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KLEENE ALGEBRAS ARE ALMOST UNIVERSAL

M.E. ADAMS AND H.A. PRIESTLEY

This paper studies endomorphism monoids of Kleene algebras. The

main result is that these algebras form an almost universal variety

K , from which it follows that for a given monoid M there is a

proper class of non-isomorphic Kleene algebras with endomorphism

monoid M (where M denotes the extension of M by a single

element that is a right zero in M ). Kleene algebras form a

subvariety of de Morgan algebras containing Boolean algebras.

Previously it has been shown the latter are uniquely determined

by their endomorphisms, while the former constitute a universal

variety, containing, in particular, arbitrarily large finite

rigid algebras. Non-trivial algebras in K always have non-

trivial endomorphisms (so that universality of ^ is ruled out)

and unlike the situation for de Morgan algebras the size of End(L)

for a finite Kleene algebra L necessarily increases as \L\

does. The paper concludes with results on endomorphism monoids of

algebras in subvarieties of the variety of MS-algebras.
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344 M- E- Adams and H. A. Priestley

1. Introduction.

This paper concerns endomorphism monoids of Kleene algebras and

complements [31, which deals with endomorphism monoids of de Morgan

algebras.

A de_ Morgan algebra is an algebra (L; v, ̂ ,^,0, 1) of type

(2,2,1,0,0) such that (LJV,A, 0,1) is a distributive (0.,i;-lattice,

"v is a dual (0, D-lattice endomorphism (so that ^(avb) = ^af^b ,

^ay^b, ^0 = 1, and ^1 = 0) and vm = a .

A Kleene algebra is a de Morgan algebra in which the inequality

holds.

We denote the varieties of de Morgan and Kleene algebras by M and

K , respectively.

It was shown by Kalman [2 7] that the non-trivial subvarieties of M

form a 5-element chain B c K c M where B denotes the variety of

Boolean algebras. Here B is generated by the 2-element chain B, K by

the 3-element chain K = {0,a,l} in which ^a = a , and M by the 4-

element complemented lattice {0,&,b, 1} with Vz = a and ^b = b .

For further references on Kleene and de Morgan algebras, see Balbes

and Dwinger [4] and the bibliography of Goldberg [76].

As regards endomorphisms, B and M display opposite extremes of

behaviour, so that it is of interest to investigate the intermediate

variety of Kleene algebras. We shall show that K has much closer

affinities with ^ than with ^ . It is well-known that a Boolean

algebra is uniquely determined by its endomorphism monoid; this was proved,

independently, by Magill [24], Maxson [25], and Schein {.301- By contrast,

given any monoid M , it is possible to find a proper class of non-

isomorphic de Morgan algebras each member of which has M as its

endomorphism monoid [3] .

Given a variety V , the existence or otherwise of many non-isomorphic

algebras with the same endomorphism monoid is closely related to the

existence or otherwise of suitable category embeddings into £ ;
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specifically, any universal variety is such that there is a proper class

(to isomorphism) of its algebras having any prescribed monoid as an

endomorphism monoid. We recall that a category C is said to be universal

if any algebraic category fully embeds in C , or, equivalently, if the

category G of undirected graphs and their compatible mappings fully

embeds in C ; see Pultr and Trnkova [29] for a full account of

universality and its consequences. (An undirected graph (V,E) is a

set V together with a collection E of 2-element subsets. A map

<(> between graphs G and G' is said to be compatible if, for x3yeV,

{§(x),^(y)}cE' whenever {x,y}eE. ) A variety ^ is said to be universal

if the category with the algebras of V as objects and with all

homomorphisms between them as morphisms is universal. The main theorem of

[3] asserts that de Morgan algebras form a universal variety.

Any universal variety has arbitrarily large rigid algebras, that is,

algebras with no non-trivial endomorphisms. An easy lemma, proved in

Section 2 (Lemma 4) shows that the only rigid Kleene algebras are the 2-

element algebra B and the 3-element algebra K . Thus ^ cannot be

universal. However, this observation gives a somewhat misleading impress-

ion. As we shall show, there exist in profusion Kleene algebras whose

only endomorphisms are constants, an endomorphism being called constant if

its image consists of the constants of the algebra, namely 0 and 1 . A

variety ^ is called almost universal if there exists an embedding

$ of G into V which is almost full in the sense that every non-

constant homomorphism between objects of $(G) is in the image of $ .

Our main result, proved in Section 3, is:

THEOREM 1. The variety of Kleene algebras is almost universal.

If End(A) denotes the endomorphism monoid of an algebra A , then,

as a Corollary, we obtain (see Pultr and Trnkova [29]) :

THEOREM 2. For any monoid M and infinite cardinal K S \M\ , there

exists a family of Kleene algebras (L.: i<2 ) such that, for i<2K ,

\L.\ = K j End(L.) ̂  M where M denotes the monoid M with the
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addition of one new element that is a right zero in M , and, for distinct

3 there exists precisely one homomorphism f:L. —> L. (which is a

constant).
The embedding we construct of Q into f£ is such that every

algebra in the image of G is infinite. This is only to be expected

since the size of the endomorphism monoid of a finite Kleene algebra

increases with the size of the algebra, a fact we establish in Lemma 5.

This implies that we could not hope to find a countably infinite family

of finite non-isomorphic Kleene algebras having a given finite monoid as

endomorphism monoid. Theorem 3 of [33 shows that a family of de Morgan

algebras of this kind does exist.

2. Preliminaries.

Our construction in Section 3 uses topological duality. We

summarize the basic information about duality which we require. For a

more detailed account consult [26], [27], or the survey papers Davey and

Duff us [72] and [2S].

For a poset P , a sequence I r . . }x 7 in P is a path of length

n- 1 connecting x. tc> x 7 if x. is comparable with x'. - for

i<n-l . A path is a fence if there are no other comparabilities between

its elements. A poset is connected if, for all x,yeP , there is a path

connecting x to y . Clearly, connectivity is an equivalence relation,

the equivalence classes of which are referred to as components• The

distance from x to y is the length of a path of minimal size connecting

x and y if x and y are connected, and is undefined otherwise. For

Q c_P 3 let LQ) and (Q~\ denote the order filter and ideal generated by

Q . Then Q is increasing (decreasing) providing Q = LQ) (Q = (Q~$).

The set of minimal (maximal) elements of P is denoted MinCPj (MaxfPJ ) .

For posets P and P' , a mapping <j>:P —> P' is order-preserving if

<p(x) < <t>(y) whenever x < y.

By an ordered topological space (P3T) we mean an ordered set P

with a topology T defined on it. The space is totally order-disconnected

provided that for any x$y in P , there exists a clopen increasing

subset X of P such that x e X and y{X . If, in addition, T is

compact, then (P,i) is called a Priestley space. Then there exists a
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dual category equivalence between the category of distributive (0,1)-

lattices with (0 3Jj-lattice homomorphisms and the category of Priestley

spaces with continuous order-preserving maps. The equivalence can be

defined in such a way that if L and (P,r) are associated under it,

then the elements of L correspond to the clopen increasing subsets of P.

Further, if f:L —> L' is associated with the continuous order-preserving

map 4>:P' -> P , then f(a) = b if and only if <j>~ (A) = B where A

and S are the clopen increasing sets that correspond to a and b .

The dual spaces of Kleene algebras were characterized in Cornish and

Fowler [JO]; for a more direct proof see Goldberg [17]. Let £„ denote

the following category of Priestley spaces: the objects of 5^ are spaces

(P JTJCJ where (P,\) is a Priestley space and C is a continuous order-

reversing involution on P such that, for each xeP , x and 5 (x) are

comparable; the morphisms of 5 are the continuous order-preserving

maps which commute with the 5-map.

PROPOSITION 3. ([JO] or see Section 2 of [J7]). The category £

of Kleene algebras in dually equivalent to £„ . Undar this duality, if

L and (P,T,C,) correspond, then, for a e. L, ^a is represented by

P\C (A) where A represents a .

We can now use duality to establish easily the two lemmas on the

existence of endomorphisms referred to in the introduction. Both lemmas

can alternatively be proved algebraically.

LEMMA 4. The only non-trivial rigid Kleene algebras are the 2-

element algebra B and the 3-element algebra K.

Proof. The duals of the two exceptional algebras cited are a 1-

point space and a 2-point chain. It will therefore be sufficient to show

that if (P3T,t,) e^ is such that P is not of this form then there

exists a continuous order-preserving map on P which commutes with C

and which is not the identity. There are two cases to consider.

First suppose p = t,(p) for some peP . Then the constant map

with image p provides the required morphism.
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Now assume that for every xeP , either x> T,(x) or X<t,(x).

Suppose, without loss of generality, that p > t,(p) for some peP .

Define $:P—> P by §(x) = p if x>Z,(x) and t,(p) otherwise. Then

<\> is a morphism in S . Q

Our second lemma shows that the size of the endomorphism monoid of

a finite Kleene algebra increases with the size of the algebra.

LEMMA 5. Let L be a finite Kleene algebra with (P^T,^) as its

dual in SR. Then \End(L)\ > \p\/2.

Proof. For p eP we shall define a morphism $ :P —> P in £

such that <j> and <f> are distinct whenever p and q are and

q ¥ z(p).
If p = t,(p), let <(> (x) = p for all xeP . Clearly $ is

continuous, order-preserving, and commutes with ? .

For p 7̂  C,(p) , we may assume without loss of generality that

p > t,(p) . There are two cases to consider.

Suppose that for some q.,q eP, q~ = ^>(QQ) and C1Q<Q-I • L e t

A (x) = q1 for x>p ,

t,(qj for x < $(p) ,

q. otherwise.

Then it is easily checked that <j> is a morphism in £„ .

If no such pair q. and q exists then let

<f> (x) = x for $(x) = x ,

p for x > c, (x) ,

X,(p) otherwise. D

As can be seen from the proof, the lower bound on the number of

endomorphisms in the preceding lemma is a conservative one. A more

careful analysis (not justified here) reveals that the number of non-

constant endomorphisms of a finite Kleene algebra increases with the size

of the algebra.
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Any space (P,\,T,) in £„ is the union of subspaces

P = {xe P.- x,(x) <x}

and P = {x eP: x <z(x)} .
-»• -s-

The spaces P and P are homeomorphic, order anti-isomorphic, and

respectively increasing and decreasing. They intersect in {xe P:

Cfxj = a;} which is a (discretely ordered) Boolean space contained in the

->- • >

minimal points of P . We can define a relation R on P by x - y if

-»• -f-

and only if x k z,(y) (note that c maps P onto P , so that R
- * • •<-

captures the order relations between elements of P and P ).

In the other direction, any space in S (and, hence, any Kleene

algebra) can be constructed from the following components: a Priestley

space (Q,o) (corresponding to P with the induced topology); a Boolean

subspace Q of the minimal points of (Q,o) (corresponding to

-»• -«-

PnP) ; and a closed binary relation - on Q satisfying

(i) for all x e Q, x -x ,

(ii) for all x, y e Q, x -y and i e § . imply x •£ y,

(iii) for all Xjy}z e Q3 x -y and y < z imply 2 -x .

A space P in S is then obtained as follows:

(i) P is the topological sum of Q and its order dual Q

identified (via the identity map) along Q- and Q ;

(ii) ? r Q is the identity map from Q to Q and ? h Q is the

identity map from Q to Q ;

(iii) the order on P is defined as follows: the spaces Q and §

have their original orders; for xeQ and yeQ, xiy if and only if

a; = y; and, for x e Q and y e Q, x iy if and only if x -y.

The spaces (P^T^P^,-) together with continuous order-preserving maps

that also preserve P. and the - relation are exactly those in the
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category dual to K under the natural duality obtained by Davey and

Werner [ '4] (see Clark and Krauss [9]) , in which the dual of an algebra

L e K is given by the homomorphisms from L into the 3-element generating

algebra K , suitably structured. For details see 1141 and for a fuller

discussion of the relationship of the Priestley and natural duals, see

[73].

As will be seen from the above remarks, the Priestley dual is a

more complicated ordered set than the natural dual. Since the space we

need to construct in Section 3 is very involved, we choose to work with

the natural dual. To simplify notation a little further, we shall recast

the description of Kleene algebra duals in a slightly different (but

clearly equivalent) form.

Let £., denote the following category:

An object (P3x,P SPJ of T (henceforth referred to as a k-

space) is a quadruple such that (P,x) is a Priestley space, P. £ P ,

and {{x}: x e P} £ Pj £ {{x,y}: x,y e P} . Both P and P^ are

required to be closed, that is, Pfl is a closed subspace of P and

{(x,y): {Xji/JeP.} is a closed subspace of P*P with the product

topology. Furthermore, we require:

(i) for x,y,ze.P, {x,y}eP1 and y < z imply {x,s}eP- ;

(ii) for x,y e P, xeP- and {x,y}eP^ imply x < y .

A morphism ij>: (P],x,PQ,P^ -> (P', x '^P'^P'^ of TR (subsequently

referred to as a fe-map) is a continuous order-preserving map <$> :P —> P'

that preserves P. and P^ : that is, for xeP., tp(x) e P' and, for

We then have, from [14^, C733. and Proposition 3, that £„ and

are isomorphic categories and that £ is dually equivalent to K .
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b

a = C(a)

C(b) *

C(O C(O

Figure 1

I .
P1

Po = {{a}}

P1 =

J = {{a}}

Figure 2

Before we proceed to discuss almost universality we present two

simple examples by way of illustration. Figure 1 gives the spaces in S

of two non-isomorphic Kleene algebras and Figure 2 gives the corresponding

k-spaces (the topology in each case is discrete). Notice that their k-

spaces P and P' are order-isomorphic. If <fr:P —•> P' denotes the

order-isomorphism, then <{> is a fe-map, but <(> is not as it fails to

map PL into P_ .

To utilize T,, in the verification that K is almost universal, it

is necessary to recognize those k-maps which correspond to constant

homomorphisms. Suppose that f:L —> L' in K is associated with
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<J>:P' —> P in T and with ty:Q' —> Q in £ . Then f is a constant

homomorphism if and only if 4>(Q') = {x} for some x = t,(x) eQ . Thus f

is a constant if and only if <\>(P') = [y] for some yeP. .

To show that K is almost universal, it will be sufficient to show

that Q is dually isomorphic to a subcategory of 'K. of £ each k-

space of which is such that \P/t\ = 1 > together with all ?c-maps except

those with a one-element image. As in previous proofs of almost

universality of varieties of distributive-lattice-ordered algebras, this

is accomplished by making use of a dual embedding of Q as a full sub-

category of a suitable category T. of ordered topological spaces, and

then constructing an isomorphic embedding of ZV into 2^

The category £. , which was introduced in [2], is defined as

follows: objects (P3x,PJ of T_ are compact totally order-disconnected

spaces (P,x) such that (i) P is a connected partially ordered set of

height 2 with a 5-element subset of minimal isolated elements

P. = {p.,...3p.} c_ P , and (ii) if xeMax(P) , then there are distinct

•i,Q such that x Zp .3p .; morphisms of T. are continuous order-preserving

maps <f>:P —> P' that satisfy <J>(pJ = p'. for i<5 .

In [2] (see also [7], Hedrlin and Pultr [79], [20], and recently,

Koubek [22]) , it was shown that £ is dually isomorphic to a full

subcategory of T_ . Therefore, to establish that K is almost universal,

it remains to construct an isomorphic embedding Y of 2V into JZ. .

3. Proof of Theorem 1.

The object of this section is to establish that the variety of

Kleene algebras K is almost universal. As was indicated at the end of

Section 2, this is achieved immediately we have defined a faithful functor

V:TC —> T such that

(i) for any object (P,T,P.,PJ of V(TJ3 \PJ = 1
U 1 D U

(which ensures that each algebra in the dually equivalent subcategory of
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Kleene algebras has only one constant endomorphism) and

(ii) given objects (P,T,P ,P ) and (P',t',P' P^) of 'VCT^ and

a k-map <j>:P —> P' such that §(P) ̂  P' , then there is a morphism ij> of

T,. such that HTIJJJ = <j>.

In other words, V is an almost full functor (which implies that every

non-constant homomorphism, and there is only one constant homomorphism,

between any two algebras in the dually equivalent subcategory of Kleene

algebras is a morphism in the image of ¥ ).

Before proceeding to define f it is appropriate to give some

comments concerning its complexity. We have already observed in Section 2

that the number of non-constant endomorphisms of a finite Kleene algebra

increases with the size of the algebra. Further consideration reveals

that if the k-space of an infinite Kleene algebra has only a finite

number of limit points, then its endomorphism monoid is infinite. In the

light of these remarks it is to be expected that, for any (P,i3PJ e T,- ,

the k-space V(P,T:}P-) will contain infinitely many limit points.

Recalling Boolean algebras and Stone algebras and noting the

abundance of endomorphisms of a finite Kleene algebra, one might suspect

that such an algebra would be recoverable from its endomorphism monoid.

It is worth remarking that this is not the case. In fact, it can be

shown that, for any n < m , there is a family (L.: i <n) of non-

isomorphic finite Kleene algebras such that End(L.) = End(L.) far
% 3

ijj <n. We omit the details.

We now define V . This is a relatively simple matter for morphisms

but not for objects. Thus, whilst defining T on objects, we will take

time to verify that, for (P,t,PJ e £s , HTPJTJPJ is indeed an object of

T . Only once this has been done will we complete the definition of V

by extending it to morphisms.

Let 7, denote the set of integers. Then set

A< = {a'. .: jeZ) for 0<i ,
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B = {&„• ieZ] ,

B' = {bl: u Z )

C. = {a. .: 0 <j <9} fo r 0 <i <5 ,

D = {d.: 0 <i) ,

D' = {d'.: 0 <i] ,
If

and E = {e} .

Define a partial order on

.: 0 <i) \}U(A'.: 0 <i) uB uB' u U C C : 0 <i<5) uDuD' uE

as follows:

f ° r

f o r

f o r i e « '

f o r

a. n^o. fo r 0 <i < 5 ;

i ) ei30*b2i+l

fo r 0 < •£ < 5 .

I n f o r m a l l y , fo r 0<i, A. and A', a r e i n f i n i t e fences as a re B and B'.
Is is

There are five finite fences C. for 0^i,<5 each of which acts as a

bridge between distinct elements of B and B' . Elements of DuD' uE

are incomparable with all elements of Q other than themselves. A

preliminary glance at Figure 3 will reveal the comparability graph of Q .

On Q define a topology a in the following manner. For 0<i ,

let (D.,a.) and (D'.jO1.) be the one-point compactifications of D. and
Is Is 1r Is tf

Dl by d. and d\ , respectively, where
U % Is
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<u
u
3

>• o •*•'
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D = { & . ; 0<j] u {b1.: 0<j} u { d } u { a 7 . ; j < (7} ,
-L 3 3 -L J J<7

D ' = { a ' .: 3 < 0 ] u { d ' } u { 2 > . : , ? < < ? } u i b ' . : j < 0 } ,
•* Jjt7 -L 3 3

and, for 1 <i ,

and

di

Then (Q,o) is the one-point compactification of the topological sum of

the spaces (C: 0<i<5), ((D.}a.): 0<i), and ((D'.,G'J: 0<i) by e .

Since the one-point compactification of the sum of a family of compact

totally disconnected spaces is a compact totally disconnected space, it

is straightforward to verify that (Q,a) is a Priestley space. As

stated above, Figure 3 gives the comparability graph of (Q3a): it has

been drawn in such a way as to suggest a .

We could at this stage define a k-space (Q,o,Q,QSQJ such that the

associated Kleene algebra has one non-trivial endomorphism that is also

a constant. We shall not do this. However, we note that (Q3o) will act

as a cradle for each (PtT3PJ eT. and, as a fe-subspace of V(P}T3P~),

the associated Kleene algebra will indeed have precisely one non-trivial

endomorphism.

For (P,i,P ) e Tg , let R = Q u (P\P ) where PQ = {p^: 0<i<5] .

Define a partial order on Ft as follows:

(i) for x,y e Q, x<y in R if and only if x <,y in Q ;

(ii) for x,y e.P\P0, x<y in R if and only if x <y in P ;

(iii) for xeQ and yeP\Pn> x^y in R if and only if, for some

0 <i < 5, x = o. . and p . < y in P .

Informally, R is the union of the posets P and Q where, for

0 ii < 53 c. . is identified with p. .
I' 3 = %

Since each element of P c_ P is isolated in the topology x , R

is the union of two compact totally disconnected spaces. Let p denote
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the sum of a and the restriction of x to the subspace P\PQ o f P •

The following is readily seen:

LEMMA 6. For CP,x,P ) e. T , (R,p) is a Priestley space.

We will now define suitable R. and /?? such that (R,p,R.,Rj

is a fe-space. We require that R. £ R and {{a;}: x e R} £ i?_ £ {{x,y}:

x,y eR} . In addition, both i?.. and R are required to be closed: that

is RQ must be a closed subspace of R and {(x,y): {x3y} e RA must be

a closed subspace of RxR with the product topology. Furthermore, it is

necessary that

(i*) for x3y,zeR, {x3y} e R and y < 3 imply {x3z} e R

and

(ii*) for x,yeR}
 Xe-Rn and {x,y) e R-, imply x < y .

Let R. = E, so R- contains the single point e .

The definition of i?7 is quite complicated. We give it in its

entirety and then seek to explain: it is probably advisable to read the

definition and the explanation concurrently.

Let (N.,N'.: 0 <i) be a partition of the positive integers into

infinite sets and, for 0 i i , let E,(i) = 4(i + l)(i+2) (= l(8g:

0 <j <i + D).

Ry contains the following elements:

(i) {usv} for any u and V with a common lower bound in R ;

and, for 0 <i ,

laiJ2j+l>
aiJ2k+l

h {ai,2i+l>ai,2k+J>
 {h2j+l>b2k+l) '

{b2j+rb2k+l}

J and

and
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and ^b2-j+2'^l^ a n d ®2i+l'^j} f ° r e v e r y

(iv) {d^dp, {di3di+1) , and ldl3dl+1} ;

(v) for

for defy l«ijt:(j)+8k>
aU(j)+8(k+l)} f ° r

for deNQS {b^(d)+8k3buj)+8(k+1)} f o r k = O3...J-2 and

a n d , f o r J £ ^ ^

a n d

lai3j>
ai3k±l

} 3 n d {ai,j±l>ai3k±l
} ^Ji,^

added in (v),

and {ai3j±i'
ai3k±i

} for each iai3j>
ai3k

}

added in (v),

{bjjbk±l} a n d {ZJJ±1J2??:+5} f o r {hj'bk] a d d e d i n

and O>\3b^±1} and ^b'^b^j} for ib'bp added in (v) .

There are two non-trivial conditions: (ii) and (v) .

Condition (i) ensures that if. contains the minimum number of

elements consistent with condition (i*) .

Condition (ii) places every maximal element in each of the infinite

fences (A.: 0<i)3 (A1.: 0<i), By and B'3 in relation with every other

maximal element of its own fence except for the two points at distance

four. As a direct result of (ii), conditions (iii) and (iv) are necessary

additions in order that R^ be closed. Figure 4, typical of any infinite

fence, indicates all those points that are in relation to a. 0 .,. at

this stage.
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Condition (v) is to ensure that the minimal elements of each

infinite fence behave like a graph with infinitely many isolated vertices

and infinitely many disjoint cycles of different lengths. (It is a

consequence of the function £ that the cycles lie along the fences

without overlapping.) To comply with (i*), it then becomes necessary to

add condition (vi) . The number 8 in condition (v) is chosen as the

smallest number such that condition (vi) does not add any pair of maximal

elements of distance four to i?7 (that is, those pairs deliberately

omitted in (ii)). By way of example, Figure 5 shows all points in

relation to a. _,,., o7 in the event that jeN. .
iZigJ+oK ^

The roles of conditions (ii) and (v) will become apparent in due

course.

LEMMA 7. For (P3x,PQ) e £5 3 (R^.R^R^) satisfies (i*) and (ii*).

Proof. We first show that condition (i*) holds. Suppose {x,y} e R^

and !/ <s . Consider the various possibilities. If x and y are such

that {x,y} occurred in (i) , then x and y have a common lower bound.

Then so too do x and z and, hence, {x3z} e. R- . If {x3y} occurred

in (ii) , (iii), or (iv) , then y is a maximal element of the partial

order, in this case {x,z} = {x,y} . If ix,y} occurred in (v) , then

{XjZ} e i?7 by (vi) . The validity of (i*) is concluded by observing that

{x,z} occurs in (vi) whenever ix3y} does.

Condition (ii*) holds vacuously since e is not present in any

two-element member of R^ . Q

Obviously, RQ £ R and {{x}: x e R) £ R-. £ {{x,y}: x3yeR} . Thus,

to show that (R,p,Rn}R.) is a fc-space, it remains to establish the

following:

LEMMA 8. For (P,r,P0)eT5 , RQ and RJ are closed.

Proof. Clearly, as a one-element set, R. = E is closed.

It is to be shown that 5 = {(x,y) : {x,y} e R-} is a closed subspace

of RxR with the product topology.
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We f i r s t show t h a t S _ r n i s c losed where S_rr> denotes those
Lhti LLtl

elements of S with a common lower bound, namely,

Srr-r, = {(x3y) eS: z ^x^y for some z e R} .

Suppose that (x.y) e CH(Sr,r^) where Ci,(S~Tn) denotes the closure
LLJD CL/D

of S_r_ . If (x.y) £S nTT.s then x and y have no common lower bound
(sLjtf OLD

and t he r e e x i s t clopen decreas ing s e t s X,Y <^_R for which xeX , y e. Y,

and Xnl = 0 . Since (x,y)e.XxY and I x I i s c lopen , Srrj, n (X x y ; /

^ . That is, wSUjl) for some fw.uj 6 S.rn n (I x yj . since I"J is

decreasing, ('wJU/' e X x Y . This is impossible as it implies that

W e X n Y , In conclusion, (x,y) eS and, hence, 5__D is closed.

It remains to show that Cl(S..TJ c 5 where 5.7rD = S\5 (that

is, those elements of S with no Lower bound).

Assume (%3y) e. CSL(S „) . There are several possibilities:

If neither x nor y is in DuD' \J E , then (x3y) is an isolated

point in R xR and, hence, (x,y) £S_._ c^S . Assume, therefore, that at

least one of X or y is an element of OuD'uf .

Suppose x = e . If y ̂  e , then choose a clopen neighbourhood Q

of e such that y^Q . Observe that there is a neighbourhood Q' c_Q

of e such that, for ueQ' , {u,v} e R- implies VeQ . Since

Q' x (7?VJ,) is an open set containing (e,y) , this gives a contradiction.

It follows that (x,y) = (e,e) eS.r. c 5 .

Suppose x = d. for some i- > 1 . Then (x,y) is an element of

CSL(Sn), CMS ), or CMS , J where
0 even odd

Seven= {(u>v)eSNLB: U = ai-l,2j o r a£,2j f o r s o m e ^ V > a n d

5odd = {(U>V)€SNLB: U = ai-l,2j+l O r aij2jVi for some 3 e Z} .

In the first case, when (xyy) e CX.CS ) , it follows that
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y e CiC{v: (d.,v) eS..Tn}) and this forces y = d. 13d.,d. 7J or, for some

^ o r a

Consider the second case when (x,y) e Cl(S ). Then (x,y) is

a limit point of the set of points {(a. 7 o-,v) e S : j e. Z] . But if

(\-l,2j>V)eSNLB > t h e n ai-l,2o = ai~lA(p)+8q for some P and

such that (?<<7<p-J. Whereupon, U = a. 7 j, for some kt^(p-l) . It

follows that y = d. .

Finally, consider the third case when (x3y) e Ci(S ,J. Then the

points (u,v) of 5 may be partitioned into two sets according to

whether v = a. ., o .,.,., a. „. ,,<i. -,,d.. or d. ,., , or whether u = a.
I-12Q+1* V2Q+1S 1-1' %' %+l ' 1

or a. _ . for some j e Z . It follows, since (x,y) is in the closure

of one of these two sets, that y = V l ^ l ^ t ^ w i l ' ^ °r di+i

for some k e Z or that y = d. 3 respectively.

In any event, (x3y) eS whenever x = d. for some i> 1 .
Is

The argument when x = d'. for some i > 1 is essentially the same,

as are the arguments for x = <i7 or dl . By symmetry, the proof is

complete. D

For (P,T3V.)eT,. , for V(P,T}Pn) = (R3p,Rn3Rn) . The above shows:

LEMMA 9. For (P3T,PQ) e T5 , V(P,x,P0) eTR .

We now extend ¥ to morphisms. For P3P' e ̂ _ and a morphism

i|).- P —> P'3 let ¥('i()>'.-1i'('P; -> ¥fPr; be defined as follows:

V(il>) (x) = x f o r x c Q ,

Mx) otherwise.

Since <j> is a continuous order-preserving map that is the identity

on P. , it is routine to verify that f(\p) is a continuous order-

preserving map. Clearly, V(\\>)(R ) £ R' . For x,yeP\P0 , {x,y} e R

if and only if x and y have a common lower bound. Thus, since
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is order-preserving and is the identity on Q, vl(^)(R ) £ R' .

To summarise at this point:

LEMMA 10. ¥.-rc -> Tv is a well defined faithful functor.

It remains to show that ¥ is almost full; that is, if

§:V(P) —> V(P') is a non-constant ?C-map, then cf> = YdjiJ for some

morphism i|/.-P —> P' . For the remainder of this section let (f> denote

such a map. Thus, §:V(P) —> V(P') is a Zc-map such that $(R) /_ R' = E.

The main thrust is to establish that <j> is the identity on Q.

LEMMA 11. <S,(R\E) £ (R'\E).

Proof. For any i > 0 , A. and E are order components of R .

Thus if $(A.)riE^0 , then $(A.) =E and, since d.Jd.1eCl(A.)1

n E ̂  0 . Similarly, if the image under <j> of any one of the order

components BuB'uUf 'C. : 0<i<5)u(P\P ) o r A', f o r i>0 has non-empty
Is U Is

intersection with E , then <$i(DuD') nS / 0 . Consequently, if

$(R\E) £_ (R'\E) , then $(D u D') n E ̂  0 .

Suppose, for some i. > 1 , fy(d-) = e . Then, since there exists no

nontrivial path X in R such that e e Cl(X) , both $(A. n) n E and

.) nE are non-void. It follows that <j>f/4. 1) = $(A.) = E and
s 1r~ J. Is

. -) = $(d.) = e . By an analogous argument, i f fyfd-) = e , then

ij)CSuS' uUCC: 0<,i<5) u (P\PJ) = 4>(A ) = E and, consequently, i>(d')
% U 1 J.

= $(dj = e . As s i m i l a r s t a t e m e n t s ho ld whenever 4>(D') n E / 0 ,

$(R\E) £ E whenever $(D\) D') C\E ? 0 .

The above shows that if $(R\E) ± (R'\E) , then t>(R\E) c_E . But,

by hypothesis, $(R\E) £ E . D

A two-element set was included in i?_ for every pair of maximal

elements of an infinite fence in Q except for pairs of maximal elements

at distance four: see condition (ii) in the definition of i?7 . The

omitted pairs will quarantee that the restriction of (j> to an infinite
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fence is either one-to-one or has a finite image: showing this is our

first step in varifying that <j> is the identity on Q . We will make

these remarks precise in Lemmas 13 to 17. First we must check that the

omitted pairs have not been included inadvertently.

LEMMA 12. For j e % and 0 <i , none of {*i32j+r
ai,2.(j±2)+ls >

{ai,2j+raiJ2(j±2)+l
} ' {b2j+rb2(j±2)+l} ' md {b>2o+l' h2(j±2)+l}

be longs to R^.

Proof. Begin by noting that the distance between any pair of

elements occurring in the statement of the lemma is four.

Suppose, in particular that, contrary to hypothesis, {a. 0-,-,}
tdQ+l

a. „ , •, „ i , -, } e R-, • Clearly, the pair in question does not occur in /?7

as a result of conditions (i) , (ii) , (iii) , (iv) , or, since the value of E.

is always even, (v) . Only condition (vi) remains. Since both 2.Q+1 and

2(j+2)+l are odd, the pair {a. „. .-,,a. „.,,,} must be of the form
VZ^JTI To{Q+oJ-rl

{a. 7,a. 7> for some {a. .a. } in (v) . That is, for some p £ N.

and q = 0,..., p-2 } either

r = E,(p)+8q and s = Z(p)+8(q+l) ,

or

r = Z,(p) and s = g(p)+8(p-l).

Since in no instance does |(r±l) - (s±l)\ - 4 , the assumption is false

and, consequently, t«i23+l*
ai2(3+2)+l} *' Rl '

A similar argument in each of the remaining cases completes the

proof. D

It is at this point that our attempt to clarify the definition of

Q by means of a fairly liberal use of letters works to our disadvantage:

the statements of succeeding lemmas are slightly cumbersome.

Lemmas 13, 14, 15, and 16 describe what happens in the event that <J>

identifies two or more elements of distance less than or equal to four in

any of the fences (A.: 0 < i), (A'.: 0 < i) , B , and B' . Although each

lemma applies equally well to any one of these fences, we will only give
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complete statements for (A.: 0 <i) . Each of the proofs relies on the

fact that <f> preserves both the i?7 relation and connectivity.

LEMMA 13. If, for some i,p>0 and i,<j £ Z , 4>(a^ 2-+1) =

> ap,2q+l > b2q+l > °T b2q+l >

J n B £ ib2q+1±r: 0<r<4] , or

.) n B' £ {&' ^+ : 0<r<4} , respectively.

Analogous statements hold for A'., B , and B' .
1

Proof. Consider the case that $(a. 2'

If a
V2(q+2)+l

e^(Ai)' then *(ai2k+l} = %2(q+2)+l for

some keZ . However, for every k e Z , either {a. „. ,,a. „ .} or

{a. orj.i!j.vai O7_LT^ i-s i n ^i • This is impossible since <j> preserves

i?7 and

<f)('{a,- OA+Va-! 2k+1^ = * ^ a i ?(i+1)+l>a-i 2k+1^

= {ap,2q+rap,2(q+2)+l}

which, as shown in Lemma 12, is not in if' . A similar argument shows

that (jifa „, ,, J f[ $(A.) . Thus, by connectivity,

Clearly, Ka^+j) = ^^^(j+1)^ = ap,2q+l is d^Pensed in

like fashion, as are the remaining possibilities once it is noted that,

for 0<k<5 , neither ^D2k+l'
Ck 3* n O r ^2k+l'Ck 5* i s i n R'l'

Similar arguments prove the next two Lemmas.
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LEMMA 1 4 . If, for some i,p>0 and j^qeg , 4>(a.

W = % %,2q+l> h2q+l' 0V b2q+l >

-{ap,2q+l±r: 0±r><4} ,

J n S c U>2 1 ± r : 0<r<4} , or

<t>(A.) n B ' £ lb' j + : 0ir<4} } respectively.

Analogous statements hold for A'.} B, and B'.

LEMMA 1 5 . If; for some i3p > 0 and j,qeZ , §(a.

> %,2q> b2q> OT b2q >

-{%2q±r: 0*r

.) nB c {b0 . : 0 <.r < 3} , or

.) nB' £ {b' + : 0 <r> < 3} , respectively.

Analogous statements hold for A'., B, and B'.

Finally,

LEMMA 1 6 . If, for some i,p > 0 and j>qeZ , <s?(a. O . J = a

ap,2q > b2q > Or> b2q > t h e n

J £ { ^ j 2 ( 7 ± r : 0<r<5} 3

.) nB c ft + : 0 <r < 5} , or

.) nB' £ {b' + : 0<r<5] , respectively.

Analogous statements hold for A'. , B , and B' .
Ts

P r o o f . S u p p o s e tj>(a. o-.-,) = a o . C l e a r l y ,
icO+L P^q
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*' ^{%2q-l>ap32q>%2q+l} '

In the event t h a t e i t h e r <\>(a. „ , • -, ( , -,) or <j>Ca. •>/„•.-» I.-J^ = <Z <>„.>

Lemma 15 y i e l d s the r e q u i r e d conc lus ion .

I f *(ai32(3-l)+l) = * r a £ , 2 f j > J j + J J * a
Pj2<? ' t h e n L e m m a r

be app l i ed .

The only case t h a t remains t o be cons idered i s when

*({ai32(3-l)+l'ai32Q+rai32(j+l)+l}) = {ap32q-l*ap32q'ap32q+l} '

Observe that, for any fee Z , a. „. 7 is an element of two distinct

members of R- that have non-empty intersection with

S i n c e a n , .,, , , a n , -,\. a n , -,<., a n d a n , , , , , , a r e e a c h
p,2(q-l)-l3 p2(q-l)' p2(q+l)' p2(q+l)+l

elements of only one member of R' that has non-empty intersection with

{ap32q-rap32q>ap32q+l} >

i t follows in the remaining case that, for every k e Z

*(ai,2k+l} £ {ap,2q-l>ap,2q'ap,2q+l} :

by connectivity, i>(A.) <= {a n •' 0 i r < 3 } .
"h — p 3 HqxT

The other possibilities are treated analogously. D

Essentially, the above shows that, for an infinite fence in Q ,

either <|> is one-to-one or it has a finite image. In the event that <£

is one-to-one,the minimal points of the fence are sent by if to the

minimal points of some other fence. It is here that condition (v) enters.

The minimal elements of any infinite fence in Q together with all the

two-element subsets of it that are in i?_ form a graph. Thus, if the

image is also in Q , the restriction of ij> is then a compatible mapping

from one graph to another. Condition (v) implies that each such graph has

infinitely many isolated vertices and infinitely many disjoint cycles of

distinct length. Consequently, ij> is a graph isomorphism and, by

necessity, the identity. The following lemma states this in a precise
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manner.

LEMMA 1 7 . If, for some i , p>0, $(A.) nA > ^(A.)nA', $(A.)nB
is fP 7s P Is

or $(A.) nB' is non-empty, then, for some qeZ .

-- 0<r<5} ,

.) nB £ {b : 0 <r<5] ,

J nB' c {b^: 0<r<5} ,

respectively, or <\> (• A . is the identity.

Analogous statements hold for A ' . , B, and B'.

P r o o f . S u p p o s e §(A.)nA 4 0 a n d i)(A.) £ {a + : 0 < r < 5}

f o r any q e Z . By Lemma 16 , $(a. 2i+2^ ^ % 2a f o r a n y J j i ? e ^ "

Thus, <f>({a. o-,7* 3
e%^) c (a o ,,: q e 2} and, by Lemmas 13 and 14, $

l>,ijj~f-l >̂ p , cQ-rl ^

is one-to-one on (a, ., ,: ieZ} . Thus, 4 is one-to-one on A. .
%,2,Q+1 t ^

Since <j> is one-to-one on {a. o .: J e Z} and ^{a. „.: j e. Z})

c {a _ : C7 £ Z} , it follows from condition (v) of the definition of R-
- p,2q i ^ 1

that p = i and <\> is the identity.

The remaining possibilities are treated similarly. Q

LEMMA 18. The restriction of $ to each of (A.: 0<i), (A'.: 0 <i),
I* Is

B, B', D, D', and E is the identity.

Proof. Since R = R' = E, § is the identity on E .

We claim that 4>(DuD') c OuD' . If, for some i,p > 0,

then $(A.) nA ^ 0 and § \ A. is not one-to-one. By Lemma 17, $(A)
1> P 1, Is

is a finite subset of A and, hence, i>(d. J eA . By induction and

continuity we deduce that t>(e) e Ci(A ) . This is impossible since

= e . Thus, §(D) n (U(A.: 0 <i)) = 0 . Similar arguments show

A ,
p
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that $(d.) i U(A'.: 0<i), B, B', U(C.: 0<i<5), or P'\P' , that is
Is is ** U

that <t>(Dj c DuO'. Clearly, as required, <fr(D') £ O u C too.

It follows from the preceding claim that ij) is the identity on

each of (A.: 0<i), (A1.: 0 < i), B, and B' (otherwise, by Lemma 17,

$(DuD) £DuD'). This being the case, <|> is also the identity on

DuD' . 0

The following lemma completes the proof of Theorem 1.

LEMMA 19. Y:T5 -> T^ is an almost full functor.

Proof. By Lemma 18, <(> is the identity on (A.: 0 <i), (A1.: 0 <i),

B, B', D, D', and E . In particular, for 0 < i < 5, t>(b „. J =

and fyCb'.y,) = bl. - . Since C. is the shortest path connecting

b.. _ and bL. 7J <j) is the identity on C. . In particular, $(c. .)

= a. . for every 0^i<5 . By hypothesis, for (P,x,P.) e £„ , if

x e M&x(PXP.) , then there are distinct i,j such that xic. .,o. . .

Thus,

(fiCrPXP.̂  u {c. .: 0<i<5}) £ ((P\P ) u {c. .: (9<i<5}j.

If ij) denotes the restriction of <j> to (P\Pn) u {c. .: 0<i<5} , then

i|) is a morphism of T,. such that <f> =

4. MS-algebras.

The theorems of this paper and [3] give information about

endomorphism monoids of de Morgan algebras and Kleene algebras. In [J],

endomorphism monoids of Stone algebras, another well known variety

generalising Boolean algebras, were discussed. These results enable us,

without further effort, to describe the behaviour of endomorphism monoids

of all the subvarieties of the variety ^ of MS-algebras. The variety

MS was introduced by Blyth and Varlet [7] and has been extensively studied

jsince. An MS-algebra (L;v,*,"*,(),1) is an algebra of type (2,2,1,0,0)

such that C£;VJAJ 0,1) is a bounded distributive lattice and ^ is a

dual (0,Jj-lattice endomorphism for which a = a^^^a, ̂ (aAb) = ^av^b, and
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^•0 = 1 . AJS-algebras generalise both de Morgan and Stone algebras. The

complete lattice of subvarieties of MS is described in Blyth and Varlet

[£] (see Beazer [5]). This lattice is depicted in Figure 6; here ^

denotes the variety of Stone algebras, determined by the equation

.MS

Figure 6

(see, for example, Balbes and Dwinger [4]) , and L denotes the subvariety

determined by a^a = (ai^a) A (

In [7], it was shown that, for L,L' e £, if EndfLj ̂  Endfi'j., then

L y L' . (Recall that a similar statement holds for Boolean algebras,

of which Stone algebras are a generalization.)

Now observe that, by definition, any variety that contains a universal

(almost universal) variety is itself universal (almost universal). Further,

observe that,as noted in C7H, an AJS-algebra is a de Morgan algebra if and

only if it satisfies wa: = x . In particular, if L is an MS-algebra

that is not a de Morgan algebra, then, for some x e L, v w / x . Since ^

is a dual ("0j.Z,l-lattice endomorphism, 'w, is a (0,1)-lattice
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endomorphism that preserves ^ . Hence, any AJS-algebra that is not a

de Morgan algebra has a non-trivial endomorphism. Thus, since every non-

trivial Kleene algebra has a non-trivial endomorphism, the variety L has

no non-trivial rigid algebras. Consequently, £ is not universal.

By [I] (see also Magill [24], Maxson [25], and Schein [30]), Theorem

1 of [3], and Theorem 1 the following holds:

THEOREM 20. Let £ be a variety of MS-algebras. One of the

following holds:
(i) ^f Z —X, -^ ' then, for L,L'e}^ , End(L) i End(L') implies

L Oi L';

(i'i) if K £ V £ L, then V is almost universal and not universal;

(iii) if M c V c MS , then V is universal.

In conclusion, we remark that all the varieties we have considered

are subvarieties of the variety 0 of Ockham algebras (see Urquhart [3?]

and Goldberg [76], [17]). A more systematic study of universality and

recoverability in varieties of Ockham algebras will be presented in a

subsequent paper.
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