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The evolution of turbulent micro-vortices and
their effect on convection heat transfer in porous
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New insight into the contribution of the microscale vortex evolution to convection heat
transfer in porous media is presented in this paper. The objective is to determine how
the microscale vortices influence convection heat transfer in turbulent flow inside porous
media. The microscale temperature distribution is analysed using flow visualization in two
dimensions using streamlines and in three dimensions using the Q-criterion. The pertinent
observations are supplemented with a comparison of surface skin friction and heat transfer
using: (i) surface skin-friction lines and (ii) the joint probability density function of the
pressure and skin-friction coefficients, along with the Nusselt number. The microscale
flow phenomena observed are corroborated with the features of the frequency spectra of
the drag coefficient and macroscale Nusselt number. The large eddy simulation technique
is used in this study to investigate the flow field inside a periodic porous medium. The
Reynolds numbers of the flow are 300 and 500. The porous medium consists of solid
obstacles in the shape of square and circular cylinders. Two distinct flow regimes are
represented by using the porosities of 0.50 and 0.87. The results show that the surface
Nusselt number distribution is dependent on whether the micro-vortices are attached to or
detached from the surface of the obstacle. The spectra of the macroscale Nusselt number
and the pressure drag are similar, signifying a correlation between the dynamics of heat
transfer and the microscale turbulent structures. Both vortex shedding and secondary flow
instabilities are observed that significantly influence the Nusselt number. The fundamental
insight gained in this paper can inform the development of more robust macroscale models
of convection heat transfer in turbulent flow in porous media.
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1. Introduction

Comprehensive studies of the fluid mechanics of turbulence in porous media are only
now emerging with the advancements in modern computational fluid dynamics (CFD)
techniques. A fundamental understanding of how turbulent flow influences heat transfer
in porous media is still lacking. Turbulence in porous media is different from turbulence
in unconfined fluids because of the restrictions on the size and distribution of turbulent
eddies imposed by the finite pore size. The porous medium geometry will determine the
properties of the turbulence inside it. The repeating solid obstacles will enhance turbulent
mixing, which promotes heat and mass transfer inside the porous medium. These unique
properties of porous medium flows introduce features in microscale flow and thermal
transport that are not ubiquitous. For instance, the porous medium imposes a restriction on
the length and time scales of turbulence. In this work, microscale refers to a length scale
whose order of magnitude is equal to or less than that of the size of the solid obstacle.
Macroscale is a mathematically determined scale by applying the volume average theory
(Slattery 1967) to the microscale governing equations. Macroscale turbulent structures
will not be encountered in this study since the porous medium is assumed to be periodic.
This has been demonstrated in the work of Jin et al. (2015) and Uth et al. (2016). The
pore-scale prevalence of turbulence has been shown in Jin & Kuznetsov (2017). Direct
numerical simulation (DNS) studies by He et al. (2019) verified that the turbulence integral
length scale is ∼10 % of the obstacle diameter in a closely packed porous medium. These
observations suggest that the largest turbulent eddies will be formed as microscale vortices
(micro-vortices) behind the solid obstacle.

As a result of the size limitation, turbulence flow phenomena are also limited to the
microscale. For example, Chu, Weigand & Vaikuntanathan (2018) showed that turbulence
kinetic energy is produced near the surface of the solid obstacle at the microscale.
It follows from these observations that the size and shape of the solid obstacles will
determine the turbulence energy cascade. Convection heat transfer from the solid obstacle
surface will also be affected by the flow surrounding the solid obstacle, which is
determined by the solid obstacle shape. It is vital to understand the influence of microscale
flow structures on turbulent heat transfer in porous media to develop robust macroscale
models. The macroscale turbulence models can be used in emerging technologies such as
heat management in electronics (Hetsroni, Gurevich & Rozenblit 2006), long term energy
storage systems (Nazir et al. 2019) and forest fire modelling (Mell et al. 2009). Macroscale
turbulence models for porous medium flows have followed the Reynolds averaged, volume
average approach (Lage, de Lemos & Nield 2007; Vafai et al. 2009; de Lemos 2012; Vafai
2015), due to the limited availability of computational resources. The macroscale energy
models make use of the gradient diffusion hypothesis in conjunction with the assumption
of thermal equilibrium between the solid and fluid phases (Nakayama, Kuwahara &
Kodama 2006). More sophisticated macroscale turbulence models have started to follow
the large eddy simulation (LES) approach by including the temporal dynamics of the
flow (Wood, He & Apte 2020). To the best of the authors’ knowledge, such a model for
macroscale thermal energy does not exist.

A budget for the macroscale thermal energy equation suggests that macroscale thermal
transport is determined by only a few processes. Jouybari, Lundström & Hellström (2020)
noted that macroscale heat transfer is dominated by turbulent convection. Interfacial heat
transfer at the microscale plays a critical role in the macroscale thermal energy budget. In
the past, interfacial heat transfer has been modelled empirically using Reynolds averaged
Navier–Stokes (RANS) simulations of microscale porous medium flow (Kuwahara &
Nakayama 1998; Pedras & de Lemos 2003; Kundu, Kumar & Mishra 2014). Note that
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The evolution of turbulent micro-vortices

the results from microscale RANS simulations are constrained by the modelling error
(Iacovides, Launder & West 2014) and that these errors are carried forward into the
macroscale models based on these RANS simulations. Physical models of the thermal
transport in porous media require an understanding of the underlying microscale flow
physics.

Previous studies were mostly limited to investigations of microscale turbulent heat
convection in tube banks. Wang, Jackson & Phaneuf (2006) reported high turbulence
intensity in the regions behind the solid obstacles in a staggered tube bank. High
turbulence is indicative of enhanced fluid mixing, which could promote heat transfer.
Their RANS study has shown that vortex shedding is characterized by a single frequency.
This observation can greatly simplify the dynamics of turbulence and heat transfer in
porous media. The vortex region behind the heated solid obstacles is associated with a
high temperature resulting in a low local Nusselt number (Wilson & Bassiouny 2000).
Recirculation in the micro-vortices smooths the temperature gradient at the solid obstacle
surface for the Reynolds-averaged flow (Saito & de Lemos 2006). The link between
the micro-vortices and surface Nusselt number has not been investigated. Wilson &
Bassiouny (2000) showed that the Nusselt number increases with in-line tube spacing
until a spacing-to-diameter ratio of 3, although the underlying reason was not stated.
The LES study by Blackall, Iacovides & Uribe (2020) and the DNS study by Chu et al.
(2019) provided confirmation of the inhomogeneous distribution of the Nusselt number
on the solid obstacle surface, which was previously observed in the RANS study by
Sharatchandra & Rhode (1997). The Nusselt number at the flow stagnation region was
more than twice that of the vortex region. LES studies have also shown that the microscale
turbulent structures introduce wrinkles in the iso-surface of temperature which in turn
influence heat transfer (Linsong, Ping & Antonio 2021).

The dynamics of turbulent flow has been studied for two-tandem cylinders with a focus
on the vortices that are formed behind the cylinders. The vortex shedding process behind
the downstream cylinder of the two-tandem cylinders was reported to be characterized
by two frequencies (Zhou & Yiu 2006; Alam & Zhou 2008). The low frequency vortex
shedding was caused by the interaction of the vortex shedding behind the upstream
cylinder with that of the downstream cylinder. For tandem cylinders, low Reynolds
numbers were more conducive for the appearance of two peak frequencies for vortex
shedding (Zhou et al. 2009). The vortex co-shedding mechanism at high Reynolds
numbers was responsible for the disappearance of the second frequency. In addition to
the Reynolds number, the separation distance between the cylinders (corresponding to
porosity in the present study) also influenced the free shear layers formed behind the
cylinder and its interaction with the neighbouring cylinder. This interaction is reported
to control the transport efficiency of heat and momentum depending on the separation
distance between the cylinders. The vortex strength is reported to be a good measure
of the heat transfer efficiency, which is controlled by the separation distance. For a low
separation distance such as that typically seen in porous media, the vortices transport heat
and momentum with similar efficiency, which is different from an isolated cylinder where
heat transport is more efficient. Dual frequency dynamics is also observed in porous media
in the present work, as shown in § 3.2. However, there is a lack of a systematic study of
the turbulent flow dynamics and its influence on heat transfer in porous media. It is an
important study, especially since there are numerous applications of porous media with a
Reynolds number large enough for the flow to transition to the turbulent regime.

It was shown in the literature that vortices induce intense turbulence mixing; however,
low Nusselt numbers have also been reported in the vortex region. There is an inadequate
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understanding of this counterintuitive result. There is also a lack of studies that contrast
the heat transfer in different regimes of turbulent flow in porous media. For example,
heat transfer properties involving recirculating and shedding vortices are different. The
contribution of the different flow regions on the solid obstacle surface to heat transfer
has not been studied. Although researchers have reported a high Nusselt number in
the stagnation region and a low Nusselt number in the vortex region, the surface areas
covered by these regions are different. The geometry of the porous medium introduces a
unique distribution of flow regions. Therefore, the previous observations of the relative
contributions of these flow features to heat transfer are inconclusive.

In this paper, we address the shortcomings of the previous research described above.
The goal of this study is to determine the influence of the micro-vortices on turbulent
convection heat transfer inside porous media. Our preliminary work shows that the
turbulent structures inside porous media can either insulate the solid obstacles or carry heat
away from them, depending on the porous medium geometry (Huang et al. 2019; Huang,
Srikanth & Kuznetsov 2021). The micro-vortices will play a vital role in convection heat
transfer, especially since they are formed on the solid obstacle surface. The porosity of
the porous medium and the shape of the solid obstacles both influence the size, shape
and dynamics of the microscale turbulent structures. At high porosity, the size of the
micro-vortex scales with the diameter of the solid obstacle. The space in between the
solid obstacles is large enough that the micro-vortices are not restricted. At low porosity,
the size of the micro-vortex scales with the space in between the solid obstacle surfaces.
The formation of a recirculating vortex restricted in between the solid obstacles of the
porous medium at low porosity is also reported in Linsong et al. (2018). The solid surfaces
restrict the vortices from growing larger than the pore space (Huang et al. 2018). Desai
& Vafai (1994) showed that higher gap width in an annulus geometry decreases the heat
transfer rate in natural convection. This suggests that porosity is a critical parameter for
heat transfer in the present study. The solid obstacle shape has a higher influence on the
turbulent structures when the porosity is low, compared with when the porosity is high. For
square cylindrical solid obstacles, slow recirculating vortices were observed that restrict
heat transfer. For circular cylindrical solid obstacles, the vortices were able to shed into
the primary flow, dissipating heat during the process (Huang et al. 2019). We note that
an effective way of increasing the heat transfer rate from bluff objects is to increase the
Reynolds number of the flow, as shown by Khanafer & Vafai (2021). In order to change
heat transfer characteristics for a given Reynolds number, either the properties of the solid
obstacle shape or the fluid can be changed.

Establishing a direct connection between the micro-vortices and the heat transfer is a
novel contribution of the present work. Understanding the properties of the microscale
flow is also important for macroscale heat transfer modelling. Microscale studies have
shown that the heat transfer efficiency between the solid obstacle surface and the fluid
increases with an increase in the Reynolds number and obstacle diameter (Suga, Chikasue
& Kuwata 2017; Chu et al. 2019). The microscale simulations for square rods (Kuwahara
& Nakayama 1998), circular rods (Rocamore 2001) and elliptic rods (Pedras & de Lemos
2008) revealed that the thermal dispersion varies drastically with the solid obstacle shape.
The functional dependence of the Nusselt number on porosity changes with the solid
obstacle shape (Torabi et al. 2019). High resolution LES studies of finite pebble beds
show that hot spots that appear on the surface of the pebbles are highly unsteady, and their
locations move over time (Shams et al. 2014). Turbulent thermal mixing for circular rods
increases with an increase in the Reynolds number and approaches an asymptotic value
at higher Reynolds numbers (Li & Wu 2013). Therefore, heat transfer in porous media
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is highly unsteady and closely linked to the formation, propagation and dissipation of
flow structures. For instance, the temperature fluctuation intensity observed in the present
work is ∼15 % in the vortex region for a porous medium with a porosity of 0.50. The
fluctuations come from vortex shedding and flow instabilities (discussed in § 3). These
time-dependent effects are important when simulating turbulent convection heat transfer
in porous media.

In this paper, we focus on investigating the relation between microscale turbulent
structure dynamics and heat transfer in forced convection in porous media. We used LES
to simulate the microscale flow inside of a periodic porous medium consisting of an
array of cylinders. The simulation conditions and the details of the numerical method
are discussed in § 2. We used a multiscale approach to analyse the flow in § 3. We used
the flow streamlines and coherent structure visualization using the Q-criterion to visualize
the vortex dynamics and overlaid the temperature distribution to determine its influence
on heat transfer. We analysed the dynamics of the micro-vortices and heat transfer at the
macroscale using a frequency transformation of the time series of the drag coefficient
(CD), lift coefficient (CL) and Nusselt number (Num). We identified the relation between
the surface heat transfer and shear using the surface skin-friction lines, Nusselt number
distributions and joint probability density functions (PDFs) on the solid obstacle surface.
Using these techniques, we show that the microscale turbulent structures dynamics directly
influences heat transfer in forced convection in porous media.

2. Solution methods

2.1. Simulation geometry and boundary conditions
A homogeneous porous medium is constructed by arranging cylindrical solid obstacles
in a simple square lattice (see figure 1). The simulation domain is three-dimensional
spanning four unit cells along the x- and y-directions, and two unit cells in the z-direction.
The dimensions are chosen based on the decorrelation width for turbulence two-point
velocity correlation functions from Jin et al. (2015) and Uth et al. (2016). This forms a
representative elementary volume (REV) of size 4s × 4s × 2s, where s is the pore size
(figure 1). In Appendix A, it is shown that the REV of size 4s × 4s × 2s is sufficient to
calculate the macroscale quantities. The simulations were performed using the commercial
CFD code ANSYS Fluent 16.0. The details of the numerical method presented in § 2 are
taken from the Fluent theory guide (ANSYS Inc. 2016). Periodic boundary conditions
are used to impose an infinite span in all directions to represent a homogenous porous
medium. The pressure and velocity variables are periodic in all three Cartesian directions.
The no-slip boundary condition is imposed at the solid obstacle surfaces. The temperature
variable is periodic in the y- and z-directions. A temperature gradient is imposed in the
x-direction such that the bulk temperature at the inlet of the REV is 323 K by following
the methodology given in the Fluent theory guide (ANSYS Inc. 2016). The temperature
of the solid obstacle surfaces (Tw) was set to a constant value of 353 K. This results in
a characteristic temperature difference �T of 30 K. For this temperature change, we do
not expect any changes in the physical state of the fluid or the occurrence of chemical
reactions. The independence of the Nusselt number distribution from the characteristic
temperature difference near the chosen value of 30 K is shown in Appendix B. The Prandtl
number (Pr) was kept constant at 7. The fluid used for simulation is water (properties listed
in table 1). Two values of porosity (ϕ), 0.50 and 0.87, are studied to represent two different
regimes of turbulent flow in porous media. The flow features at ϕ = 0.50 are similar to
that of internal flow (such as channel flow), while the flow at ϕ = 0.87 resembles external
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Figure 1. The REV geometry of a porous medium. The distance between the centres of the solid obstacles s
(pore size) and the solid obstacle diameter d are also shown in the figure.

Density ρ(kg m−3) 998.2
Specific heat Cp (J (kg K)−1)) 4182
Thermal conductivity k (W (m K)−1) 0.6
Dynamic viscosity μ (kg (m s)−1) 0.001003

Table 1. The properties of the fluid used in simulation corresponding to water at 323 K.

flow (such as flow around a bluff body). At ϕ = 0.50, the solid obstacle surfaces are close to
each other such that the separated shear layer bridges the gap between the two obstacles.
A channel-like flow is observed in between the recirculating vortices. The recirculating
vortices are also driven by the shear layer in a manner that is similar to lid-driven cavity
flows. At ϕ = 0.87, the solid obstacle surfaces are far apart such that the vortices are able
to form, detach and be transported away from the solid obstacle surface. The Reynolds
number (Rep) is 300 for a majority of the cases. A single case with a Reynolds number of
500 is used to understand how the Reynolds number affects the observations put forth in
this paper. The square solid obstacle shape is used at high Reynolds number to avoid the
deviatory flow observed in Srikanth et al. (2021). The flow rate was sustained by using a
constant applied pressure gradient (ρg1, where gi is the applied acceleration) as the driving
force. The porosity (ϕ) and the Reynolds number are defined as

ϕ = 1 − π

4

(
d
s

)2

, (2.1)

Rep = umd
ν

, (2.2)

where d is the hydraulic diameter of the solid obstacles, um is the superficially averaged
macroscale mean velocity in the x-direction and ν is the kinematic viscosity of the
fluid. LES with the dynamic one-equation turbulence kinetic energy (DOTKE) subgrid
model (Kim & Menon 1997) is used to simulate the microscale flow field inside the
porous medium. Rodi (1997) demonstrated the superior performance of LES in simulating
bluff body flows compared with RANS. Dynamic LES models are able to reproduce
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experimental results with reasonable accuracy at a fraction of the cost of DNS (Jin et al.
2016). Krajnovic & Davidson (2000) have also demonstrated the ability of the DOTKE
model to predict parameters associated with vortex shedding. The simulations were run
on the North Carolina State University Linux Cluster. Representative computation time
for one LES case is 25 000 CPU-hours (1 CPU-hour = computation time in hours for a
single CPU). Each simulation is run using 80 cores with nodes consisting of Intel® Xeon®
E5-2650 v4 processors. Each simulation is run for 200 non-dimensional time units (8000
CPU-hours) to equilibrate the solution followed by the collection of turbulence statistics
for 400 non-dimensional time units (17 000 CPU-hours).

2.2. Details of the physical model and numerical method
The governing equations for the LES are the filtered Navier–Stokes equations (2.3) and
(2.4). The tilde notation (ũ) denotes the spatial filtering operator. The pressure variable
p̃ here is the filtered periodic pressure (terminology adopted from the ANSYS Inc. 2016
theory guide). The pressure gradient term in the governing equations in periodic flows
can be split into a constant pressure gradient term ρgi and the gradient of the periodic
pressure ∂ p̃/∂xi. To calculate the static pressure, we take the sum of the periodic pressure
and the linearly varying pressure. The subgrid velocity scale is estimated by solving a
transport equation for the subgrid turbulence kinetic energy kSGS (2.5). The subgrid-scale
filter length Δ is set as the cube root of the cell volume. Kim (2004) has demonstrated
that setting the grid filter length as the cube root of the cell volume yields accurate results
using unstructured, stretched grids for simulating the flow inside channels and around
square cylinders. We note that there are other procedures used to calculate the filter width
such as the maximum side length of the hexahedral cell or by using the van Driest damping
function. Equation (2.6) estimates the subgrid turbulence eddy viscosity. The characteristic
subgrid length scale for the calculation of subgrid turbulent viscosity is estimated as Δ.
The model constants Ck and Cε are determined by the localized dynamic subgrid-scale
model from Kim & Menon (1997). The grid-scale velocity field is filtered to a test-scale
velocity field. The test filter length Δ̂ is equal to twice the grid filter length Δ (ANSYS
Inc. 2016). The similarity between the stresses at the two scales is invoked to determine the
model constants. The model constant Ck is determined in (2.7a,b) and (2.8a–c) by using
the similarity between the subgrid-scale (SGS) stress tensor τij and the test Leonard stress
tensor Lij. The value of Ck is limited by −μ/(k1/2

SGSΔ) to avoid a negative total viscosity.
Model constant Cε is determined in (2.9) by using the similarity between the dissipation
rate at the grid level εSGS and the test level εtest. The governing equations of thermal
energy are given in (2.10)–(2.12). The turbulent Prandtl number (PrT) is assumed to take
a constant value of 0.85. Dynamic methods are available for the calculation of turbulent
Prandtl number in a manner using the Germano identity at the cost of added complexity in
the numerical model. It is noted in the literature that the use of a variable turbulent Prandtl
number has a negligible effect on the prediction of thermal characteristics in wall bounded
flows when compared with using the constant value of 0.85 (Kakka & Anupindi 2020).
The filtered governing equations are solved in conjunction with the DOTKE subgrid
model using the finite volume method (FVM). A box filter is implicitly applied by the
computational grid in the FVM

∂ ũj

∂xj
= 0, (2.3)
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∂ρũi

∂t
+ ∂ρũiũj

∂xj
= − ∂ p̃

∂xi
+ ∂

∂xj

[
(μ + μT,SGS)

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)]
+ ρgi, (2.4)

∂kSGS

∂t
+ ∂(ũjkSGS)

∂xj
=

[
Ckk1/2

SGSΔ

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)]
∂ ũi

∂xj
− Cε

k3/2
SGS
Δ

+ ∂

∂xj

(
μT,SGS

∂kSGS

∂xj

)
,

(2.5)

μT,SGS = Ckk1/2
SGSΔ, (2.6)

τij = −2Ckk1/2
SGSΔS̃ij + 2

3δijkSGS; Lij = −2Ckk1/2
test Δ̂

̂̃Sij + 1
3δijLkk, (2.7a,b)

Ck = 1
2

Lijσij

σijσij
; σij = −�̂k1/2

test
̂̃Sij; ktest = 1

2
( ̂̃ukũk − ̂̃uk ̂̃uk), (2.8a–c)

Cε =

̂︷ ︸︸ ︷
(∂ ũi/∂xj)(∂ ũi/∂xj)−(∂̂̃ui/∂xj)(∂̂̃ui/∂xj)

((μ + μT,SGS)Δ̂)
−1

k3/2
test

, (2.9)

∂ρE
∂t

+ ∂(ρE + p̃)ũj

∂xj
= ∂

∂xj

[
(keff )

∂T̃
∂xj

]
+ ∂

∂xj

[
ũj(μ + μT,SGS)

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)]
,

(2.10)

E = Cp(T̃ − 298.15) + 1
2 ũj

2, (2.11)

keff = k + kT; where kT = μT,SGSCp

PrT
and PrT = 0.85. (2.12)

The bounded second-order central scheme (according to the work of Leonard 1991) is
used to discretize the convective terms and a second-order central scheme is used for
the viscous terms in the momentum equation. The thermal energy equation is discretized
using the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme
for increased stability without compromising accuracy. The locations of the pressure and
velocity variables are staggered. The pressure is stored at the centroid of the face of
the cell, while the velocity is stored at the cell centre. The momentum and pressure
Poisson equations are solved in a segregated manner using a pressure-implicit scheme with
splitting of operators. The thermal energy equation is solved at the end of the time step.
The simulation is advanced in time using a second-order implicit backward Euler method.
The no-slip boundary condition is enforced at the solid obstacle walls by specifying the
surface tangential and normal velocities at the solid obstacle wall to be equal to zero. We
note that there are other methods of implementing the no-slip boundary condition at the
wall, such as mirroring or by polynomial reconstruction of the fluid velocity distribution
in the solid obstacle domain for accurate gradient representation. In this work, we are
modelling only the fluid domain and there are no nodes inside the solid obstacle to model
the solid phase. Therefore, we explicitly specify velocity boundary conditions at the solid
surface. For the periodic boundary conditions, the grid point locations are conformal for
each pair of periodic faces. Each pair of periodic faces is treated as a connected interface
with connected nodes to periodically repeat the velocity and pressure distributions.
A similar procedure is followed for the temperature distribution in the y- and z-periodic
faces. For the x-periodic faces, the temperature distribution at the exit face is copied to the
inlet face after adjusting the magnitude to specify the desired bulk inlet temperature.
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The evolution of turbulent micro-vortices

2.3. Validation of the physical model and numerical method
In this section, we demonstrate that the numerical method described in § 2.2 is appropriate
for simulating turbulent flow in porous media by comparing the simulated flow field with
that of an experimental study. The ANSYS Fluent code used in this paper is well validated
for canonical turbulent flows (Fluent Inc. 2006). However, the code must be validated for
turbulent flows in porous media since the features of both flows inside channels and flows
around a single solid obstacle are observed. The experimental results of Aiba, Tsuchida
& Ota (1982) for turbulent flow through a tube bank in a channel are viable for validation
due to the small size of the tube bank. A limitation of this comparison is that the Reynolds
number of the flow used in the experimental work is an order of magnitude larger than
that used in the present work. The computational grid used in the validation simulation
is capable of capturing the large-scale eddies. The DOTKE subgrid-scale model is able
to predict the small-scale eddies. At high Reynolds numbers, a larger portion of the
turbulence energy spectrum is predicted by the subgrid model than that at low Reynolds
numbers. Therefore, the use of a large Reynolds number for validation is beneficial to
determine the performance of the LES subgrid model. An excellent agreement between the
simulation and experiment at the high Reynolds number implies an even better simulation
accuracy at low Reynolds numbers. This is because the subgrid flow properties are close
to the subgrid model assumptions at low Reynolds numbers.

The geometry used for the validation simulation is shown in figure 2. The validation
simulation models the experimental case with a dimensionless tube spacing of 1.6 and
a Reynolds number of 41 000. The Reynolds number is calculated using the mean flow
velocity at the minimum clearance and the tube diameter as per Aiba et al. (1982). Note
that all the lengths are non-dimensionalized using the tube diameter. The fluid properties
are those of air at 25 °C. The following approximations are made while modelling the
experimental set-up.

(i) The flow at the centre of the tube span is modelled by introducing a periodic
boundary condition in the z-direction. The approximation follows from the nearly
constant velocity distribution in the middle of the channel for turbulent flow. The
span of the periodic domain in the z-direction is two times the pore size. The
turbulence two-point correlation width is less than the span of the domain.

(ii) Sufficiently long entrance and exit sections to the test section are introduced such
that the flow becomes fully developed. The entrance and exit sections of the
computational domain are 30 times the channel width.

(iii) Grid stretching is used to increase the grid size at the inlet and outlet since high grid
resolution in these regions is not important to the flow in the test section.

(iv) The constant velocity boundary condition is specified at the inlet. Spectrally
synthesized perturbations are imposed on the velocity inlet to simulate a 5 %
turbulence intensity, as per the work of Aiba et al. (1982). Atmospheric pressure
is specified at the outlet.

(v) In the experiment, only the tube that is being considered for measurement is heated
at any given time. We follow the same procedure in the simulation by assigning a
constant heat flux boundary to the surface of a single cylinder. The experimental
heat flux has not been reported in the original article. We have assumed the heat
flux to be equal to 2 W m−2 following the experimental work of Sarma & Sukhatme
(1977) for the flow over a single cylinder. The induced temperature increase is low
enough that it does not violate the assumptions of the physical model used for the
simulation.
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Figure 2. A sketch of the computational domain used to reproduce the experimental results of Aiba et al.
(1982) for validation of the numerical method. The simulations are performed to compare the coefficient of
pressure and Nusselt number on the coloured tubes shown in the figure with that of the experiment. All the
lengths are non-dimensionalized using the tube diameter.
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Figure 3. The distribution of the (a) coefficient of pressure, and (b) Nusselt number on the surfaces of tubes
4 and 7 in the centre row of the tube bank (figure 2) for the LES and the experiment.

(vi) In the experiment, the heat transfer measurements correspond to a more complex
conjugate heat transfer problem that considers both the effects of the solid and the
fluid phases. In the simulation, we are assuming that the solid surfaces that are not
heated are adiabatic.

The LES model equations used for the simulation are described in § 2.2. The
distributions of the coefficient of pressure (Cpressure) on the surface of the fourth and
seventh tubes are used for comparison (figure 3a). The value of Cpressure is calculated as
per the definition given by Aiba et al. (1982). The simulated Cpressure distribution follows
the same trend as that of the experiment. The simulated stagnation pressure is less than
that of the experiment. In the low pressure regions, the quantitative agreement between the
simulation and the experiment is excellent. The disparity between the simulation and the
experiment is due to turbulence model limitations, coarse grid resolution and differences
between the simulation and experimental set-ups.

The distribution of the Nusselt number on the surface of the tubes is shown in
figure 3(b). There exists an average error of 15 % between the simulation and the
experimental Nusselt number distributions. It should be noted that Iacovides et al.
(2014) reported a close to zero average error in the Nusselt number distribution with
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the experimental result of Aiba et al. (1982) by assuming periodicity in the flow in
all three directions and that all of the cylinders are heated. In the present work, we
observe an excellent qualitative agreement in the distribution of the Nusselt number. The
distribution of the Nusselt number is virtually an exact match between the simulation and
the experiment after adjusting for the mismatch in the magnitude of the Nusselt number.
This suggests that the simulation adequately captures the features of the flow at the solid
obstacle surface and the dependence of heat transfer on these flow features. There are
several differences between the simulation and the experiment that could have led to the
quantitative difference in Nusselt number:

(i) The incomplete specification of the wind tunnel inlet and outlet conditions in the
simulation geometry leading to potential discrepancies with the experimental set-up.

(ii) The assumption of an infinitely periodic span for the tubes.
(iii) The assumption of adiabatic tunnel and tube walls and the lack of a conjugate heat

transfer model in the simulation to consider the heat transfer inside the solid tube.

Sources of experimental error could also be a contributing factor. The margin of
error in the temperature measurements is not reported in the original paper, but similar
experiments report a 3 % margin of error in the temperature measurements. Errors in
the temperature value from both the experiment and the simulation become accentuated
during the calculation of the Nusselt number since the inverse of temperature difference is
considered.

Excellent quantitative agreement of Cpressure in the low pressure region demonstrates the
ability of the model to predict the vortex region, which is the primary focus of the paper.
We also note that the coarse grid resolution is adequate to capture the main features of the
flow. Resolution up to the Kolmogorov scale will not contribute new information in this
study. Therefore, we have established that the numerical method described in § 2.2 is able
to reproduce the flow behaviour in porous media that is observed in experimental work.
We are proceeding to use the numerical method for our analysis. The numerical accuracy
will improve further when compared with the validation case due to the high-resolution
grids and the low Reynolds number used in the present work.

2.4. Choice of grid resolution
To determine a suitable grid resolution for the simulations, we perform a grid convergence
study using a smaller REV size of 2 s × 2 s × 2 s since the study concerns the smallest
scales. The grids used in this work are unstructured and follow a block structured O-grid
topology that stretches the grid around the solid obstacle surface. The grid cells in the
bulk of the computational domain are cubical in shape with an aspect ratio of ∼1.
The grid cells at the solid obstacle surface have a grid step size that is one order of
magnitude smaller than the maximum grid step size. The clustering of the cells at the
solid obstacle surface is to accurately capture the boundary layer. The maximum value
of the grid spacing �xmax and the non-dimensional near-wall grid spacing �y+

max are
shown in table 2. The distribution of �y+ on the solid obstacle surface is shown in figure
S1 in the supplementary material and movies are available at https://doi.org/10.1017/jfm.
2022.291. First, the LES index of quality (LES_IQ) (Celik, Cehreli & Yavuz 2005) is
used to estimate the fraction of the total turbulence kinetic energy that is resolved by the
grid. Pope (2004) recommends resolving 80 % of the turbulence kinetic energy for LES.
Remarks from Celik et al. (2005) indicate that simulations may be considered to be of DNS
quality with LES_IQ > 0.9. The volume weighted average of the LES_IQ for all the LES
simulations in this work is greater than 0.8. The minimum and volume-averaged values
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Porosity ϕ

Solid
obstacle
shape

Near-wall
grid size

Coarse grid,
�xmax/s = 0.05

Intermediate grid,
�xmax/s = 0.025

Fine grid,
�xmax/s = 0.0125

0.50 Circle 0.0022s 1.06 1.16 1.05
0.87 Circle 0.0075s 1.68 1.81 1.79
0.87 Square 0.0044s 1.87 1.65 1.79

Table 2. The maximum value of non-dimensional near-wall grid spacing, �y+
max, calculated on the surface of

the solid obstacles for the grid resolution test cases. These are small areas with high �y+ values, overall �y+
values on the solid obstacle surfaces are kept below 1.

Porosity ϕ

Solid obstacle
shape

Coarse grid,
�xmax/s = 0.05

Intermediate grid,
�xmax/s = 0.025

Fine grid,
�xmax/s = 0.0125

0.50 Circle Minimum 0.22 0.44 0.66
Average 0.81 0.95 0.98

0.87 Circle Minimum 0.70 0.73 0.80
Average 0.96 0.98 0.99

0.87 Square Minimum 0.69 0.74 0.89
Average 0.95 0.98 0.99

Table 3. The value of LES_IQ calculated for the grid resolution test cases. Both the minimum and the
volume-averaged values are reported (ranges from 0 to 1, values close to 1 indicate high resolution with a
large fraction of the turbulence kinetic energy being resolved).

of LES_IQ at an instant in time are reported in table 3. LES_IQ values less than 0.8 are
observed in the near-wall region for the instantaneous flow as spots on the solid obstacle
surface. The location of these spots coincides with the impingement of turbulent structures
on the solid obstacle surface. This implies an increased reliance on the subgrid model in
the near-wall region. The subgrid model has been validated in § 2.2 and its performance
has been deemed adequate.

Next, the turbulence kinetic energy spectrum is calculated using the one-dimensional
turbulence two-point velocity fluctuation correlation functions. The turbulence kinetic
energy spectrum is used to confirm that the large-scale eddies and a substantial portion
of the inertial subrange have been resolved in this work. The turbulence kinetic energy
spectra (Eii/3) versus the non-dimensional wavenumber (ks) for the LES test cases are
shown in figure 4. A portion of the turbulence energy spectrum aligns with −5/3 slope
for all the cases, which indicates that the inertial subrange has been captured. At the small
scales of turbulence, the turbulence kinetic energy declines by three orders of magnitude
when compared with the largest scales. Therefore, the smallest scales of turbulence are
not significant in our study. An experimental study by Nguyen et al. (2019) shows a
lack of small-scale coherent structures in randomly packed porous media. This further
supports the notion that the small length scale motions do not contribute significantly
to surface heat transfer. In some cases, a portion of the energy spectrum at the high
non-dimensional wavenumbers is excited due to numerical noise. This is also observed
in the energy spectrum plots shown in Eggels et al. (1994). Comparing the turbulence
energy spectrum produced by the three grid sizes, the grid sizes �xmax/s of 0.025 and
0.0125 show similar trends for a wider range of length scales until the dissipative scales of
turbulence are reached. Note that the spectra will not be coincident due to the limitations of
discrete Fourier transforms that introduce oscillations in the spectra that are unique to each
case. Since we are interested in the trends in the spectra rather than an exact point-by-point
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Figure 4. Turbulence kinetic energy Eii/3 versus the non-dimensional wavenumber ks for LES cases: (a) ϕ =
0.50 with circular solid obstacles; (b) ϕ = 0.87 with circular solid obstacles; (c) ϕ = 0.87 with square solid
obstacles. The dashed line corresponds to the −5/3 slope on the log plot.

comparison, the oscillations do not impact our study. Since we are using a subgrid model
for the dissipative scales, we are proceeding with the analysis using a grid size �xmax/s of
0.025.

3. Results and discussion

The investigation of the turbulent flow physics and heat transfer inside a porous medium
requires a multiscale analysis with an emphasis on the microscale flow behaviour. In this
section, we analyse the microscale vortex transport and its effect on heat transfer using the
following approach.

(i) First, we identify the regions inside the REV that contribute significantly to heat
transfer by visualizing the three-dimensional flow field. We visualize the flow
patterns using the instantaneous flow streamlines and the three-dimensional coherent
structures using the Q-criterion. We identify significant regions of heat transfer by
locations with a high temperature gradient. We use skin-friction lines overlaid on the
Nusselt number distribution on the solid obstacle surfaces to investigate the influence
of the surface shear on heat transfer.

(ii) With an understanding of how the different flow features observed in porous medium
flow influence the heat transfer, we investigated the dynamics of the surface-averaged
flow properties. This helps reduce the complexity of the analysis when compared
with a high frame rate visualization of the three-dimensional flow structures. We
use the fast Fourier transform of the time series of the lift coefficient (CL), drag
coefficient (CD) and Nusselt number (Num) to transform them into the frequency
domain and correlate them with our observations from the three-dimensional flow
visualization. We determine whether the spectra of CL, CD and Num have any
similarities.

(iii) Next, we determine the fractional contribution of the different flow features to
heat transfer. We constructed a joint PDF of the surface pressure and skin-friction
coefficients with the surface Nusselt number to map surface processes on the solid
obstacle. We have also used it to test our hypothesis that the pressure and shear
dominated processes during stages of vortex shedding have high impact on heat
transfer.

We have applied this approach to the simulation cases listed in table 4. We discuss our
results in the following sections.
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Case ID
Reynolds
number

Solid obstacle
shape Porosity

Time-averaged
Total Drag Force (N)

Time-averaged Total Heat
Transfer Rate (W)

A1 300 Circular 0.50 0.00789 704
A2 300 Circular 0.87 0.00615 1049
A3 300 Square 0.87 0.00662 1269
A4 500 Square 0.87 0.01607 1719

Table 4. Summary of simulation cases used in this paper to represent different regimes of flow in porous
media.

(a) (b) (c) (d)

323 353338
T (K)

Case A1 Case A2 Case A3 Case A4

ϕ = 0.50 

Circle

Rep = 300

ϕ = 0.87 

Circle

Rep = 300

ϕ = 0.87 

Square

Rep = 300

ϕ = 0.87 

Square

Rep = 500

Figure 5. Instantaneous three-dimensional streamlines projected on the xy plane and temperature distribution
at z = 0 for cases (a) A1, (b) A2, (c) A3 and (d) A4 (table 4). A sub-volume of the REV of size (2 s, 2 s) is
shown here. The locations of the streamwise and lateral void spaces are shown in red and yellow dotted lines,
respectively.

3.1. Visualization of the turbulent structures and temperature distribution
Our previous work suggests that the micro-vortices thermally insulate the solid obstacle
since the vortices have a smaller velocity than the surrounding flow (Huang et al. 2019,
2021). The heat transfer rate of the obstacle surface increases as the contact area between
the micro-vortices and the solid obstacle decreases. This suggests that the micro-vortices
reduce the effective surface area that is available for heat transfer. These inferences need to
be supplemented by LES of the vortex dynamics, since only the Reynolds-averaged flow
field was considered in the past. In the present work, we have identified that two types of
vortex systems can occur in porous media, namely recirculating (figure 5a) and shedding
vortices (figure 5b–d). The dynamic characteristics of the two vortex systems are distinct,
and they impart unique attributes to the heat transfer, as shown in § 3.2. The occurrence
of each vortex system depends on the porous medium geometry, primarily the porosity.
The stark contrast in the dynamics of the two vortex systems warrants a time-dependent
analysis, which is the methodology adopted in this paper.

The instantaneous flow field is first examined to identify the influence of the
micro-vortices on the temperature distribution inside the porous medium. Qualitative
observations are made using the representative cases shown in table 4 for different flow
regimes observed in porous medium turbulence. The time-averaged total drag force and
total heat transfer rate of all of the solid obstacles inside the REV for each case are reported
in table 4. The solid obstacle hydraulic diameter and the characteristic temperature
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difference are identical for all the cases. The time-averaged total drag force is higher for the
low porosity case A1 (circle, ϕ = 0.50, Rep = 300) when compared with the high porosity
cases A2 (circle, ϕ = 0.87, Rep = 300) and A3 (square, ϕ = 0.87, Rep = 300) due to the
constricting geometry in case A1. The time-averaged total heat transfer rate is lower for
the low porosity case A1 when compared with the high porosity cases A2 and A3. This
indicates that a higher surface area per unit volume is not necessarily favourable since the
heat transfer rate is less even although there is a higher drag. At the higher porosity, the
time-averaged total drag force for the square cylinder solid obstacles is higher than that
of the circular cylinder solid obstacles. However, the time-averaged total heat transfer rate
is also higher for the square cylinder solid obstacles compared with that of the circular
cylinder solid obstacles. The heat transfer rate is the highest for case A4 (square, ϕ = 0.87,
Rep = 500) since it has the highest Reynolds number. However, it should be noted that
the increased heat transfer comes at the cost of a high drag force. These trends in the
time-averaged flow can be attributed to the micro-vortices and their dynamics as shown
below. For ease of reference, we divide the REV into primary and secondary flow regions
based on the underlying flow features. In all the cases, we define the primary flow region
as the region in between the separation shear layers formed behind the solid obstacle.
The primary flow is characterized by virtually unobstructed, high velocity flow from the
inlet of the periodic domain. The secondary flow region is the region behind the solid
obstacles occupied by the vortices. We define the lateral and streamwise void spaces in the
porous medium geometry in the regions of the primary and secondary flows, respectively
(figures 5a and 5b).

In case A1, recirculating vortex systems are observed in the secondary flow region
(figure 5a). Sharp gradients in the temperature distribution are present at the boundary
between the secondary and primary flow regions. The velocity of the recirculating
vortex core is close to zero (stationary). As a result, the vortex core temperature at a
statistically steady state is the closest to the solid obstacle surface temperature among
all the cases studied here. A high vortex core temperature lowers the temperature gradient
at the solid obstacle surface covered by the recirculating vortex. By this mechanism, the
recirculating vortex system renders the vortex-covered portion of the solid obstacle surface
less conducive to heat transfer, storing heat in the streamwise pore space. In contrast, a
more diffuse temperature distribution is observed in the case of a shedding vortex system
at high porosity, such as in cases A2−A4. The shedding process carries heat away from the
solid obstacle surface that is stored in the vortices. In figure 5(b–d), vortex structures with
elevated core temperatures are being transported away from the solid obstacle surface.
The temperature distribution near the solid obstacle surface in the secondary flow region
in cases A2−A4 will have sharper gradients than in case A1. The core temperature of
the vortices is also lower in cases A2−A4 than in case A1 since the vortices are not
stationary in the streamwise void space. Therefore, the vortex regions in cases A2−A4
have a higher surface heat transfer rate when compared with case A1. The shedding vortex
system facilitates convection heat transfer better than the recirculating vortex system.

The change in the solid obstacle shapes between cases A2 and A3 influences the location
of the flow separation. For square solid obstacles, the flow separation is prescribed at the
sharp corners of the square solid obstacle shape. This results in a smaller intensity of
oscillation of the path followed by the streamlines in the secondary flow region, which is
reflected in the time series of the solid obstacle surface forces shown in § 3.2. There is also
a consistent contact area between the vortices and the solid obstacle surface throughout
the vortex shedding cycle. The change in the Reynolds number between cases A3 and A4
does not appear to change the flow patterns in any apparent way. It is shown in table 4 that
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both the heat transfer rate and drag force are substantially higher for the high Reynolds
number case, case A4, compared with the remaining cases. This increase is not caused by
any apparent qualitative change that occurs between cases A3 and A4 when the Reynolds
number is increased.

In all of the cases, the micro-vortices introduce spatial inhomogeneity in the heat transfer
characteristics on the surface of the solid obstacle. The temporal evolution of the vortex
systems at the high and low porosities possesses unique characteristics that determine
the heat transfer rate as well. For all the cases, the vortex shedding process starts by
vortex formation on the solid obstacle surface due to flow separation in the region of
the porous medium with an intrinsically adverse pressure gradient. The formation of the
vortex entrains cold fluid into the streamwise void space from the primary flow region.
The definition of the void space labels is illustrated in figure 5. After the vortex is formed,
the vortex core diameter increases while being attached to the surface and the vortex
core temperature approaches the solid obstacle surface temperature. Due to the high core
temperature, the vortex acts as an ‘insulation’ on the solid obstacle surface at this stage.
Next, the vortex detaches from the solid obstacle surface and a new vortex forms as this
cycle continues. The evolution of the detached vortex is different for each case. The vortex
evolution process is illustrated in figure 6 by plotting the instantaneous flow streamlines.
The animated sequence of streamline plots is available in supplementary movies 1–4 for
cases A1−A4. The three-dimensional coherent turbulent structures are visualized using
iso-surfaces of the Q-criterion in figure 7. The animated sequence of coherent turbulent
structures is available in supplementary movies 5–8 for cases A1–A4.

In case A1, the detached vortex (vortex A in figure 6a-i) recirculates within the
streamwise void space for a shorter period of time than case A2 and A3. The short-lived
nature of the vortex in case A1 is best visualized in the animation of the three-dimensional
coherent structures in supplementary movie 5. The detached vortex A is visible in
figure 7(a) as a tubular coherent structure oriented in the z-direction. The tubular structure
has deformations and a non-uniform size along the z-direction, but consistently appears at
every xy-plane along the z-axis in the streamline plots. The coherent turbulent structures in
case A1 are concentrated in the primary flow region and at the lower side of the separation
shear layer at the boundary with the secondary flow region. There are very few coherent
structures visible in the secondary flow region since the vorticity in the secondary flow
region is low. Slow, sustained recirculation over several vortex cycles is responsible for
the high temperature inside the secondary flow region. Heat transfer is further diminished
by the fact that the micro-vortices are in contact with both solid obstacles surfaces in the
streamwise void space. When a new vortex (vortex B in figures 6a-i and 7a) begins to
form and grow in size over time, it is limited in space to the separation shear layer. Vortex
B impinges on vortex A as it grows due to the small void space at ϕ = 0.50 causing
vortex A to deform (figure 6a-ii). The instantaneous streamlines then indicate that there is
only one vortex that remains, as seen in the bottom half of the streamwise void space in
figure 6(a-iii). The outcome of the interaction between vortices A and B is the sustenance
of the recirculating motion in the secondary flow region leading to high core temperature
(figure 6a-iii). This is inferred from both the temperature contours in figure 6(a), and
the three-dimensional coherent structures in figure 7 and movie 5. A detailed analysis
of the interaction between vortices A and B may be obtained by using a very high grid
resolution, but it is not critical for the message in this paper. There is some evidence in
the present work that the newly formed vortex B primarily influences the separation shear
layer. The temperature distribution at the separation shear layer shows ‘waves’ of high
temperature synchronized with the formation of vortex B. The ‘waves’ appear only in the
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(a) Case A1 - ϕ��������circle, Rep = 300

(b) Case A2 - ϕ������	��circle, Rep = 300

(c) Case A3 - ϕ������	��square, Rep = 300

(d) Case A4 - ϕ������	��square, Rep = 500

(i) t um /d = 0.00 (ii) t um /d = 0.05 (iii) t um /d = 0.42

(i) t um /d = 0.00 (ii) t um /d = 1.03 (iii) t um /d = 2.44

(i) t um /d = 0.00 (ii) t um /d = 0.75 (iii) t um /d = 2.68

(i) t um /d = 0.00 (ii) t um /d = 0.94 (iii) t um /d = 2.42
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T (K)

Vortex A Vortex B Vortex C Recirculating vortex

Stagnation pointSeparation bubble

x

y

Figure 6. Instantaneous flow streamlines showing the vortex shedding process and its contribution to heat
transfer for cases A1−A4. Streamlines are three-dimensional streamlines projected onto the xy plane for the
solid obstacle in the second row and second column of the REV. Animations of these sequences are shown in
supplementary movies 1–4.

separation shear layer and not inside the streamwise void space. The three-dimensional
coherent structures clearly show the formation of vortex B, which is then advected in the
separation shear layer. Vortex A consistently recirculates in the streamwise void space until
it diminishes and is advected into the primary flow (top half of the streamwise void space
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323 353338
T (K)

xz

y

Turbulent structures with (–)ve y- component  
propagation direction from previous cycle   

Turbulent structures with (+)ve y- component 
 

y

xz
Turbulent structures with (+)ve 
y- component propagation direction   

Turbulent structures with (–)ve 
y- component propagation direction   

y

xz

(a) (b)

(c) (d)

xz

y

propagation direction from current cycle  

Figure 7. Three-dimensional coherent structures visualized using the Q-criterion for cases (a) A1, (b) A2,
(c) A3 and (d) A4. Iso-surfaces of the Q-criterion at 0.020 Qmax are plotted in this figure. Vortices A, B and
C from figure 6 are highlighted and their vortex core lines are shown as solid lines of colours brown, magenta
and red, respectively. The remaining vortices are shown with 50 % colour saturation to remove clutter in the
figure. The animated sequences are available in supplementary movies 5–8.

in figure 6a-iii). The breakup of vortex A is less frequent than the formation of vortex B
and the vortex breakup is not periodic in time.

The entire vortex formation process occurs simultaneously on both the upper and lower
halves of the streamwise void space, which is different from the alternating characteristic
of the von Kármán vortex shedding process. The vortex structures are produced by the
shear layer between the primary and secondary flow regions due to the Kelvin–Helmholtz
(K-H) instability. The K-H instability is not translated into a von Kármán instability in
case A1 due to: (i) the absence of interaction between the top and bottom shear layers,
(ii) the absence of the alternating shedding process and (iii) the sustained recirculation
in the streamwise void space resembling a lid driven cavity flow at steady state. Vortices
A and B are the primary vortices in case A1 on the basis of vorticity magnitude and the
relevance to transport in porous media. It is shown in § 3.3 that the interaction between the
shear layer and the vortex pair results in a peak in the Nusselt number. This supports the
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The evolution of turbulent micro-vortices

experimental observations of Nguyen et al. (2019) that the shear layer and the vortex pair
are important coherent structures in porous medium turbulence.

The recirculating motion of vortices A and B promote mixing and heat transfer when
compared with a still fluid. This can be visualized in the temperature distribution shown
in figure 6(a), where the recirculating vortex entrains low temperature fluid into the
streamwise void space near the stagnation point. The entrained fluid absorbs heat from
the solid obstacle surface and recirculates with a higher temperature. This enhances the
heat transfer of the front half of the solid obstacle surface more than the rear half. This is
discussed further in § 3.3. Another pair of recirculating vortices is also present in the space
between the primary vortices (figures 6a-i and 6a-ii), which are the secondary vortices in
this case. The secondary vortices are detrimental to convection heat transfer in porous
media since they are characterized by low vorticity and their core is virtually stationary.
Additionally, the secondary vortices are not in direct contact with the incoming flow (the
primary flow) since they are sandwiched between the two primary vortices. Therefore, the
temperature in the region occupied by the secondary vortex is higher than that in the region
occupied by the primary vortex and the primary flow region. The temperature gradient at
the solid obstacle surface in the region occupied by the secondary vortex is low, which
results in a low Nusselt number in the part of the solid obstacle surface in this region.

These stages are also shown as an animated sequence of the coherent turbulent structures
using the Q-criterion in supplementary movie 5. The animated sequence shows that a
majority of the fast-moving coherent structures are located in the primary flow region.
These coherent structures only have a small interaction with the recirculating vortex system
(vortex A in figure 7a). The turbulent structures in the primary flow have a significantly
faster time scale than in the secondary flow. This indicates that a majority of the fast
turbulent structures do not come into contact with the solid obstacle surface to effectively
engage in convection heat transfer.

In case A2, the porosity is higher than in case A1. The porous medium geometry is less
confined since the solid obstacles are farther apart. The vortex shedding process more
closely resembles the von Kármán vortex shedding in flows around a single cylinder.
Vortex formation alternates between the upper side and the lower side of the solid obstacle
surface (figure 6b). This is different from case A1 where the two vortices on both sides of
the solid obstacle form independently. Once the newly formed vortex grows and detaches
from the solid obstacle surface, it is advected by the primary flow (vortex C in figure 6b).
The vortex in case A2 is in contact with only one solid obstacle surface at a given time.
The vortex is either attached to the solid obstacle where it is formed or it impinges on the
downstream solid obstacle. Vortex C breaks up after impingement on the downstream solid
obstacle and enters the primary flow region (figure 6b-iii), where it ceases to recirculate in
the xy-plane and diminishes in strength. The breakup of vortex C is also influenced by the
formation and growth of a new vortex behind the solid obstacle (figures 6b-ii and b-iii).
The vortex C is deformed into coherent turbulent structures elongated in the streamwise
direction (figure 7b).

Note that the location of the stagnation point on the downstream solid obstacle (yellow
dots in figure 6) switches from the upper half of the solid obstacle surface in figure 6(b-i)
to the lower half in figure 6(b-ii). This can also be observed in supplementary movie 2.
The switch is an indication of a secondary flow instability, which can also be visualized in
the tortuosity in the path of the streamlines in figure 6(b). The vortex shedding process
in the constrained space of the porous medium in case A2 introduces the secondary
instability that causes the fluctuation of the flow separation and stagnation points on
the solid obstacle surface. The three-dimensional coherent structures also indicate the
presence of the instability, which becomes evident from the propagation direction of
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the structures. In figure 7(b), the propagation direction of the coherent turbulent structure
has a positive y-component for the current cycle of the secondary instability and a negative
y-component for the previous cycle. The frequency of the secondary flow instability is
smaller than the frequency of the vortex formation and it is implicitly linked to the vortex
shedding process. The secondary flow instability in case A2 is clearly exhibited in the flow
visualization since the porosity is high and the solid obstacle shape is circular, making it
the least constrained geometry among all the cases studied.

In case A3, the process of vortex formation and shedding is similar to that of case A2.
Unlike case A2, the locations of the separation points do not change over time due to the
sharp corners of the square obstacle shape (figure 6c and movie 3). This confines the vortex
formation to only the rear face of the square solid obstacle resulting in a smaller amplitude
of the secondary flow instability observed in case A2. Comparing figures 6(b) and 6(c),
there are several features in the flow patterns that are similar between cases A2 and A3. In
both cases, the vortex formation is alternating in nature. The shedding vortex interacts with
the primary flow, where it is deformed into elongated structures oriented in the streamwise
direction (figure 7). This process repeats itself over time. In case A3, a transient separation
bubble forms on the surface of the solid obstacle near the vertices on the front face of the
solid obstacle due to the tortuosity of the streamline path (figure 6c-iii and supplementary
movie 3). The location of the separation bubble alternates between the top and bottom
surfaces in response to the vortex shedding cycle. Its influence on heat transfer is limited
due to its short life span. The tortuous path of the streamlines and the alternation of the
location of the stagnation point suggest that the secondary flow instability is present in
case A3, similar to case A2. The intensity of the fluctuations in the locations of the flow
separation and stagnation points are limited by the sharp corners in the square geometry
in case A3 when compared with the smooth circular geometry in case A2. The presence
of the secondary flow instability in case A3 can also be verified from the alternation of the
propagation direction of the coherent structures in movie 7.

Comparing figures 6(c) and 6(d), the flow features in case A3 are almost identical to
those of case A4 even though the Reynolds number is different. The coherent turbulent
structures also have similar shapes and sizes between cases A3 and A4 (figures 7c and
7d). The key difference that is brought by increasing the Reynolds number of the flow
from case A3 to A4 is the faster time scales in case A4 compared with A3 (movies 7 and
8). Therefore, the high Reynolds number case A4 verifies that the qualitative observations
made in this work are independent of the change in the Reynolds number as long as the
flow regime does not change.

So far, we have noted the similarities and differences between the vortex systems
encountered in cases A1–A4. The following key observations are used throughout the
remainder of the discussion. The main differences in vortex transport are as follows. In
case A1, the vortices remain localized within the streamwise void space. In cases A2
and A3, the vortices leave the streamwise void space and enter the lateral void space as
elongated turbulent structures. This difference is brought about by the distance between
the solid obstacle surfaces due to the different porosities. Cases A3 and A4 have identical
flow features, indicating that the observations will be valid after a change in the Reynolds
number within the same regime of turbulent flow. The recirculating micro-vortex core
in case A1 is stationary, but the surrounding fluid has some rotational velocity that
contributes to heat transfer. The shedding vortices are more effective in enhancing heat
transfer due to two momentum transport processes: micro-vortex advection from the
surface and turbulent mixing with the primary flow. Heat transfer due to micro-vortex
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The evolution of turbulent micro-vortices

advection is observed to be sensitive to the geometry of the porous medium. At this stage,
we conclude that convection heat transfer is primarily affected by the following:

(i) the solid obstacle surface area in contact with the recirculating vortices;
(ii) the length and time scales of the shedding vortices;

(iii) the dynamics of micro-scale flow instabilities.

3.2. Comparison of the dynamics of the surface-averaged heat transfer and the drag
force

To simplify the analysis of the flow instabilities, the three-dimensional microscale flow
field is reduced to a macroscale level. The macroscale momentum conservation equation
defined in (3.1) (according to the work of de Lemos 2012) is used as the basis to discover
the significant terms. The operator 〈−〉i indicates volume average in the fluid domain. The
volume of the REV is denoted by �V . The interfacial area between the solid and fluid
phases in the REV is denoted by Ainterface and ni is the normal vector of Ainterface. For all
cases, the pressure drag in the momentum budget has a higher magnitude than the viscous
drag and is therefore dominant (shown for case A1 in figure 8a). Since the intensity of the
oscillation of the pressure drag is similar to that of the inertial component, we conclude
that the dynamics of the flow can be analysed by looking at the pressure drag component.
However, the total drag force is used in the analysis since the viscous drag component has
a negligible influence on the dynamics of the pressure drag. The phase difference between
the vortex motions behind the individual solid obstacles is an important consideration
in this analysis. Interference is expected when summing the forces acting on all of the
solid obstacles in the REV. To eliminate the influence of the phase difference, the total
surface forces Fi acting on a single solid obstacle and its pressure (Fp,i) and viscous (Fv,i)
components are used in the subsequent analysis. The details of the phase difference and
its influence on the macroscale force terms are shown in Appendix C. The forces are
standardized for analysis as shown for the pressure drag force (Fp,1) in (3.2). The asterisk
notation in (3.2) indicates the standardization operation; N in (3.2) denotes the number of
time steps in the signal

ρ
∂

∂t
(ϕui

i)︸ ︷︷ ︸
inertial

= ρϕgi︸︷︷︸
applied

+ μ

�V

∫
Ainterface

nj∂jui dS︸ ︷︷ ︸
viscous drag

− 1
�V

∫
Ainterface

nip dS︸ ︷︷ ︸
pressure drag

, (3.1)

F∗
p,1 = (Fp,1 − Fp,1) /

√∑
(Fp,1 − Fp,1)

2
/(N − 1). (3.2)

The oscillation of the standardized pressure drag (F∗
p,1) with time (figure 8b) will

consist of two important instabilities in all cases, as explained in § 3.1. There exists a
small time scale oscillation in the standardized pressure drag that is caused by the vortex
shedding process. There is also a large time scale oscillation caused by the secondary flow
instability. These instabilities are not readily visible in the plots of F∗

p,1 with time due
to the presence of randomness in turbulence and the interference of the vortex motions
at the neighbouring solid obstacles. This suggests the need for the frequency analysis
that is presented in figure 9. The contrast in the dynamics between the low and high
porosity cases is clearly visible in figure 8(b). The oscillations in the low porosity case
A1 (circle, ϕ = 0.50, Rep = 300) are more rapid than those of the high porosity cases
(ϕ = 0.87). This is due to the presence of the K-H instability in case A1 instead of the
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Figure 8. (a) Momentum budget of forces in the x-direction within a REV for a flow in a porous medium
composed of circular cylinders for case A1. The time-averaged error in the conservation of macroscale
momentum is 0.73 %. (b) Standardized x-direction pressure drag force acting on a single solid obstacle in
row 2, column 2 of the REV.

von Kármán instability seen in cases A2–A4. The large magnitude of the streamwise
velocity in the primary flow region in case A1 is also a contributing factor. The secondary
flow instabilities are not explicitly visible in figure 8(b). The secondary flow instability is
caused by the stagnation of the flow on the neighbouring solid obstacle due to the vortex
impingement on the solid obstacle surface. In case A1, the secondary flow instability was
not explicitly visible in the flow streamlines in § 3.1. It appears in figure 8(b) in the form of
the minima and the maxima in the pressure force magnitude. The amplitude of oscillation
of F∗

p,1 is larger at tum/d = 25 than at tum/d = 10 (figure 8b). In case A1, the adverse
pressure gradient introduced by the stagnation pressure in the converging geometry of the
porous medium competes with the inertial response of the flow (see pressure and inertial
forces in figure 8a). In cases A2–A4, the secondary flow instability is visible in the flow
visualization, as shown in § 3.1. In this case, the stagnation pressure sways the direction in
which the advected vortices travel. The increased space in between the solid obstacles in
cases A2–A4 is responsible for the different mechanism of the secondary flow instability
when compared with case A1. The formation of the alternating vortices introduces only
one stagnation point in cases A2–A4, when compared with two stagnation points in case
A1. The secondary flow instability in cases A2–A4 can only be seen in the frequency
spectra shown in figure 9.

Since the dynamics of the vortices is characterized by multiple frequencies, the fast
Fourier transform (FFT) technique is used to segregate the time series signal into different
frequencies. It should be noted that the FFT technique that is used in this work assumes
that the input is periodic. Since turbulent flows do not periodically repeat, periodicity is
artificially imposed by mirroring the input. To determine the relationship between the heat
transfer dynamics and the flow instabilities, the surface-averaged Nusselt number (Num),
the coefficient of drag (CD) and the coefficient of lift (CL) are analysed. The Nusselt
number (Nu) is calculated as per (3.3), where qw is the heat flux at the solid obstacle
surface and Tin is the bulk temperature at the inlet plane of a column of solid obstacles
in the REV. The distribution of Nu is then averaged over the surface area of a single solid
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Figure 9. The frequency spectra of the standardized drag coefficient (CD), lift coefficient (CL) and the
surface-averaged Nusselt number (Num) for cases (a) A1, (b) A2, (c) A3 and (d) A4. The solid obstacle in the
second row and second column of the REV is used for the analysis. It is shown in figure S3 in the supplementary
material that all of the solid obstacles have similar spectrum plots. The vertical axes show the absolute values
of the complex Fourier coefficients obtained from FFT.

obstacle to determine Num. The conventional definition of the characteristic temperature
difference that uses the free stream temperature to calculate the Nusselt number is not
suitable for periodic porous media. In the present simulations, the bulk temperature at
the inlet of the REV is identical across all the cases. However, the bulk temperature will
increase in the streamwise direction depending upon the heat transfer characteristics of the
porous medium geometry. The bulk temperature at the inlet plane of each column of solid
obstacles in the REV is taken as one of the reference temperatures to remove the upstream

942 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.291


C.-W. Huang, V. Srikanth and A.V. Kuznetsov

dependence of the Nusselt number. This method provides a more consistent value of Num
that is similar for all the solid obstacles in the REV. The coefficient of drag (CD) and
coefficient of lift (CL) are calculated as per (3.4) and (3.5), where S is the surface area
of a single solid obstacle and Fi is the total force on a single solid obstacle. Note that the
ratio of Ainterface to S gives the number of cylinders in the REV. All of the signals are
standardized as per the procedure given in (3.2). Standardizing the signal scales it to have
a mean of zero and a standard deviation of 1 to allow a direct comparison of the dynamics
of the surface forces and heat transfer:

Nu = qw d
(Tw − Tin)k

, (3.3)

CD = F1

0.5ρu2
mS

, (3.4)

CL = F2

0.5ρu2
mS

. (3.5)

The frequency spectra of C∗
D and C∗

L are used to identify the features of the dynamics
of the surface flow phenomena. The frequency spectrum of Nu∗

m is then correlated with
the observations about the surface flow phenomena to understand their influence on
heat transfer. The frequency scale is non-dimensionalized using um and d to yield the
non-dimensional frequency f. The non-dimensional frequency has a similar form to the
Strouhal number, which is typically used to report the vortex shedding frequency. We
use the term non-dimensional frequency in this work since there are other instabilities
present in the flow. The absolute value of the Fourier coefficients is used to indicate the
contribution of the individual frequencies in the signal. Note that the absolute value of the
Fourier coefficient in the frequency domain does not directly correspond to the intensity
of the oscillations in the time domain. Note that the power of the oscillations of the signals
above the frequency of ∼102 is more than two orders of magnitudes smaller than the
time-averaged value. This indicates that the influence of the smaller eddies is insignificant
in this study. The frequency range above 102 has been verified to be numerical noise in all
the cases using the following procedure. The coefficients of the amplitude spectrum of the
signal above the frequency of 102 is set equal to zero. The modified signal is transformed
back to the time domain and compared with the original signal. The curve comparison is
shown in figure S2 in the supplementary material.

In case A1 (circle, ϕ = 0.50, Rep = 300), two distinct peaks in the C∗
D and C∗

L spectra are
observed at f = 1.1 and 3.6 (figure 9a). Note that there is a greater amount of noise in the
spectrum for C∗

D compared with C∗
L that arises from randomness in the oscillations. The

absolute value of the Fourier coefficients is the highest at f = 3.6, which is identical to the
frequency of vortex formation obtained from flow visualization (movie 1). The peak at the
lower frequency of f = 1.1 corresponds to a non-stationary oscillation that is introduced
by the secondary flow instability. The secondary flow instability is not as periodic as the
vortex shedding process and is therefore characterized by a wider base width at the location
of the peak in the spectrum in figure 9(a). When the contributions of all the frequencies
that constitute the peak in the spectrum at f = 1.1 are added, the large time scale oscillation
corresponding to the secondary flow instability reported in figure 8(b) is recovered. The
frequency spectrum of Nu∗

m shares the dominant peak at f = 3.6 with the spectra of C∗
D and

C∗
L. This suggests that the dynamics of heat transfer is governed in part by the dynamics of

the vortex shedding for case A1. There is a minor peak in the frequency spectrum of Nu∗
m

at f = 1.1. However, its significance is far too small to establish a direct correlation with the
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secondary flow instability. The remainder of the frequency spectrum of Nu∗
m yields a large

time scale oscillation that is a secondary instability in heat transfer. There is no apparent
coincidence between the secondary flow and thermal instabilities in case A1.

In case A2 (circle, ϕ = 0.87, Rep = 300), the frequency spectrum shifts to a lower
frequency range that is one order of magnitude less than that in case A1. One of the
reasons for the difference is the velocity of the flow in the primary flow region, which
is higher for case A1 due to the low porosity. Another reason is that the vortex systems
are entirely different between low porosity (A1) and high porosity (A2) cases as discussed
in § 3.1. Note that this is the case for all high porosity cases (A2–A4) compared with
the low porosity case (A1). There are four significant frequencies observed in the spectra
of C∗

D, C∗
L and Nu∗

m for case A2 (figure 9b). The significance of each frequency varies
depending on the signal. Note that there is less noise in the spectra for case A2 compared
with case A1. The peak in the frequency spectrum at f = 0.17 is similar for C∗

D, C∗
L and Nu∗

m
and makes the largest contribution to the signals. The two smaller peaks in the frequency
spectrum of C∗

L at f = 0.27 and 0.35 are less prominent in the frequency spectrum of Nu∗
m.

From the flow visualization, the frequency of vortex shedding on each side of the solid
obstacle is estimated to be 0.3. The corresponding peaks in the frequency spectrum are
f = 0.27 and 0.35. The vortex shedding process is split between two peaks in the spectrum
due to the inherent randomness in the flow. The frequency estimate of the secondary flow
instability from flow visualization is 0.15, which corresponds well with the peak in the
spectrum at f = 0.17. The large magnitude of the Fourier coefficients at f = 0.17 suggests
that the oscillations introduced by the secondary flow instability are dominant. The large
amplitude of oscillation introduced in the flow as a result of the secondary flow instability
follows from the discussion in § 3.1. There is a large peak in the frequency spectrum of
Nu∗

m at f = 0.1 that is also visible in the frequency spectrum of C∗
D. The correlation between

these peaks and the flow features is not apparent and may require nonlinear modal analyses
to unravel.

Cases A3 and A4 (square, ϕ = 0.87, Rep = 300 and 500) exhibit a distinct behaviour
where the frequency spectra of C∗

L bear no resemblance to those of C∗
D and Nu∗

m. Both
cases A3 and A4 use square solid obstacles in the generic porous matrix (GPM) that do
not have the axisymmetry that circular obstacles possess. There is a strong anisotropy
in the dynamics of the forces that act on the surface of square solid obstacles. For the
square obstacles, only the horizontal surfaces that are in contact with the primary flow
contribute towards the lift force on the solid obstacle. The vertical surfaces that are in
contact with the vortices in the secondary flow contribute towards the drag force on the
solid obstacle. Note that the spectrum of C∗

L indirectly reflects the instabilities that are
associated with the vortex formation through the shear layers in contact with the horizontal
surface. The primary source of oscillations in the surface force on the vertical surface is the
impingement of micro-vortices. This is one possible reason why the frequency spectrum
of the drag force contains random fluctuations. From the flow visualization, the frequency
of vortex shedding is estimated as 0.27. This frequency is highlighted in the frequency
spectrum of C∗

L since the vortex shedding process causes the stagnation pressure near
the vertices of the square geometry to oscillate along with the shear layer. The root mean
squared value of the fluctuation of the static pressure on the surface of the square geometry
is the highest at the locations of the stagnation point and vortex impingement on the solid
obstacle. The heat transfer is enhanced in these locations as shown later in § 3.3. Therefore,
there is a greater similarity between the spectra of C∗

D and Nu∗
m when compared with C∗

L.
This further supports the notion that the micro-vortices determine the dynamics of heat
transfer in porous media. There is not an appreciable difference in the features of the
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spectra when the Reynolds number is increased from 300 to 500. This suggests that the
observations will hold as long as the flow features do not transition to a different regime
of turbulent flow in porous media.

For the case of the flow around an isolated long circular cylinder, laminar–turbulent
transition effects are present at Rep = 300 (Williamson 1996), which are not observed in
the case of the porous medium. The Strouhal number of vortex shedding for the isolated
cylinder is ∼0.2 (Fey, König & Eckelmann 1998). In the case of two-tandem circular
cylinders with identical diameters, the Strouhal numbers of vortex shedding are 0.196 and
0.12 at a Reynolds number of 27 200 (Alam & Zhou 2008). Two Strouhal numbers are
reported for the flow around two-tandem circular cylinders due to the interaction between
the vortex shedding processes behind the two cylinders. In the present work, the Strouhal
number of vortex shedding for the porous medium varies with porosity (corresponding to
the peak with the maximum amplitude in figure 9). At ϕ = 0.50, the Strouhal number
of vortex shedding is 3.6, where the Strouhal number is the value of f at the vortex
shedding frequency. The Strouhal number for the low porosity porous medium is one
order of magnitude greater than that of the isolated and tandem cylinders. At ϕ = 0.87,
the Strouhal number of vortex shedding is 0.3, which is closer to that of the isolated and
tandem cylinder cases than at ϕ = 0.50. The difference between the high and low porosity
cases highlights the contrast in the underlying flow physics with the change in porosity.

3.3. The contribution of the different flow features towards heat transfer
Following the discussion in § 3.1, the flow features that are typically encountered in flow
in porous media are: micro-vortices, flow stagnation, separation shear layer and secondary
flow instabilities. In § 3.2, the prominence of the flow instabilities in heat transfer dynamics
has been demonstrated. Next, the spatial distribution of heat transfer on the surface of
the solid obstacle and its contribution towards the surface-averaged heat transfer are
investigated. The surface Nusselt number distribution on the solid obstacles for cases
A1–A4 are plotted in figure 10 along with the surface skin-friction lines. The plots are
shown for a single instance in time, but the following observations have been verified over
multiple vortex system cycles.

Generally, the Nusselt number Nu has a higher magnitude in the vicinity of flow
stagnation when compared with the lower magnitude observed in the surface areas with
separated flow. Flow stagnation is always associated with vortex impingement in all the
cases shown in this paper. Note that the Nusselt number distribution is not uniform in
the z-direction due to the three-dimensional effects of turbulence. The z-component of the
skin-friction lines on the solid obstacle surface are significant in the regions of separated
flow. The skin-friction lines are virtually parallel to the circumferential direction in the
remaining regions. Therefore, the location of the vortices on the solid obstacle surface
can be identified using the cusps in the skin-friction lines. Sharp peaks in the Nusselt
number appear over time when a micro-vortex is incident on the solid obstacle surface.
This is inferred from the fact that the peaks are always associated with a cusp in the
skin-friction lines. Note that the orthogonal lines to the skin-friction lines are called
the vortex lines that provide an indication of the location of swirling motion. Localized
peaks in the Nusselt number distribution are observed in the regions of separated flow
(yellow bubbles in figure 10). The peaks are observed during vortex formation, where the
rotation of the vortex promotes entrainment of fluid from the primary flow. Even though
the attached vortices are typically associated with a low Nusselt number, the formation of
these localized peaks and the vortex impingement over time is the mechanism by which the
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Figure 10. Skin-friction lines (black solid lines) plotted on the surface of the solid obstacles. Iso-lines (red
solid lines) of zero shear stress indicate flow separation and the cusp of the skin-friction lines indicates the
locations of flow stagnation (red dashed lines, referred to as stagnation lines) for cases (a) A1, (b) A2, (c) A3
and (d) A4. Yellow circles indicate the locations of Nusselt number peaks due to vortex formation. The label
FF indicates the forward facing side and the label BF indicates the backward facing side.

shedding vortices promote heat transfer. Vortex dynamics introduces fluid mixing inside
the porous medium, which is beneficial for convection heat transfer.

Due to the changes in the flow features, the distribution of Nusselt number on the surface
of the solid obstacle varies from case to case. For case A1, there are two banded regions
(at θ ∼ 0.5π and θ ∼ 1.5π) with high Nu surrounding the two stagnation lines formed by
the recirculating vortex system (figure 10a). Banded regions are formed since the vortex
structures have a tubular shape elongated in the z-direction. High Nu is experienced close
to the stagnation line due to the bifurcation of the cold fluid from the primary flow around
the stagnation line. The entrainment of the primary flow into the recirculating vortex
system at the stagnation line was also observed in § 3.1. Low Nu (<10) is observed on
the surfaces in contact with the secondary vortices that are only present in case A1 due to
their slow rotation and limited interaction with the primary flow. For case A2, there is a
wide band of high Nu that oscillates about the mean position of θ ∼ π (figure 10b). The
stagnation line is also oscillating about that position due to the secondary flow instability.
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The oscillations of the stagnation line in the case A2 have a higher amplitude than in
case A1 due to the increased void space in case A2. This also highlights the distinction
in the mechanism of the secondary flow instability between cases A1 and A2. For case
A1, there is virtually no positional change in the stagnation line, but the magnitude of
stagnation pressure is oscillating. For case A2, both positional and magnitude oscillations
are observed. For cases A3 and A4, the high Nu regions are located close to corners 3
and 0 of the solid obstacle (figure 10c). This coincides with the location of the stagnation
lines at the corners of the square solid obstacle. Since the vortices are in contact with the
primary flow region, mixing is enhanced and regions of elevated Nu outside the stagnation
line region are created.

To determine the fractional contribution of the different flow features towards heat
transfer, the joint PDF of the surface Nusselt number and the stress coefficients are
calculated. There are 100 bins for each variable, yielding a total of 10 000 bins for the
entire joint PDF. The suggested sample size for the convergence of the PDF distribution
is 150 non-dimensional time units. The PDF distribution is shown here for a single solid
obstacle in the second row and second column of the REV. The PDF distribution has been
verified to be identical for different solid obstacles in the REV. The histogram for the PDF
is segregated based on the flow features that appear in that region on the solid obstacle
surface. The boundaries of the regions are determined from the time-averaged flow
streamlines. The ‘impingement’ region is located on the front face of the solid obstacle
and is characterized by impinging micro-vortices and flow stagnation. The boundaries of
this region are set at the locations where the local time-averaged static pressure is 50 %
of the time-averaged stagnation pressure. The ‘separated’ region is located on the rear
face of the solid obstacle and is characterized by separated flow due to vortex formation.
The boundaries of the ‘separated’ region are at the locations of flow separation in the
time-averaged flow streamlines. The ‘primary’ region is in contact with the primary flow.
The surface area regions on the solid obstacle that do not belong to the ‘impingement’
or ‘separated’ regions form the ‘primary’ region. The regions are indicated in figure 11.
Note that there are sub-regions for the ‘impingement’ region in case A1 that are not
present in cases A2–A4. There are distinct stagnation and recirculation regions due to
the unique vortex system at the porosity of 0.5 as discussed in § 3.1. For consistency, the
sub-regions are combined in figure 11. There are three regions for each case in the PDF
plot in figure 11: impingement, separated, primary and the PDFs corresponding to each of
the regions are assigned red, green and blue colour channels, respectively. The PDFs are
co-plotted yielding uniquely coloured contours that result from overlaying the red, green
and blue colour images. Purely red, green or blue regions in figure 11 imply that only
one region contributes to the PDF in that Nusselt number and skin-friction coefficient
range. Mixed colours indicate that more than one region contributes to the PDF in that
Nusselt number and skin-friction coefficient range. The individual plots are shown in the
supplementary information in figures S4–S11.

Both the pressure and skin-friction coefficients are used to calculate the joint PDF with
the Nusselt number. The magnitude of shear stress on the surface is used to calculate
the skin-friction coefficient. The stresses are normalized with 0.5ρu2

m to obtain the stress
coefficients. Pressure drag is the dominant surface force on the solid obstacle surface that
has been shown to have a direct correlation with the Nusselt number. Shear stress is also an
effective parameter to identify the contribution of the micro-vortices. The micro-vortices
are characterized by a low magnitude of shear stress on the surface of the solid obstacle
due to the separated flow and the stagnation at the time of impingement. The high shear
regions are the boundary layers that are formed in between the solid obstacle surfaces in
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Figure 11. The joint PDF of surface Nusselt number (Nu) and skin-friction coefficient (Cf ) for cases (a) A1,
(b) A2, (c) A3 and (d) A4. The PDF is plotted for one solid obstacle in the REV in the second row and second
column. The solid lines are isolines of a constant PDF value of 0.001 times the maximum value corresponding
to the impingement (red), separated (green) and primary (blue) regions. The PDF will be identical for all of
the solid obstacles in the REV due to the spatial homogeneity in the porous medium geometry. The individual
plots for the different regions are shown in the supplementary information in figures S4–S7.

the transverse direction (normal to the streamwise direction). These regions are typically
encountered in the locations where the primary flow directly interacts with the solid
obstacle surface. To confirm the observations regarding the flow features, we plotted the
locations of the sample points of the PDF that correspond to the chosen criterion on the
solid obstacle surface and compared them with the skin-friction lines. These plots are for
verification purposes only and are not shown in the paper.

In case A1 (circle, ϕ = 0.50, Rep = 300), the ‘stagnation’ sub-region experiences Nusselt
number values that are consistently higher than the time- and surface-averaged Nusselt
number. The Cpressure–Nu and Cf –Nu PDF distributions in the ‘stagnation’ region have the
lowest peak probability and the largest variance among all the other regions. This is caused
by the intense fluctuations in the flow that are observed in the ‘stagnation’ region. When
the ‘stagnation’ sub-region is combined with the ‘recirculation’ sub-region to give the
‘impingement’ region, the corresponding PDF distribution includes the low Nu, Cpressure,
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and Cf contributions of the ‘recirculation’ sub-region (red contour plots in figures 11a and
12a). The ‘separated’ region exhibits the smallest range of Cf , Cpressure and Nu values, such
that the Cf –Nu and Cpressure–Nu PDF distributions are concentrated near the minimum
values of pressure, skin friction and Nusselt number (green contour plots in figures 11a
and 12a). The ‘separated’ region covers the largest area on the solid obstacle surface,
insulating it from the incoming cold fluid. The ‘impingement’ and ‘primary’ regions have
anisotropic Cf –Nu PDF shapes that are clustered along a diagonal line, suggesting a strong
dependence between shear and heat transfer in these regions. Similarly, the Cpressure–Nu
PDF shapes for the ‘impingement’ and ‘primary’ regions are also anisotropic. It can be
inferred from this that a majority of the flow dynamics is limited to the ‘impingement’
and ‘primary’ regions. A major contributing factor to the high Nusselt number in the
‘primary’ region is the proximity to the stagnation region. Direct contact with the primary
flow is a minor contributing factor. The probability values are biased towards the minimum
values of pressure, skin friction and Nusselt number in the ‘impingement’ and ‘primary’
regions, similar to the ‘separated’ region. Small regions characterized by high skin friction,
pressure and Nusselt number do exist in the ‘impingement’ and ‘primary’ regions, unlike
in the ‘separated’ region.

In case A2 (circle, ϕ = 0.87, Rep = 300), the vortex system is different from case A1, as
shown in § 3.1. The higher porosity also means that there is no clear distinction between
the primary and secondary flow regions. The Cf –Nu and Cpressure–Nu PDF shapes are
anisotropic and coincident in the ‘impingement’ and ‘primary’ regions (figures 11b and
12b). The Cpressure–Nu PDF is centred at zero gauge pressure in all the regions with an
identical Cpressure range indicating the strong oscillatory nature of the vortex system in this
case and the lack of a clear distinction between primary and secondary flow regions. The
shape of the Cf –Nu PDF in the ‘impingement’ region in case A2 combines the features of
the ‘stagnation’ and ‘impingement’ regions in case A1. The ‘separated’ region in case A2
contributes high values of Nu, unlike in case A1. This feature highlights the presence of
shedding vortices in case A2 that were observed in § 3.1 and their importance in promoting
heat transfer. The transport of the micro-vortex away from the surface of the solid obstacle
entrains cold fluid into the separated region and promotes heat transfer.

The features of the Cf –Nu PDFs in the ‘impingement’ and ‘separated’ regions for cases
A3 and A4 (square, ϕ = 0.87, Rep = 300 and 500) are closer to that of case A1 than
case A2, even though cases A2−A4 have the same porosity. The square geometry of
the solid obstacles in cases A3 and A4 introduces inhomogeneity in the flow that causes
the segregation of the primary and secondary flow regions. The micro-vortices in the
square geometry are not transported outside the secondary flow region. Therefore, the
flow features appear similar to those of case A1 with additional characteristics that arise
from the vortex transport inside the secondary flow region due to the larger pore space. The
Cpressure–Nu PDF shapes in all of the regions for cases A3 and A4 are similar to that of case
A2 since the vortex systems are similar, such that the magnitude of pressure dominates the
other differences in the flow features. However, the Nu range varies considerably across
the cases since large Nusselt number values are observed at the vertices of the square
geometry in cases A3 and A4. Since the probability is concentrated at low Nu conditions,
the Nu range has a limited effect on the surface-averaged Nu. The Cpressure–Nu and Cf –Nu
PDFs in the ‘primary’ region are similar to those of case A2 since the primary flow has
a stronger dependence on the space in between the solid obstacles than the solid obstacle
shape. The PDF shape for the square solid obstacles does not change significantly between
the case A3 at Rep = 300 and case A4 at Rep = 500. Similar behaviour was observed for
the frequency spectrum of the macroscale variables in figure 9.
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Figure 12. The joint PDF of surface Nusselt number (Nu) and coefficient of pressure (Cpressure) for cases
(a) A1, (b) A2, (c) A3 and (d) A4. The PDF is plotted for one solid obstacle in the REV in the second row
and second column. The solid lines are isolines of a constant PDF value of 0.001 times the maximum value
corresponding to the impingement (red), separated (green) and primary (blue) regions. The individual plots for
the different regions are shown in the supplementary information in figures S8–S11.

Consider the PDF distribution on the entire solid obstacle surface. For cases A1, A3
and A4, over 50 % of the solid obstacle surface is under low Nu, shear and pressure
conditions (table 5). For case A2, a substantial portion (>35 %) is under low Nu, shear
and pressure conditions. Here, the value of Nu is said to be low if its magnitude is less
than the time- and surface-averaged value. Shear and pressure are said to be low if the
magnitude is less than 10 % of the maximum value on the solid obstacle surface. This is
the reason for the concentration of the PDF distribution at the low Nu, shear and pressure
conditions. The contribution of the high PDF areas in figures 11 and 12 towards the total
heat transfer rate varies considerably across the cases in table 6. In case A1, the bands
of high Nu (figure 10a) near the stagnation point promote heat transfer even though a
majority of the remaining surface area is under the low Nu condition. In case A2, the PDF
is more distributed due to a lack of a clear distinction between the flow regions. The range
of Nusselt numbers in this case is smaller than in the other cases. These factors do not

942 A16-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.291


C.-W. Huang, V. Srikanth and A.V. Kuznetsov

Case
Solid obstacle surface area under

low Nu and Cf conditions
Solid obstacle surface area under low

Nu and Cpressure conditions

A1 62 % 59 %
A2 45 % 35 %
A3 62 % 52 %
A4 62 % 60 %

Table 5. Percentage of the solid obstacle surface area under low Nu, low Cf and low Cpressure conditions
where < Num, Cf /Cf ,max < 0.1, |Cpressure|/|Cpressure|max < 0.1.

Case
Total heat transfer rate on the portion of

the solid obstacle surface with:
Cf –Nu PDF > 0.1
(Cf –Nu PDF)max

Cpressure–Nu PDF > 0.1
(Cpressure–Nu PDF)max Cf /Cf ,max < 0.1

|Cpressure|/|
Cpressure|max < 0.1

A1 16 % 19 % 36 % 48 %
A2 22 % 52 % 34 % 49 %
A3 48 % 46 % 59 % 58 %
A4 45 % 42 % 56 % 67 %

Table 6. Percentage of the total heat transfer rate from the solid obstacle surface with high probability
density, low Cf and low Cpressure.

influence the shear as much since the shear layers are formed in case A2 similar to case
A1. However, the pressure distribution is affected by the porosity increase from case A1 to
A2. Therefore, the high probability density region covers a large portion of figure 12(b).
Cases A3 and A4 both have ∼50 % of the total heat transfer from the high probability
regions. This is because the peak Nu regions are observed only at the vertices of the square
solid obstacle. The remainder of the surface area can be seen to have a consistently low
Nu in figures 10(c) and 10(d). An interesting observation in table 6 is the similarity in
the percentage contribution towards heat transfer from low shear and low pressure regions
between identical solid obstacle shapes. It is not apparent at this stage whether this result
is coincidental and requires further study.

4. Conclusions

Microscale vortices play an essential role in turbulent convection heat transfer in porous
media. The micro-vortices have a higher core temperature than the primary flow due to
flow recirculation inside them. The rotation of the vortices entrains the fluid from the
primary flow and raises its temperature by absorbing heat from the solid obstacle wall.
This process contributes favourably to the heat transfer. In addition to the primary vortices,
there is a pair of secondary vortices that are formed in the streamwise void space at low
porosities such as ϕ = 0.50. The secondary vortices are recirculating vortices that are
attached to the solid obstacle surface, and they have an adverse effect on heat transfer.
This suggests that the dynamic properties of the primary vortices are desirable to increase
the heat transfer rate.

The dynamics of flow inside porous media is characterized by two main flow
instabilities: the vortex shedding instability and a secondary flow instability. The
instabilities are sensitive to the porosity and the solid obstacle shape of the porous
medium. Consider a porous medium composed of circular cylinders. At the low porosity
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of ϕ = 0.50, the vortex shedding process is constrained by the streamwise void space. This
causes the primary vortices to be localized in the streamwise void space. In comparison,
the vortices are not constrained by the streamwise void space at a higher porosity of
ϕ = 0.87, allowing them to be advected into the primary flow region. As a result, there
is a higher concentration of high temperature fluid in the secondary flow region for low
porosity when compared with high porosity. This limits the high Nusselt number regions
at the low porosity to the vicinity of the stagnation line. At the high porosity, the solid
obstacle shape does not influence the mean Nusselt number significantly. This suggests
that the solid obstacle shape will not affect heat transfer rate to a significant degree at
high porosities. However, the dynamics of heat transfer is influenced by the solid obstacle
shape. For square cylinder solid obstacles, the flow separation lines are prescribed to be
located near the vertices of the square geometry. As a result, the amplitude of oscillation
of the coefficient of drag due to vortex shedding is less for the square solid obstacles when
compared with the circular solid obstacles. The amplitude of oscillation of the coefficient
of drag due to the secondary flow instability is similar for both the square and circular
solid obstacles.

At the macroscale, the FFT spectra of the time series of Num, CD and CL share similar
peaks corresponding to the flow instabilities in each case. The dynamics of heat transfer
closely follows the dynamics of the vortex systems. The peaks in the FFT spectra of
CD, CL and Num correspond to the micro-vortex shedding process and a secondary flow
instability, as well as turbulent fluctuations in the microscale flow. The inferences from the
flow visualization support these observations as well. This confirms our hypothesis that
the time-dependent dynamics of the microscale heat convection is characterized by the
microscale turbulent structures dynamics.

The magnitude of the macroscale Nusselt number is derived from a highly
inhomogeneous distribution of the surface Nusselt number. The inhomogeneity is brought
by micro-vortex formation and interaction with the solid obstacles. From the PDF analysis,
it is observed that the flow features inside a porous medium, impingement, separated
and primary, introduce unique heat transfer characteristics. The ‘impingement’ and the
‘primary’ regions contribute a high Nusselt number due to their proximity to the stagnation
point. Meanwhile, the ‘separated’ region typically has a low Nusselt number as long
as the flow has distinct primary and secondary flow regions. A considerable portion
(35 %–60 %) of the heat transfer arises from low shear and low pressure conditions on the
solid obstacle surface. This is due to the large probability density in these conditions. High
Nusselt number areas are always in the vicinity of flow stagnation and cover only a small
portion of the solid obstacle surface. We also observe that there are no regions that have
low Nusselt number and high shear. The areas having high Nusselt number and high shear
exhibit highly unsteady characteristics, which include changes in the location and strength,
due to the interaction with the micro-vortices. All of these observations reaffirm the role
of the properties of micro-vortices in heat transfer in porous media. This includes not
only the length scale of the vortex, but more importantly the time scale and the shedding
mechanism.

Supplemental material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.291.
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Figure 13. (a) The applied pressure gradient and (b) the macroscale TKE versus REV size at Reynolds
number of 1000 and porosity of 0.80.
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Appendix A. Analysis of the REV size convergence

In this appendix, the convergence of the macroscale flow solution at the chosen REV size
is demonstrated. A Reynolds number of 1000 and porosity of 0.80 are used. The solid
obstacles used are circular cylinders (similar to case A2). The REV size is increased from
1 s to 5 s in increments of 1 s. A grid resolution of 0.02 s is used to perform LES for each
of the REV sizes.

The analysis is performed using the following macroscale quantities: the mean applied
pressure gradient g1, and the macroscale turbulence kinetic energy (TKE) 〈kTKE〉i

(figure 13), where the over bar indicates time averaging. The applied pressure gradient
determines the drag force on the surface of the solid obstacles inside the porous medium.
The macroscale TKE is an indicator of the convergence of the flow dynamics. Both g1 and
〈kTKE〉i converge at an REV size of 4 s. When the REV size is increased from 4 s to 5 s,
g1 and 〈kTKE〉i change only 0.4 % and 0.25 %, respectively. There is a staggered trend
observed in figure 13 depending on whether the REV consists of an odd or even number
of solid obstacles. The cause of the staggering is a decoupling between the odd and even
number REVs is brought about by the influence of the periodic boundary condition that
is imposed. The number of modes of the microscale flow instability that can be present in
the domain also plays a role.

The distinction between the odd and even number REVs is virtually non-existent at the
REV size of 4 s. This offers further confirmation that the REV size of 4 s is adequate for
the simulations presented in this paper. The REV size in the z-direction is halved, from
4 s to 2 s. We found that the turbulence two-point correlation function de-correlates in the
z-direction in a span of 1 s. We also observed that the size of the turbulent structures is
smaller in the z-direction when compared with the x- and y-directions.

Appendix B. Sensitivity study of the Nusselt number distribution to the
characteristic temperature difference

In this appendix, we demonstrate that the Nusselt number distribution is independent of
the characteristic temperature difference (�T) near the chosen value of �T = 30 K. The
representative case used in this study consists of circular cylinder solid obstacles forming
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Figure 14. The distributions of the time-averaged Nusselt number on the surface of the solid obstacle at row
1, column 1 in the REV for three values of the characteristic temperature difference �T − 15 K (red), 30 K
(green) and 60 K (blue).

a porous medium with a porosity of 0.87. The REV consists of 2 solid obstacles each in the
x- and y-directions. Turbulent flow is simulated using LES at a Reynolds number of 300 for
three values of �T − 15 K, 30 K and 60 K. The distributions of the time-averaged Nusselt
number on the surface of the first solid obstacle in the REV (row 1, column 1) are shown
in figure 14. The Nusselt number distributions are identical for all three values of �T
simulated here. The magnitude of the heat flux on the solid obstacle surface is different in
each case, but it scales linearly with �T resulting in identical heat transfer coefficients for
the three cases. Following this result, we are using the characteristic temperature difference
�T = 30 K for the remainder of the simulations in this paper.

Appendix C. Phase difference in surface forces between different solid obstacles

In this appendix, we use the coefficient of lift (CL) to demonstrate the phase difference
in the surface forces between different solid obstacles. The same phenomenon can be
observed for other solid obstacle surface forces such as the drag.

For Rep = 300, the von Kármán instability is observed for the flow around each solid
obstacle. The coefficient of lift on each solid obstacle is in phase for all the solid obstacles
in the same column. Figure 15 illustrates CL over time for the case of Rep = 300, ϕ = 0.87
with circular cylinder solid obstacles (case A2) of the same column. We can observe in
movie 2 that any sway in CL out of phase will be corrected by the flow around neighbouring
solid obstacles of the same column. The coefficients of lift of the solid obstacles in the
same row exhibit phase difference. Figure 15 shows that CL peaks at different times for the
solid obstacles in the same row. When CL for each solid obstacle in the REV is summed,
the amplitude of the resultant coefficient of lift is less than the sum of the individual
amplitudes. There exists an interference between the individual contributions to CL of the
solid obstacles due to the phase difference. Therefore, we do not use the resultant forces
over the REV to perform our analysis.
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