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Abstract

Let P be the probability distribution of a sample without replacement of size n from a finite
population represented by the set N = {1,2,..., N}. For each r = 0 ,1 , . . . , an approximation Pr is
described such that the uniform norm \\P - Pr\\ is of order (n2/N)r+1 if n2/N -» 0. The approxima-
tion Pr is a linear combination of uniform probability product-measures concentrated on certain
subspaces of the sample space N".

1980 Mathematics subject classification (Amer. Math. Soc): 60 F 05, 62 E 20.

1. Introduction

A finite population of size N will be represented by the set N = {1,2, . . . , # } . A
sample of size n will be denoted by x = (xx,..., xn) (with x, e N). The set
X = N" is the set of all sample realizations associated with sampling with
replacement; the corresponding probability measure will be denoted by Po. The
set Xo = { x e X: all x, different} is the set of all sample realizations associated
with sampling without replacement; the corresponding probability measure will
be denoted by P. Clearly P0(x) = 1/N" for all x e X and P(x) = l/[N]n if
x e Xo, P(x) = 0 if x € Xo; here we have used [z]n as a symbol for the
downward factorial z(z - 1) • • • (z — n + 1). Finally, if Q is a signed measure
on X, we shall denote by \\Q\\ its uniform norm, that is, ||g|| = ms^A\Q{A)\.
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198 J. N. Darroch, M. Jirina and T. P. Speed [2 ]

It is clear that if N is much larger than n, the two probability measures P and
Po should not differ much. D. Freedman proved in fact in [3] that

From this, simple inequalities like

1 - exp(-(2")/JV) < ||P - Poll < (I

and an asymptotic relation

(7\ II p _ p II _ A. !L n« " » n
\z) \\r ro\\ 2 N N
follow.

The proof of (1) is so simple that it is worth repeating it here: For the signed
measure Q = P — Po we have

so that the corresponding Hahn decomposition of X is

A + = {x: Q(x) >0} = Xo, A~= {x: Q(x) < 0} = X- Xo.

As Q(X) = 0, \\Q\\ = Q(A+) = \Q(A~)\ and Q(A+) = 1 - [N]n/N
n. This

proves (1).
We may consider Po as an approximation of P with the maximum error of

order O(^). In the next section we shall derive an improved approximation P1

and show that its maximum error is of order O((JJ)2). In Section 3, an approxi-
mation with maximum error of order 0((i£)r+1) is presented for an arbitrary
r = 0,1,2, The proof concerning the general case may be found in Section 4.
It utilizes certain results from the theory of partition lattices and applies to any
r = 0,1, A direct elementary proof demonstrated for r = 1 in Section 2
becomes more and more complicated as r increases and would not be feasible as
a general proof.

2. Second order approximation

Let $ be the generating function of P and O0 the generating function of Po,
that is, for any v = (vv..., vn)
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[31 Sampling without replacement 199

and Q0(v) = n?.1(p(vi) with <p(u) = Q./N)Z"=lu
y. For each v, $(v) is the

coefficient at zxz2 • • • zn in the power series expansion of

The logarithm of the product ITjLi can be written in the form

»' <7

where Z stands for terms containing at least one z, in higher power. Further

N"

IN]. [t^
Hence

Equating the coefficients at z1z2 • • • zn on both sides we get

where

The (signed) measure Px corresponding to this generating function can be
described in the following way. For any subset {/, j) of {1 ,2 , . . . , «} put
X.f -j = {x = (Xj , . . . , xn) e X: x, = Xj) and let /*{,-,_,-} be the uniform probabil-
ity distribution concentrated on -^,-,_,•}, that is, P^j^(x) = ^ r if x G X{ij}'
P^•• j)(x) = 0 otherwise. Then

We have not specified the exact meaning of O(^i) and, even if we had done so, it
would not be clear what implication this would have for the difference P — Pv

However we may use the above mentioned Freedman method and prove directly
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that

(3)

J. N. Darroch , M. Jirina and T. P. Speed

l / « 2 \ 2 n2

~4 ¥ as¥^°-

[41

PROOF OF (3). Let Xl be the set of all x = (xu...,xn)^X with exactly one
tie among the *,, that is-, with the xt assuming exactly (n - 1) distinct values. The
signed measure Q = P - Px satisfies

1 I. ln\ A . \ 1
if x e Xo,

N"

Hence,

• \ l - i

G(*) > ̂ [ 2 - 1 -(2) A ] > ° if ̂ 1) and (j)/iV < 1,

This proves that Xx = A~= the negative part of the Hahn decomposition for Q if
{"2)/N < 1 and we have again Q(x) = 0. Hence

From this (3) follows easily.

3. The general case

Several results from [1] will be quoted later and, therefore, we shall use the
notation of [1] whenever possible. For any natural number n, ^(n) will denote
the set of all partitions IT = { Ar,..., Ab} of the set n = {1 ,2 , . . . , «} . The subsets
At will be called blocks. For any m e ^ ( n ) , 6(77) will denote the number of
blocks in m and ^,.(n) = {w G ^>(«): fc(ir) = « - / } . We shall say that w =
{Av A2,..., Ah) is of type kl,k2,...,kb, if, for each /, A:, = |yl,| = the number
of elements in At. Occasionally, when describing the type of partition, we shall
write lai2"2 • • • instead of repeating 1 ax times, 2 a2 times, etc. For any partition
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IT of type klt...,kb we shall put

For each ir = {Ax,..., Ab(n)] e &(n), Xv will denote the set of all x =

(xv...,jcn)e A with the x, tied at least on each Aj and P^ the uniform

probability measure concentrated on Xv. Xv is a rectangular subset of X

containing Nb(v) elements and Pv is a product-type measure with Pn(x) =

l/Nbw if x G A",. Note: *{/>y-} and P{ , y } of Section 2 become A^ and Pv if w is

of type I " " 2 ! 1 with {/, 7} as the only block with 2 elements.

For each n = 1 ,2 , . . . , the sequence uo(")> °i(")>••• i s defined by its generat-

ing function Fn(z) = [Yl"Ii(l -jz)]'1. Obviously, all «,-(") a r e nonnegative (in

fact strictly positive if n > 2) and they satisfy the recursion

They are also related to the Stirling numbers S(n, i) of the second kind by

(4) v,(n) = S(n + i - l , n - l ) ( » > l , i > 0 ) .

(See, for example, [1], page 232.)
If we repeated the procedure used at the beginning of the previous section

keeping this time all terms associated with \/N,...,\/Nr (r = 0 ,1 , . . . ) , we
would obtain a generating function of a (signed) measure

(5) „

= t rjr

The measures Po and Pl defined by this formula agree with those of Sections 1
and 2. For r = 2 we get

r of type
l " -^ 1 ) (l"-"22)

We accept Pr as the rth approximation to P and we shall prove the following
theorem.

THEOREM.

"* n2 „
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202 J. N. Darroch,M. Jirina and T. P. Speed [6]

The proof of the theorem is based on three lemmas. The following notation is
used: For j = 0 , 1 , . . . , n — 1,

Xj= { x = ( x x , . . . , xn) e X: the x, assume exactly n — j distinct values}

and A +, A ~ is the Hahn decomposition of X for the signed measure P - Pr.

LEMMA 1. For each r = 0 , 1 , . . . , Pr( X) = 1.

LEMMA 2. For sufficiently small n2/N,

A += Xo U X2 U • • • UXr ifr is even

and

A~= X^U X3U ••• UXr ifr is odd.

LEMMA 3. For sufficiently small n2/N,

\\P - Pr\\ =(P- Pr)(XQ) - Pr(X2) Pr(Xr) ifr is even

and

\\P-Pr\\=Pr(X1) + Pr(X3)+ ••• +Pr{Xr) ifrisodd.

Lemmas 1 and 2 will be proved in Section 4. Lemma 3 is an easy consequence of
Lemmas 1 and 2. Explicit formulae for Pr{Xj), involving Stirling numbers, may
be written down and we may then prove the main theorem using well-known
asymptotic formulae for Stirling numbers. For more details, see the end of
Section 4.

4. Proofs

For any it, a from @>(n) we shall write m < a if and only if m is a refinement
of a. With this partial ordering, &(n) is a lattice; its least element (= the finest
partition) will be denoted by 0. The function f will be defined by

y( \ / I if O < IT,
f ( f f ' 7 r ) ~ \ 0 otherwise,

and ju will denote the corresponding Mobius function (ju = f "\ see [1], page 141).
By a formula in [1], page 163,

(7)
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The numbers

are called the /th level numbers of the first kind ([1], page 155) and they are
related to the Stirling numbers s of the first kind by

(9) wt(n) = s(n,n-i)

(see [1], 4.20(iv), page 155). It follows from the definition of the Stirling numbers
([1], page 88) that the sequence w.(n) has for each n the generating function

The sequences v.(n) (defined in Section 3) and w.(n) are related by

(10) (v.(n)*w.(n))(k) = 8Ok for k = 0,1, . . .

where * denotes convolution and S is the Kronecker symbol. This follows from
Fn(z)Gn(z) = 1.

The following asymptotic formulae hold for each fixed / = 0,1,

n2'
(11) vXn) — as n -* oo

2'/!
and

(12) w,(n) = (-1) — as n -» oo.\ > ,\ ) \ ) 2 , . ,

These relations follow from the well-known asymptotic formulae for Stirling
numbers (see, for example, [2], page 293), but they may be also derived directly.
The sequences n,(n)/n2' and wt(n)/n2' (/ = 0,1,.. .) have generating functions
Fn(z/n2) and Gn(z/n2) respectively and these converge (as n -> oo) to ez/1 and
e~z/1 respectively.

For each T £ # ( n ) , w e shall put

and

The numbers w,-(n,w) are in fact the /th level numbers for the sublattice
{ a e ? ( n ) : a ^v r} and this sublattice is isomorphic to the product lattice
^(k^ X • • • X£P(kb), if m is of type kv..., kb. Using this fact we can show
through a simple calculation that

( 1 3 ) * , ( » , * ) = * ( * ! , • ) • • • • • * ( * „ • ) ( / ! - / ) -
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204 J. N. Darroch, M. Jirina and T. P. Speed [8]

The set X = N" is the set of all maps x: n -> N and, therefore, ker x (the
kernel of the map x) is well defined (see, for example, [1], page 5). It is a partition
of n such that x is constant on each block of ker x and assumes distinct values on
distinct blocks. We shall write b(x) = 6(ker x); b(x) is the number of distinct
values in the image of x. We shall also write Rj(x) = /?^(ker JC) and use Rj as a
symbol for the measure defined by Rj x).

The sets Xt and X^ of Section 3 and the probability measure Pw may be now
re-defined as follows: Xt, = {x e X: b(x) = n — /} , Xr = {x e X; IT < ker x)
and Pv(x) = ^yf(w,kerx).

Using this, we may write down another formula for Pr, namely

(14) Pr=jn;i«j(n,*)Rr-j
y = 0

where

j NJ '

PROOF OF LEMMA 1. Using second part of (5), (7), (8) and Pn(X) = 1 we get

Pr(X)= t -{-k(v.(n)*w-(">
The rest follows from (10).

PROOF OF LEMMA 2. The proof will consist of several steps. The following
additional symbols will be used: If IT e <?{n) is of type kx,..., kb, then b{ir) will
denote the number of blocks with kt > 2 (while b = b(ir) = the number of all
blocks),

£ Ik \
m{'TT)= mdx{kl,...,kb) and d(iT) = £ I ' .

They satisfy

(15) m(ir) - 1 < J2d(ir) and ~b(m) < d(ir).

(a) Let IT <= &>(n) be of type kx,...,kb. Then the sequence {(-1)JRJ(IT)},

J' = 0 , 1 , . . . , has a generating function

rrU Gki(-z) =~-X\ n \ i +;*).

PROOF OF (a). By (13), the sequence w.(n, ir) has the generating function
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The sequence Rj(ir) = E/_ow, («,"•) may be considered as a convolution of the
sequence 1,1,... and w.(n,ir). Hence, the sequence R.(IT) has the generating
function (1 - z)'1H(z) and the sequence {(-l)JRj(w)} has the generating func-
tion (1 + z)~lH(-z).

(b) / / TT G @0(n), then Rj(ir) = 1 for all] > 0.
If IT G &t(n) with I > 1, then

(-1)JRJ(V)>1 forO<j<l-l,

Rj(ir) = 0 forj > I.

PROOF OF (b). The case m G !?0(n) is trivial. If / > 1, then, in the formula for
K(z) in (a), at least one kt is > 2, so that K(z) is a polynomial of degree (/ — 1)
and all its coefficients are strictly positive integers.

(c) To each pair A, B of real numbers there exists a constant CA B (independent of
n) such that

for allj and for all m G @(ri), n = 1,2,... satisfying m(ir) < A, b(ir) < B.

PROOF OF (C). If m G &>0(n), then RJ(IT) = 1 for all j by (b).
If 7T e &(n)\9>Q(n), then by (b)

\Rj(«)\< t \Rj(«)\ =
A-\ ~\B

( i + y ) •
7 = 0

(d) To each I = 0 ,1 , . . . there exists a constant C, (independent ofn) such that

\Rj(v)\<C,

for all] and for all ir G »,{n\ n = 1,2,....

PROOF OF (d). If m G &t(n), then m(a) < 21, b(a) < / and (c) applies.
(e) Let a sequence of partitions <nn G 9>(n) be such that d(irn) -* oo. Then for

each] = 0 ,1 , . . .

OO.j

PROOF OF (e). Put dn = d(irn), bn = b(irH), mn = m(irn), assume that mn is of
type kln,...,kbn and denote by Ln(z) the generating function of \Rj(irn)\/d

J
n.

As dn U oo, mn "k 0>o(n) for sufficiently large n, \Rj(vn)\ = (-!)%(*„) by (b)
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and Ln(z) = K{z/dn). Using the inequality^ - y2/2 < ln(l + y) < y we get
r b. klm-i

L 7 - 1 =z-In LB(z)< j - E L

and

where
bn k l n - \ bn k i n - \

i = l 7 = 1 i = l 7 - 1

In the last step we used j; < mn — 1 for all j involved, and (15). Hence,
ZJdl -+ 0 and Ln{z) -+ ez.

(f) Let j , r be two {fixed) integers such that 0 <7 < r. Put, for each n,

max

Then supn Mn < oo.

PROOF OF (0- By (b), \Rr{-rt)\ > 1 for all w e Ur < / < n^a
/ (n) so that Mn are

well defined. Suppose sup,, Mn = oo. Then there exists a sequence np -> oo and

IT e U . w , , ^ , ( « J such that

(16) 00.

If d = suppd{vp) < 00, then supp\Rj{wp)\ < 00 by (15) and (c). This together
with \Rj(irp)\>l contradicts (16).

If d = 00, we may assume without loss of generality that d{irp) -* 00. Then, by

(e), \Rj(irp)/Rr(irp)\ -» 0 contradicting again (16).

In the next assertion, it is important that all inequalities hold uniformly with
respect to all n, N. Therefore, we shall write A'/"JV) instead of X, to stress the
dependence on n, N. We shall also use the fact that Rj(x) = Rj{kerx) does not
depend on N and that x e X{"'N) if and only if kerx e @,{n).

(g) Let r > 0 be fixed. Then there exists e > 0 such that for all pairs n, N
satisfying n 2/N < e,

(-l)'(P-P,)(x)>0 ifO^l^r and x e Xf-N\

(-l)r~\P - Pr)(x) >0 ifx e U Xf-N\
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PROOF OF (g). We shall use the formula (14) for Pr.
(a ) Assume first that x e X^n'N). Then, by (b),

(17) ( P - P r ) ( x ) = ± j i

= J_
~ N"

> 0 for all n, TV.

(P) Assume now that 1 < / ̂  r and x e Xf-N). By (b),

/ i t , 2

„„ r - Rl.1(x)+(-l)'-1LPJ(n,N)RJ(x)\

where

and all n, N; the last inequality follows from (11). By (e), all Rj(x) are uniformly
bounded with respect to n and x e Xf"-N\ Hence, for sufficiently small n2/N,
the last sum is negligible with respect to (-1)' 1/?/_1(x) > 1.

(y) If x e U,> r X\n-N\ then (-l)rRr(x) > 1 by (b) and

By (11), 0 < ar_j{n, N) < c(n2/N)r-J for all n, iV and some c > 0 and, by (f),
«7(x)//?r(x) are uniformly bounded with respect to all x e U / > r X["-N) and all
n, N. Hence, for sufficiently small n2/N, the last sum is negligible with respect to
1.

Lemma 2 follows now from (g).
Lemma 3 is an easy consequence of Lemmas 1 and 2, however to deduce the

main theorem from Lemma 3, we must find the asymptotic behaviour of (P —
Pr)(A-0) and of Pr(X,) for / > 1.
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Exact formulae. By (17),

j=r+l "

Using a well-known property of Stirling numbers of the second kind, namely
that S(n, k) is the number of partitions in &n_k(n) (see for example, [1], 2.66,
page 70), we can see easily that

) [ ] , _ , if 0 < i < / and

Hence, for 0 < j < /,

(19) Rj(X,) = 1 1 Wi(n,kcrx) = [ # ] „ _ , £ »,_,(«-/+ l)w,(n)
iej( 1 = 0 1 = 0

and, by (14) and (b),

7 = 0 "

if 0 < / < r.

Asymptotic formulae (for n2/N -» 0). Using (11) and keeping in (18) the term
of lowest order in n2/N, we get

Applying (11) and (12) to (19) we get, for 0 < j < /,

where ^(7,/) = I / . 0 ( - l ) ' / / ! ( / - »)!; in particular, j8(/ - 1,/) = ( - I ) ' " 1 / " if
/ > 1. Hence, by (11) and (20),

(22)

To conclude the proof of the main theorem of Section 3, assume first that r is
even. Then, by Lemma 3, (21) and (22)

P -
1)! 2 ! ( r - 1)!

The proof for r odd would be similar.
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5. An application of the approximate distributions

The approximations Pr defined by (5) might seem more complicated than the
exact distribution P. The purpose of this section is to show that, in spite of this,
they do sometimes provide reasonably simple formulae for evaluating certain
probabilities while the exact distribution does not.

As an example consider the distribution of the sum of n random variables,
which have been randomly sampled from a population of N random variables.
Such a distribution often underlies frequency data. For instance, a cohort study
of the etiology of a certain disease might begin by selecting a random sample of
size n from a population of N 25-year old people and end twenty years later by
recording the number of people in the sample who contracted the disease. This
number is the sum of n Bernoulli variables randomly selected from a population
of N Bernoulli variables.

In general let the jth individual bear a random variable Yj. The random
variables Yl,...,YN are assumed independent although not identically distrib-
uted; the probability distribution of Yj will be denoted by Qj. The sampling
consists of first selecting at random n individuals without replacement and then
reading the realizations of the corresponding n random variables YX,...,YX .
Finally, let S = Y^ + • • • +Y( where £ = (£l 5. . . , £„) is the random vector the
realizations of which are the labels (xlt..., xn) of the n selected individuals. If we
denote by P ( S ) the probability distribution of S based on the exact distribution P
of £, we have

where * denotes convolution. Similarly, if we denote by Pr
(S) the approximate

distribution of S based on the rth approximation Pr, we have

From the inequality

(23)

and from the main theorem it follows that | |P(S) - Pr
(S)\\ is asymptotically <

l/(2(r + l)!)(«2/A0r+1- To prove (23), put M = P - Pr, h(x) = QXi * • • • * QXn

and denote by (A+, A~) the Hahn decomposition of X with respect to M. Then
for any B and A = h~\B),

h{x)M(x)+ £ h(x)M(x)
A'

\\P - Pr\\.
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There is no simple formula for i>(S) . However for r = 0 ,1 ,2 we get

P{S) = PtS) + (n
2)/N[Q" - Q*(n~2)*Q2],

" - 2)Q*« -

where

e = ^ E Qj, Q2 = j ; L QJ*QJ,
7 = 1 7 = 1

Q3 = i j L Q j * Q j * Q j , Q*" = Q*-*Q ( » - t i m e s ) .
7 = 1

The Oth approximation P^S) is a proper probability distribution. This is not
necessarily true for Pr

(5) with r > 1, as some very small exact probabilities might
become negative, but the error of replacing these negative probabilities by 0s
cannot exceed the overall error of the approximation and is therefore neghgible.
A similar comment applies to the complementary events, the ""probabilities" of
which become slightly greater than 1; it is always true that P}S)(R) = 1.

If the random variables Yj have finite expectations, say ntj, then it is easy to
see that the exact probability distribution P(S) has the expectation nm, where
m = (l/Nfc^mj. Exactly the same holds for each Pr

(S\ For r = 0,1,2, this
may be proved in the following way. The probability distributions Q, Q2, Q3

have the expectations m, 2m, 3m respectively. Hence /"0
<S) has the expectation

nm, P[S) has the expectation nm + (2')/N
2[nm — nm] = nm and P^S) has the

expectation

More involved techniques would be necessary to prove the same fact for r > 2.
In the particular case mentioned above when the Yj have Bernoulli distribu-

tions with parameters Wj, that is, P^Yj = 1) = ttj, &>i(Yj = 0) = 1 - w,, the
r a n d o m variable S has a discrete distribution. If we denote by <p0, tpv <p2 the
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generating functions for the distributions of S under the approximation
PiS), Pjs) respectively, we obtain from the previous formulae, after suitable
re-arrangements

<po(z) = *(z)", Vl(z) = 9o(z) - ^( ; ) M 2 ^(z)"- 2 ( l - z)\

<p2(z) = Vl(z) - -L(5){^(z)-2(1 - zf + \{n - 2)^(z)-3(l - z)

where *(z) = 1 - if + nz, € = (1/NyLjifj, n2 = (1/NyL/vj - if)2, ju3 =
j(iTj — w)3. This may be rewritten as

= Bn>9(k),

= P0(k) - ±("2)n2 i(-DJ(])Bm.2,m(k -j),

- 7 )

where Bn_w denotes the binomial probabihty function with parameters n, w.
The distribution P(S) arises from two sources of stochastic variation, random

sampling in the first place and Bernoulli variation in the second. When the second
source is eliminated and each wy is 0 or 1, P(S)(/c) is the hypergeometric
probability

n - k

where Nt = L^LjW,, NQ = N — Nv The approximations to .P(S) cease to have any
practical value but have some theoretical interest. The moments are now m =
Nx/N, ju2 = NONX/N2, /13 = NONX(NO - Nx)/N

3. The approximation of P^s\k)
by P^S)(k) is the classical approximation of the hypergeometric probabihty by
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the binomial probability, and the formulae for P[s\ Pjs\ PjS) show how this
approximation can be improved by the inclusion of further terms which are
themselves binomial probabilities.

We conclude with two numerical examples. In the first example, ? ( S ' is the
hypergeometric distribution with N = 30, Â  = 15 and n = 5. In the second
example, we consider the more general model mentioned above with 30 Bernoulli
random variables Yj with parameters

(T71; IT2, ..., vM) = (0.1,0.2,...,0.15,0.85,0.86,...,0.99).

The bottom line in the tables gives the numbers dr = \\P(S) - P/S)||.

EXAMPLE 1

X

0
1
2
3
4
5

P(S\x)

0.0211
0.1437
0.3352
0.3352
0.1437
0.0211

P<s\x)

0.0313
0.1562
0.3125
0.3125
0.1562
0.0313

do
0.0454

P{s\x)

0.0208
0.1459
0.3333
0.3333
0.1459
0.0208

0.0044

Pjs\x)

0.0203
0.1432
0.3365
0.3365
0.1432
0.0203

d2

0.0026

X

0
1
2
3
4
5

P<5\x)

0.0239
0.1477
0.3285
0.3285
0.1477
0.0239

EXAMPLE

P&5\x)

0.0313
0.1562
0.3125
0.3125
0.1562
0.0313

do
0.0320

2

P{s\x)

0.0238
0.1488
0.3274
0.3274
0.1488
0.0238

dx
0.0024

P}s\x)

0.0233
0.1473
0.3294
0.3294
0.1473
0.0233

d2

0.0020
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The Oth approximation P^ is the same in both examples; the higher approxima-
tions are much closer to the respective exact distributions P(S\ In the first
example, calculating the exact distribution poses no problem. On the other hand,
calculating the exact distribution i*(S) in the second example required consider-
able computer time while calculating the corresponding approximations is as easy
as in the first example.
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