a) U = i^U, ?) + eU2(v, t.) + ... ,

(2.23b) V = ̂ ( u , Z,) + zV2(v, C) + ... ,

https://doi.org/10.1017/S0004972700023716 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023716


130

(2.23c)

(2.23d)

(2.23e)

W =

P =

0) =

J .A. Ricka rd

y2iv, C) * e«r3(M. c

X 1 ( M » ?) + ex2(y. c

^ + £0)2+ . . . .

. C) + . . . ,

On substituting these expansions into (2.6), bearing in mind (2.16),

and comparing coefficients of equal powers of e , we find, from (2.6a),

(2.2U) "g^= 0 ,

so that x is independent of ( . It follows immediately from (2.6b),

(2.6c), that t/., V are independent of X, ; in fact they are given in

terms of X-,

(2.25) J)^ ^

(2.26) ( w ^ 2 ) F = a ^ 2 ) - T

Continuing the expansion formally we find on comparing coefficients of

e , in (2.6a), that

(2.27) X2(M. C) = (2^-X^C + X2(u) ,

where Xo^^ i s a t present an arbitrary function of V . From (2.6d) it

follows that V2(u, 5) is given by

dU
(2.28) t /(u c) = | ( l U 2 )

where W2(y) is at present also an arbitrary function of V . The

boundary conditions (2.20), (2.22) give

(2.29) ff2 = u(j

when

£ = -1 +

and
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(2.30) 2 ^ J

when

? = 1 + %F(l-u2) .

From equations (2.28), (2.29), it follows that

(2.31) \M = yfl-y2)^ + ((l-u2) -gi- p^+m^J

On now substituting (2.31) into (2.28) and using (2.30) i t follows that

(2.32) [(l-u2) -gi - y^+m^J (2+%F(l-Y) (l-u2

where

Kl
(2.33) Y = y .

On substituting for V , V from (2.25), (2.26), equation (2.32) reduces

to

(2.3U)

- I (u^+an) (l-y2) L2+lti

It is clear that there exist no solutions of (2.3*0 other than the

trivial one \. = 0 , for which w. = 0 ; that is

(2.35) (0 # 0 for any value of F .

Further, if we assume that the to. are continuous functions of F , then

since all w. are positive when F = 0 (see Stewartson and Rickard [5]),

it follows from (2.35) that
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(2.36) (0 > 0 for a l l F .

From equations (2 .7) , (2.11), i t follows that

(2.37) RQ- Ri= (a-Z>)[l+%F(l-Y)(l-u
2)] + n O , <(>, t) ,

where Rn, R. denote the values of R on the outer and inner spheroids
u t-

respectively for the same value of p . We note that the equilibrium polar

fluid depth is {a-b) . Further since r|(9, <J>, t) is periodic in <(> it

follows that we have regions of 'dry ocean1 when

(2.38) f(l-Y) * -1* .

At this point it is worth noting that for an ocean of polar

equilibrium depth h , that is, a - b = h , F is approximately 2J.5h~ .

For the Pacific Ocean an average depth of 12,000 feet is usually

considered, and this gives F ~ 12 . Longuet-Higgins [2] considers the

case F « 1 for a hemispherical annulus of fluid.

We now seek the eigenvalues of (2.3*0, that is, the values of to, for

which X-i is bounded everywhere (|p| - l) , since p is bounded. As in

Stewartson and Rickard [5] and Rickard 141 we shall restrict our discussion

to the case m = 1 , the generalisation to arbitrary m being straight-

forward .

We shall now consider the special case y = 0 , that is, when the

rigid spheroidal boundary reduces to the sphere R = b . Additional

special cases will be considered in a subsequent paper.

3. The special case y = 0

When y = 0 , 1L = 0 (see (2.21), (2.33)) and the inner spheroidal

boundary reduces to the sphere R = b (z = -l) • The boundary condition on

the sphere is now simply W = 0 on X, - -1 . When Y = 0 , on putting

m = 1 , (2.3*0 reduces to
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(3.1)

It is clear that one solution of (3.1) is given by

(3.2) xx(y) = v , \ = 1 ,

which is true for all values of F . If we assume that the u> are

discrete for a given F , it follows from (2.35), (2.36), (3.2), that

(3.3) 0 < (0 < 1 for all F .

Further, from (2.38) it follows that we have regions of 'dry ocean' when

F 5 -k . However, it must be remembered that physically the parameter F

is restricted to positive values (see (2.10), (2.16)) and hende in this

case, when y = 0 , there will be no regions of the globe which are not

water covered. Nevertheless the determination of the eigenvalues of (3.1)

poses an interesting mathematical problem for all F , and in the following

discussion we include F < 0 . (Our analysis breaks down in the vicinity

of F = -h , as expected; see analogous discussion in Rickard [4].)

We shall now consider the solutions and eigenvalues of (3.1).

4. Solution of (3.1) for small values of F

When the parameter F is small, X-i • u-i c a n ^ e expressed as power

series in F of the form

C*.i) xx(v) = XO(P) + FX^V)

(U.2) a^ = to + Fa^ + f̂ tig + ... .

On substituting (U.l), (U.2) into (3.1), and equating like powers of

F we can calculate successively better approximations to the solution and
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the eigenvalues 0), . Considering the zeroth order terms in F , we have

(U.3) 50(l-p2) (5§J,M2) ijjjL - ^ 0 ( ^ . 2 . 2 y 2 j f*L _ a f ^

which has solution

where ¥ satisfies the differential equation

Further it follows that w must be one of a discrete set of real

values given by

where n is a positive integer. For a more complete discussion of (U.3)

see Stewar+son and Rickard [5],

Continuing in a formal way we find that the equation satisfied by X-,

is

(fc.T)

+ ^ -

I t i s clear from (U.^), (U.5) that

dP (y)

where P (y) i s the Legendre polynomial of order n . On using the

relat ionship
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the r ight hand side of (U.7) may he vr i t ten in the form

f
Let us write

dP
2 j

where a, 3, b, d are constants to be determined. On substituting (U.ll)

into (4.7), and bearing in mind (4.10), we can determine these constants

and the value of 5. by comparing coefficients of corresponding terms.

Specifically, proceed as follows: in order that terms in p —5—- and

p P shall match we must have
n

u>Ad+2b) = -u - 2u>Q + 1 , 3w b + kd = 2(3 ,

respectively, which gives

f -2 - "\ -2 -2 3<o + W —2 —3(0 —10(0 +3. . . , _ I 0 0 I j 0 0

^n(^n-8) ' (3i3n-8)

The terms in p - T — correspond provided we choose

( U l 3 )

and with this choice of w the terms in U P also agree. Finally, in

dPn

order that terms in p —;— and P shall agree we find that
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- km -k
0 1

respectively. If we substitute for b, d, ai from (U.12), (I*. 13), i t

becomes clear that the above equations are in fact identical and that oc, (5

are connected by the equation

The constants a, 6 are not uniquely determined because they

determine, in part, the complimentary function in the differential equation

f o r )(•,_ •

From (l+.l), (1*.2), (lt.ll)-(l*.ll*) i t follows that

(U.15) u, =

.16) Xl= [^V
2^-2^

(3S0-8)

where (0 is given by (^.6) and a is now an arbitrary constant (which,

without loss of generality, could be taken as zero). Clearly the term of

0(F) in (U.15) is zero when u = 1 ; it can be shown that the higher

order terms also vanish when ( 0 = 1 , a result in agreement with (3.2).

The expansion procedure could be continued formally and x~, aL

calculated in the same way as above. Before leaving this discussion of

solutions for small F , it is noted that (U.15), (U.16) hold for small

F , whether F is positive or negative.

https://doi.org/10.1017/S0004972700023716 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023716


Planetary waves 137

/
The validity of the linear theory derived here will be discussed at

the end of the following section.

5. Numerical solutions of (3.1)

Picken [3] derived a numerical method for solving ordinary

differential equations in terms of Chebyshev series. A major advantage of

the method is that boundary value problems can be solved with no more

difficulty than initial value problems.

The solution of (3.1) is assumed to possess a convergent Chebyshev

series expansion of the form

(5-1) Xl(u) = I ar2-r(w) ;

the method computes the coefficients of a polynomial approximation to

X1(y) , such that

(5-2) Xl(M) = I a
r=0

n

where n is an integer chosen by the user.

When calculating eigenvalues associated with even eigenfunctions it

is convenient to impose boundary conditions

(5.3) -^- = 0 , X1 = 1 . when y = 0 .

For odd eigenfunctions we may specify

(5.1+) "5T = 1 ' xi = ° ' when y = ° '

as suitable boundary conditions.

The series (5-2) fails to converge except at an eigenvalue, and the

procedure employed consists of varying (0.. until higher a 's become

very small. In this way those eigenvalues which are equal to 1/3, 1/6 ,

when F = 0 , were computed, and the results obtained are tabulated in

Table 1 and illustrated graphically in Figure 1 (p. 138). The results here

were obtained with n = 32 . To extend the results to values of F
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Figure 1. Variation of ш with F . 
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greater than those given an increased number of Chebyshev coefficients are

required; that is, the value of n must be increased.

TABLE 1

F

0

- 3

-2.5
- 2

- 1

1

5
10

15

u l

1/3

.090

.193

.263

.3lU

.3hk

.365

.376

.382

1/6

.026

.052

.085

.136

.188

.235

.262

.278

Good agreement exists between the linear approximation for small F

(see (h.15))'and the numerical results obtained here provided |F| < 1

approximately. In fact, we may use the numerical results to estimate the

next term in the expansion {k.2). When u = 1/3 we may take

(5.5) 0.333 + .OlhF - .OOhF2 ,

which gives values of .3^3 and .315 when F = ±1 respectively. These

values compare favourably with the numerical values obtained (.S'+'+j

especially considering that here we are only working to three decimal

places.

6. Discussion

It will be observed from Figure 1 that U). shows considerable

variation as F increases. As an i l lustrat ion we -will compare the values

of a) when F = 0 and F = 12 (a typical value for the Pacific Ocean).

The eigenvalue which is equal to 1/3 at F = 0 is approximately O.38

at F = 12 , while that which is 1/6 at P = 0 has increased to

approximately 0.27 • We also note that when y = 0 , u> increases as F
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increases (except for u) = 1 , which remains true for all F ; see

(3.2)) . In a subsequent paper we shall show that u. decreases as F

increases for certain y .

Longuet-Higgins [/] showed that for the free surface oscillations of a

global ocean it was justified to treat the motion as horizontally non-

divergent when F « 1 . The results obtained here entirely agree with

this conclusion, but they show quite clearly that for the Pacific Ocean,

when F ca 12 , this simplification is not valid.

Stewartson and Rickard [5] found that singularities were present in

the higher order terms U , V , Y , W (n > 1) in the expansion of
Yl ft rt+J_ IVT £

velocity components and pressure (see (2.23a-2.23e)} at the two critical

circles where the characteristic cones of the governing equation touched

the shell boundaries. A superficial examination suggests that

corresponding singularities occur here and that the properties of the fluid

in the neighbourhood of the circles y = ±%w are essentially the same as

those discussed in Stewartson and Rickard [5], It is hoped to examine this

aspect of the problem in further detail in a later paper, and also to

consider the effects of density stratification.
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