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Boundary layer transition of hypersonic flow over
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Cross-flow transition over a delta wing is systematically studied in a Mach 6.5 hypersonic
wind tunnel, employing the Rayleigh scattering flow visualisation, high-speed schlieren
and fast-response pressure sensors. Direct numerical simulations and analysis based on
linear stability theory under the same flow conditions are applied to analyse the transition
mechanism. Three unstable modes are identified: the travelling cross-flow instabilities,
the second mode and the low-frequency waves. It is shown that the travelling cross-flow
vortices first appear in the cross-flow region near the leading edge of the model. These
vortices can modulate the mean profile of the flow, which benefits the growth of
second mode. A phase-locked interaction mechanism transfers energy from the cross-flow
instabilities to the high-frequency second mode, leading to amplification at the expense of
the cross-flow instability. As the second mode grows to a critical amplitude, it triggers a
z-type secondary instability within a similar frequency range, which introduces secondary
finger-like structures connecting to the cross-flow vortex. It is further found that the
generation of these finger-like structures is related to the expansion and compression of
the second mode. These finger vortices further evolve along the streamwise direction
into low-frequency waves and corresponding hairpin-like structures that finally trigger
turbulence. An interaction mechanism likely exists between the secondary instability and
the low-frequency waves, since their phase speeds are approaching each other. These
observations of the interaction mechanism are consistent with those of previous studies
on hypersonic boundary layers (Zhang et al., Phys. Fluids, vol. 32 (7), 2020, 071702; Li
et al., Phys. Fluids, vol. 32 (5), 2020, 051701).

Key words: boundary layer stability, hypersonic flow, transition to turbulence

† Email addresses for correspondence: zhuyiding@pku.edu.cn, cblee@mech.pku.edu.cn

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 980 A57-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:zhuyiding@pku.edu.cn
mailto:cblee@mech.pku.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.42&domain=pdf
https://doi.org/10.1017/jfm.2024.42


H. Qiu, M. Shi, Y. Zhu and C. Lee

1. Introduction

Transition in hypersonic (Mach number >5) boundary layers is a key issue in the
realisation of hypersonic flight because it causes a significant increase in aerodynamic
heating, entropy production and uncertain aerodynamic forces. An in-depth understanding
of the transition mechanism is vital to improving the performance and safety of hypersonic
vehicles. Much attention has been paid to transition over three-dimensional (3-D)
configurations due to its strong relevance to realistic hypersonic vehicles. Related 3-D
geometries that have previously been investigated include bodies of rotation at non-zero
angles of attack (Ward, Henderson & Schneider 2015; Craig & Saric 2016), elliptic cones
(Kimmel et al. 2013), the lifting body (Chen et al. 2021b) and the delta wing model (Niu
et al. 2019). These 3-D bodies are subject to an azimuthal or spanwise pressure gradient
that transfers fluid from a high-pressure to a low-pressure region. Streamlines connecting
the two regions are often curved so that they are conducive to stationary/travelling
cross-flow instabilities (Borg & Kimmel 2016; Dinzl & Candler 2017; Yates et al. 2018;
Cerminara & Sandham 2020; Tufts et al. 2022). In addition, the oblique second mode,
rather than its planar counterpart (Mack 1969), is possibly present in 3-D boundary layers
(Balakumar & Reed 1991; Moyes et al. 2017, 2018; Tufts et al. 2022). Transition in 3-D
hypersonic boundary layers is much more complex than in 2-D boundary layers, in terms
of linear instabilities, nonlinear interactions and flow structure evolution.

In the linear stage, there exist at least two types of cross-flow instability in 3-D
boundary layers, called the stationary or travelling cross-flow instabilities. It is well known
that under incompressible conditions, the initial amplitudes of stationary and travelling
cross-flow instabilities are, respectively, dominated by the surface roughness and unsteady
disturbances. Therefore, transition in low-disturbance flows is more relevant to stationary
cross-flow instabilities (Gray 1952; Reed & Lin 1987; Saric 1992, 1994; Malik, Li & Chang
1994; Kachanov 1996; Saric, Reed & White 2003). Similar conclusions were reached
for hypersonic flows based on a tremendous number of wind tunnel experiments and
numerical simulations (Borg, Kimmel & Stanfield 2011, 2012, 2013; Ward et al. 2015;
Craig & Saric 2016; Corke et al. 2018; Edelman & Schneider 2018; Arndt et al. 2020;
Yates et al. 2020) and, thus, the stationary cross-flow instabilities have received most of
the attention in previous studies because of their significance to real flight conditions in
which the disturbance level is very low. However, some recent evidence has demonstrated
the existence of travelling cross-flow instabilities in hypersonic transitions, indicating an
underlying significance to transition. Borg, Kimmel & Stanfield (2015) investigated flows
over an elliptic cone in a Mach 6 quiet wind tunnel. This kind of wind tunnel can provide
a free-stream disturbance level as low as that under real flight conditions. The travelling
cross-flow instability waves were detected using pressure sensors flush-mounted on the
surface. The phase speed and the wave angle of the instability waves were calculated from
the cross-spectra of the three pressure sensors and showed good agreement with linear
stability theory. Similar results were then numerically reproduced by Tufts et al. (2022)
which proved the observation by Borg et al. (2015). More persuasive evidence came from
a recent real flight test by Wan et al. (2021), which proved the existence of the travelling
cross-flow instability in the transition process. All of these results show that the role of the
travelling cross-flow instabilities in hypersonic transitions is worthy of deep further study
for practical purposes.

Interactions between travelling cross-flow instabilities with other instabilities have
also been reported. Munoz, Heitmann & Radespiel (2014) experimentally investigated
instabilities over a 7◦ half-angle cone at an angle of attack of 7◦ in a Mach 6 wind
tunnel using surface-mounted PCB� sensors. A bi-coherence peak was identified between
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Hypersonic boundary layer transition over a delta wing

the second mode and the travelling cross-flow vortices, showing a nonlinear interaction
between them. Similar results were also obtained by Ward et al. (2015), Craig &
Saric (2016). Numerical simulations under similar conditions were also conducted by
Choudhari et al. (2017) and Dong et al. (2020), showing that the second mode was
easily destabilised both by stationary and travelling cross-flow vortices. Dong et al.
(2020) pointed out that these modulated the second modes may have a significant
influence on the onset of transition. Recently, Chen et al. (2022) studied the instability
of the boundary layer over a lifting body model (HyTRV) by using global stability and
linear parabolised stability equations. They found that the cross-flow mode dominated
in the windward region whereas the second mode and the cross-flow mode coexisted
in the shoulder region, and only the unstable second mode was found along the
attachment line. Interactions between the second mode and cross-flow instabilities were
also observed. However, detailed information on these instability interactions is still quite
limited.

From a structural aspect, a prominent characteristic of the cross-flow instability is
the appearance of stationary or travelling cross-flow vortices. Experimentally, stationary
vortices can be observed as time-averaged streak structures using surface temperature
measurements or oil-flow visualisation, while travelling ones are much more difficult
to visualise. Niu et al. (2019) investigated the cross-flow instability over a delta flat
plate at Mach 6. The model’s flat surface was convenient for planar laser diagnostics
to capture the flow structure of travelling cross-flow vortices at the frequency of
14 kHz. Secondary finger structures were also observed connecting to one primary
cross-flow vortex, and these were noted to be similar to previous observations of
travelling cross-flow vortices in low-speed flows (Wassermann & Kloker 2003). Chen
et al. (2021a) also found such secondary finger structures connecting to one primary
stationary vortex over a Mach 6 swept wing. By comparison with a stability analysis,
the secondary structures were identified as the action of the z-type secondary instability
mechanism. New footprint structures attached to the wall that had the same frequency
as the secondary finger structures were also discovered along the direction normal
to the streamwise direction. However, no deep explanation of this footprint structure
was given.

The motivation for this work is to investigate the transition over a delta wing model at
Mach 6.5, in terms of interactions between different unstable modes and related evolution
of flow structures. A combination of experiments and direct numerical simulations
(DNS) is applied to study the time-resolved evolution of transitional flow structures.
Experimentally, a double-pulsed illumination-imaging system with a repetition rate of
10 Hz, as well as an 8-pulsed ultra-fast image acquisition system with a repetition
rate of 100 kHz, is used to capture the flow structure (Thurow et al. 2002, 2008).
A high-speed schlieren technique is applied (Laurence, Wagner & Hannemann 2016),
which for the first time captures the global evolution of unstable modes on a delta
flat plate. Numerically, detailed information on the 3-D flow structure evolution and its
underlying mechanism is further investigated using simulations. This paper is organised
as follows. The experimental and numerical settings are introduced in § 2. The results of
the ultra-fast experiments, schlieren experiments and numerical simulations are presented
in § 3. Analyses and discussions about the nonlinear interaction of different modes and
the generation of the secondary structure are presented in § 4. A summary and concluding
remarks are provided in § 5.
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2. Experimental set-up

2.1. Quiet wind tunnel and experimental model
The experiment was conducted in the hypersonic Φ300 mm quiet wind tunnel of
Peking University under noisy conditions with an incoming Pitot pressure pulsation of
about 1 %. The incoming Mach number, the total temperature, the total pressure and
the corresponding unit Reynolds number are 6.5, 410 K, 1.06 MPa and 1 × 107 m−1,
respectively. The model used in the experiment is a delta wing model with a sweep angle of
75◦, a length of 400 mm, a thickness of 7 mm and a front-edge radius of 3.5 mm (figure 1).
The coordinate origin is located at the apex of the delta wing with x being the streamwise
direction along the centreline, y being normal to the surface and z obeying to a right-hand
system of x and y, with the velocity components u, v and w along the x, y and z directions,
respectively. A local coordinate is also applied with xt parallel to the inviscid streamline
at the boundary layer edge and zt normal to the xt–y plane. The velocity component ut
(the so-called tangent velocity) and wt (the so-called cross-flow velocity) are respectively
along the xt and zt directions.

2.2. Rayleigh scattering flow visualisation technology
The flow visualisation system contains an ultra-fast camera and an eight-channel
high-energy pulsed laser system. The nominal spatial resolution of the ultra-fast camera is
2048 × 2048 pixels. The camera view is divided into four independent internal channels,
and each channel can work in single-exposure or double-exposure mode. Therefore, a
333 MHz or 2 MHz sample can obtain the rate of four image series (single exposure mode)
or eight image series (double exposure mode). The illumination system is an eight-channel
high-energy pulsed laser system, which outputs laser pulses of 200 mJ energy and 10 ns
duration. The timing of the camera and the laser is precisely controlled by a 48-channel
synchronisation system that emits a transistor–transistor logic (TTL) square-wave packet
(including eight square-wave signals) every 100 ms (corresponding to a repetition rate of
10 Hz).

By using CO2 Rayleigh scattering flow visualisation, the clear flow field structure
information near the boundary layer can be obtained. CO2 is added upstream of the nozzle.
When the static temperature of the test section is lower than 50 K, CO2 condenses into
solid particles, which can be viewed by Rayleigh scattering under the light of a laser sheet.
Within the boundary layer, the CO2 is gaseous due to vaporisation by the aerodynamic
heating of the boundary layer. CO2 gas is injected upstream of the test section. The mass
injection rate of CO2 is no more than 5 % of the freestream flow. This technology was first
used at Princeton University to observe the hypersonic turbulent boundary layer and the
interaction between a shock and boundary layer (Poggie & Smits 1996; Erbland et al. 1997;
Smits & Lim 2000). Zhang et al. (2015) used this technology to obtain a clear picture of
the complete process of hypersonic boundary layer transition.

2.3. Infrared thermography
The surface temperature of the model is measured using an FLIR® T 620 infrared (IR)
camera. The camera has a resolution of 640 × 480 pixels, a thermal sensitivity of 0.05 K
or better, a shooting frequency of 30 Hz, a detection wavelength range of 7.5–14 μm and
a detection temperature range between −40 and 650 ◦C.
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Figure 1. (a) A schematic diagram of the delta wing model used in the pressure sensor measurement. The
coordinates of the PCB installation position are from x = 232.5 mm to 377.5 mm with an intervals of 14.5 mm
and from z = 45.1 mm to 6.5 mm with an interval of −3.8 mm. (b) Schematic diagram of the delta wing model
used in the high-speed schlieren experiment. The upper part of the delta wing model is inlaid with quartz glass.
(c) Schematic diagram of the high-speed schlieren set-up. Ultra-fast flow visualisation set-up with laser parallel
to the (d) x–z and (e) y–z section of the model surface.

2.4. Disturbance measurement
Surface-mounted PCB� fast-response sensors have proven to be convenient tools for
evaluating the evolution of instability waves in hypersonic wall-bounded flows (Zhu et al.
2016) by detecting pressure fluctuations. In this work, PCB� 132A31 sensors are flush
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mounted along one ray of the model. The sensor is a piezoelectric quartz sensor with a
high-frequency response above 1 MHz and a minimum resolution of 7 Pa. The sensors
are high-pass filtered, so they only measure fluctuations above 11 kHz. The diameter of
the sensor’s head is 3.18 mm, but the effective sensing area is only about 0.581 mm2. The
coordinates of the PCB installation position are from x = 232.5 mm to 377.5 mm with an
interval of 14.5 mm and from z = 45.1 mm to 6.5 mm with an interval of −3.8 mm. The
signals of the PCB� sensors are first processed by ICP� signal conditioners and then
recorded by the acquisition system with a sample rate of 1 MHz.

High-speed schlieren technology that uses a high-speed camera can work at a very high
sampling frequency, and it is now commonly used to measure spatiotemporal high-speed
flow fields (Laurence et al. 2016). This experiment uses a typical Z-shaped optical path
(figure 1c). The light source is a 532-nm continuous LED with a power of 150 W. To
ensure the quality of the light source, the light is emitted through a small hole with a
diameter of 1.5 mm before reaching paraboloid schlieren mirrors, mirrors 1 and 2, which
have a diameter of 300 mm and a focal length of 3 m. The camera is a Phantom v2512
camera, combined with a Nikon 200-mm lens. To obtain a sample frequency of 380 kHz,
the camera’s resolution is reduced to 256 × 128 pixels. The schlieren knife edge is placed
vertically so that the schlieren signal is a function of ∂ρ/∂x. During the experiment, part of
the model surface is replaced with optical glass (figure 1b). The model is placed vertically,
as shown in figure 1(c), so that the light can pass through the delta wing model along
the wall-normal direction. The amplitude, spectrum, convection direction and speed of the
instabilities can be derived from the schlieren image series following the data processing
method described in Appendix A.

3. Numerical set-up

3.1. Basic set-up for the DNS
The model used in the calculation is the same as the experimental model and is shown
in figure 2. The delta wing model is 7 mm thick, 400 mm long, with a sweep angle of
75◦ and a rounded leading edge design. The flow conditions are as follows: the incoming
Mach number is 6.5, the static pressure is 395 Pa, the total temperature is 410 K and
the unit Reynolds number is 9.7 × 106 m−1. The simulation includes three steps: the
first step is to calculate the head of the delta wing (A in figure 2), the second step is to
calculate the rest of the surface flow including the shock wave (B in figure 2) and the
third step focuses on the boundary layer area behind the shock wave (C in figure 2) so
as to precisely simulate the boundary layer flow, which is main concern of this study.
For part A, the number of flow direction, normal direction, and spanwise grid points is
Nx × Ny × Nz = 120 × 200 × 60. The convection term is discretised using the MUSCL
scheme, the viscous term is discretised by fourth-order central difference scheme, the
inlet condition is a free incoming flow, the outlet condition is an extrapolated boundary
condition and the symmetrical boundary condition is adopted at the centreline and leading
edge. To handle the singularity near the nose, a quasi-axial-symmetry mesh grid is adopted
where the first layer slightly deviates the axis, as shown in figure 2. The boundary
conditions upstream of the nose are that the second derivative of all primary variables
is zero. For part B, the number of grid points in the flow direction, normal direction,
and spanwise direction is Nx × Ny × Nz = 800 × 150 × 150. The convection term and the
viscous term are discretised by the same methods as in part A. The inlet condition arises
from the natural neighbour interpolation of the results of part A. The exit condition is also
an extrapolation boundary condition. No disturbance is added to part A or part B.
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Figure 2. A schematic diagram of the DNS set-up. The green region represents the blowing and suction port
on the model surface where the initial disturbance is added. The blowing and suction port is divided into two
parts. The first part (light green) is approximately parallel to the intersection of the inlet of part C and the
surface, covering the streamwise grid numbers from kx1 = 140 (x � 25 mm) to kx1 = 190 (x � 35 mm) and
the spanwise grid numbers from 1 (z = 0 mm or the centreline) to 300 (leading edge). The second part (dark
green) is approximately parallel to the leading edge, covering the streamwise grid numbers from kx3 = 190
(x � 35 mm) to kx4 = 1700 (x � 380 mm) and the spanwise grid numbers from kz1 = 220 to kz1 = 295.

For part C, the convection term is treated using the Steger–Warming flux vector splitting
method and then discretised using the seventh-order weighted essentially non-oscillatory
(WENO) scheme. The viscous term is discretised by an eighth-order central difference
scheme. The Runge–Kutta method of third-order total variation differentiation (TVD)
is adopted for time stepping. The inlet conditions and upper boundary conditions are
calculated in the second step through natural neighbour interpolation. The symmetrical
boundary conditions are adopted at the centreline and leading edge, and the extrapolated
boundary conditions are kept at the outlet. The wall conditions used in the simulation
are no-slip and isothermal boundary conditions (u = v = w = 0, T = 6.5T0, ∂p/∂n = 0)
(Pirozzoli & Grasso 2004; Li, Fu & Ma 2010) because the stainless steel model used in
the wind tunnel experiment is closer to the isothermal wall.

Three grid sizes are applied to verify the grid independence, as indicated by table 1.
Their numbers of grid points in the flow direction, normal direction and spanwise direction
are Nx × Ny × Nz = 1000 × 100 × 200 for the low resolution, Nx × Ny × Nz = 1700 ×
150 × 300 for the medium resolution and Nx × Ny × Nz = 2000 × 200 × 400 for the high
resolution, respectively. The minimum length scale in the wall-normal direction, denoted
as Δy+

min, is also presented in table 1 and is calculated using the formula

y+= y
δν

=
y
√

τw

ρ̄w

ν
, (3.1)
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Mesh type Resolution (Nx × Ny × Nz) Δy+
min

Low 1000 × 100 × 200 1.2
Medium 1700 × 150 × 300 0.8
High 2000 × 200 × 400 0.5

Table 1. Mesh grids for the calculation of part C.
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Figure 3. A comparison of the basic flow profiles among the different grids. (a) The cross-flow velocity
profiles −10wt/u0. (b) The tangent velocity profiles ut/u0. (c) The temperature profile 0.1T/T0. The low,
medium, and high resolutions correspond to Nx × Ny × Nz = 1000 × 100 × 200, Nx × Ny × Nz = 1700 ×
150 × 300 and Nx × Ny × Nz = 2000 × 200 × 400, respectively. Different colours represent the alteration
of the position. The blue, red and orange lines are at the delta wing (x, z) = (150 mm, 30 mm), (x, z) =
(250 mm, 30 mm) and (x, z) = (350 mm, 30 mm), respectively. The vertical coordinates are normalised by
the boundary layer thickness.

where the superscript + represents the wall scale, y refers to the wall-normal distance, ν

refers to the viscosity, ρ̄w refers to the average density and τw refers to the wall shear stress.
Table 1 indicates that, for both the medium- and high-resolution grids, Δy+

min is less than
1, whereas for the low-resolution grid Δy+

min is larger than 1. A comparison of the basic
flows obtained from the three grids is presented in figure 3. The wall-normal distance y, the
tangent velocity ut, the cross-flow velocity wt and the temperature are normalised by the
99 % tangent velocity boundary layer thickness y99, the free-stream velocity u0, a tenth of
free-stream velocity 0.1u0 and 10 times free-stream temperature 10T0, respectively. It can
be seen that the tangent velocity and the temperature profiles are almost the same among
all three grids for different locations. However, a prominent deviation of the cross-flow
velocity for the low resolution can be observed from the other two resolutions when the
streamwise position is at 350 mm (see the orange lines in figure 3a). To further verify
the grid independence, the profiles of û for the travelling cross-flow mode are compared
between the medium- and high-resolution grids among different locations, as shown in
figure 4. A good agreement on disturbances field between the two grids is obtained as
well. Since the error rate between the medium- and high-resolution grids is less than 5 %
for all results, we adopt the medium-resolution grid when considering calculation costs.

The cross-flow velocity, tangent velocity and temperature profiles of the basic flow from
the calculation on the medium-resolution grid are then shown in figure 5. The sample
locations are along the planes z = 30 mm and x = 190 mm, which are indicated by the
blue and red dotted lines in figure 5(a). It can be seen that there is good agreement in
the tangent velocity (figure 5c, f ) and temperature profiles (figure 5d,g) at all locations,
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Figure 4. A comparison of the profiles of û for the travelling cross-flow mode between the medium- and
high-resolution grids. (a) At the delta wing (x, z) = (150 mm, 30 mm). (b) At the delta wing (x, z) =
(250 mm, 30 mm). (c) At the delta wing (x, z) = (350 mm, 30 mm).

whereas the maximum of the cross-flow velocity decreases with the streamwise coordinate
x for z = 30 mm (figure 5b) and increases with the spanwise coordinate z for x = 190 mm.
In other words, the maximum cross-flow velocity increases as the location approaches the
leading edge, which indicates that the cross-flow waves mainly appears in the region near
the leading edge, benefiting the easy growth of cross-flow instability.

3.2. Linear stability theory analysis set-up
The stability characteristics of the basic flow are then investigated using the linear stability
theory, in a manner similar to that in the study of Chen, Zhu & Lee (2017b). The
decomposition of the flow field is given by

q(x, y, z, t) = q̄( y) + q′( y) = q̄( y) + q̂( y) exp(iαx + iβz − iωt) + c.c. (3.2)

Here, q = (u, v, w, T, p) and q̄ denote the basic states, q′ denotes the disturbance, q̂( y) is
the shape function of the disturbance, α and β represent the streamwise wavenumbers and
the spanwise wavenumbers, respectively, and ω is the angular frequency. In this study, the
basic state is given by DNS and is partly presented in figure 5.

After substituting the decompositions given by (3.2) into the Navier–Stokes equations,
subtracting the basic states and neglecting the non-parallel and nonlinear terms, the
following eigenvalue problem is obtained:

L1(x, α, β, ω)q̂( y) = 0. (3.3)

Here L1 is a linear operator that has been described in previous literature (Chen et al.
2017b) and the flow parameters are the same as in the experiment. When considering the
temporal formula, we have

ω = ω(α, β), (3.4)

where ω is complex, α and β are real. When considering the spatial formula, we have

α = α(ω, β), (3.5)

where α is complex, ω and β are real. For the smooth-wall PEEK model, the boundary
conditions are

û = v̂ = ŵ = ∂T̂
∂η

= 0 at η = 0, û = v̂ = ŵ = T̂ = 0 at η → ∞. (3.6a,b)
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Figure 5. (a) The basic flow profiles along z = 30 mm and x = 190 mm indicated by the blue and red dotted
lines, respectively. (b,e) The cross-flow velocity profiles −10wt/u0. (c, f ) The tangent velocity profiles ut/u0.
(d,g) The temperature profile 0.1T/T0. The locations for (b–d) are x = 150 mm, 190 mm, 230 mm, 270 mm,
310 mm and 350 mm along the blue dotted line z = 30 mm. The locations for (e–g) are z = 25 mm, 35 mm,
45 mm and 55 mm along the red dotted line x = 190 mm. Here ut, wt, T , u0 and T0 are the tangent velocity,
cross-flow velocity, temperature, freestream velocity and freestream temperature, respectively.
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Figure 6. Variation of spatial growth rate with frequency and spanwise wavenumber at different position.

The analysis in this study is carried out with the spatial formula using the in-house
code in our laboratory; see the work of Chen, Zhu & Lee (2017a) for the specific
calculation method and code verification. Figure 6 shows the results of the linear stability
analysis of the spatial model at different locations. It shows that the second mode
wave disturbance appears near a frequency of 120 kHz, whose spanwise wavenumber
approaches zero. The travelling cross-flow mode appears near a frequency of 50 kHz
while the spanwise wavenumber is positive. The instability at low frequency and negative
spanwise wavenumber appears only near the leading edge, which has a low growth rate and
high phase speed (about 1.5 mainstream velocity). It will not be discussed in this article.
The wave angle of the cross-flow mode is −20◦.

A well-known, unique characteristic of the second mode is its large velocity disturbance
below the sonic line, which is clearly shown by a black arrow in figure 7(a). This
large disturbance is caused by the periodic compression–expansion motion, which was
discussed by Zhu et al. (2016). The following discussion uses the disturbance profile
beneath the sonic line as a criterion for identifying the presence of the second mode.

3.3. Disturbance set-up for DNS
When considering the disturbance field, following the results of the PCB pressure
measurement experiment, disturbances with frequencies of 48 and 118 kHz, different
spanwise wavenumbers and different streamwise wavenumbers are added to the wall near
the leading edge inlet in the simulation. The disturbance of ω1 = 48 kHz introduces the
travelling cross-flow wave and the disturbance of ω2 = 118 kHz introduces the second
mode. In this case, the disturbance of the Mack’s first mode (22 kHz) is not added. The
unsteady blowing and suction disturbance is added near the inlet and at the edge of the
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Figure 7. A comparison of the disturbance profiles between the DNS and linear stability theory results at
position (x, z) = (170 mm, 30 mm). (a) The second mode. (b) The travelling cross-flow mode. The arrow
in panel (a) points to the location where the disturbance reaches its maximum value. The black dashed line
represents the sonic line.

delta wing (the green area in figure 2). The form of the disturbance is as follows:

vn = Avdisxvdiszvfrevshape, (3.7)

vdisx = 1
50

50∑
i=1

sin
(

2πx
i

)
, (3.8)

vdisz = 1
10

10∑
i=1

sin
(

2πz
i

)
, (3.9)

vfre = (A1 sin (ω1t) + A2 sin (ω2t)), (3.10)

vshape1 = sin3
(

π(kx − kx1)

kx2 − kx1

)
, (3.11)

vshape2 = sin3
(

π(kz − kz1)

kz2 − kz1

)
sin

(
π(kx − kx3)

kx4 − kx3
+ π

2

)
. (3.12)

Here, x and z represent the flow direction and spanwise coordinates, respectively, and
t represents time. We use ω1 and ω2 to represent the disturbance frequency. The blowing
and suction port is set on the surface, which is divided into two parts and controlled by
vshape1 and vshape2, respectively. The first part is approximately parallel to the intersection
of the inlet of part C and the surface, covering the streamwise grid numbers from kx1 =
140 (x � 25 mm) to kx2 = 190 (x � 35 mm) and the spanwise grid numbers from 1 (z =
0 mm or the centreline) to 300 (leading edge). The second part is approximately parallel to
the leading edge, covering the streamwise grid numbers from kx3 = 190 (x � 35 mm) to
kx4 = 1700 (x � 380 mm) and the spanwise grid numbers from kz1 = 220 to kz1 = 295,
as shown in figure 2. A = 0.3 is the blowing and suction amplitude. Here A1 = 1.0 and
A2 = 0.5 are the amplitudes of 48 and 118 kHz disturbances, respectively.

Figures 7(a) and 7(b) compare the disturbance amplitudes arising from the DNS and
linear stability theory. The location is at (x, z) = (170 mm, 30 mm) (a picked but not
special location), near the leading edge where the instabilities grow linearly. The DNS
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Figure 8. (a) The distribution of the surface temperature rise of a delta wing at 8 s of wind tunnel blowing time
(Reunit = 1.0 × 107 m−1, Ma = 6.5). The red dotted line indicates the location of the maximum temperature
rise. (b) A comparison between the IR experiment results and the DNS results along z = 30 mm.

disturbance data are obtained by filtering the time series in the ranges 108–138 kHz and
38–58 kHz, and are in good agreement with the shape function of the second mode and
the travelling cross-flow instability predicted by linear stability theory.

4. Results

4.1. Experimental observations
Figure 8 shows the temperature rise of the model surface 8 s after the wind tunnel starts.
The red dotted line indicates the location of the maximum temperature rise, which is in a
typical ‘M’ shape. Triangular transition areas appear on both sides of the centreline of the
delta wing. No distinct hot streaks caused by stationary cross-flow vortices are seen. The
measured temperature distribution is further compared with the DNS heat flux distribution
along z = 30 mm. As shown, the position where the temperature suddenly increases is at
about x = 225 mm and the position where it reaches its maximum is at about x = 350 mm
for the experimental result, while the position where the heat flux suddenly increases is at
about x = 250 mm and the position where it reaches its maximum is at about x = 325 mm
for the DNS result. There is a 7–10 % difference between the transition positions from the
experiment and DNS.

Figures 9 and 10(a) show the Rayleigh scattering flow visualisations on the x–z plane
of the delta wing at the normal height at y = 0.5 mm and 1.0 mm, respectively. Point
C in both figures 9 and 10 shows that the cross-flow region is near the leading edge,
where the cross-flow streaks can be observed clearly. The angle between the cross-flow
streaks and the centreline is about 15◦. Downstream of the cross-flow structures, turbulent
structures appear (indicated as point T) after the boundary line (green dotted line), which is
consistent with the ‘M’-shaped distribution shown in figure 8. Near the centreline at z = 0,
the transverse pressure gradient makes the fluid converge towards the centreline, resulting
in the thickening of the boundary layer. An obvious low-speed streak thus appears there
(indicated as point S), which is similar to that observed by Huntley & Smits (2000). As
y increases to 1.0 mm, prominent high-frequency structures connecting to a cross-flow
streak are observed, as shown by point F in figure 10. These structures are composed
of a series of small ‘fingers’ extending in the streamwise direction, which is similar to
the secondary instability structure of travelling cross-flow vortices observed in low-speed
flows (Wassermann & Kloker 2003). Figure 10(b) shows the temperature contours at
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Figure 9. Single-pulsed flow visualisations on the x–z section of the delta wing at y = 0.5 mm. The black
area indicates high temperatures and the sublimation of carbon dioxide (>143 K), the white area indicates low
temperatures and gaseous carbon dioxide(<143 K) and the black-and-white boundary gives the flow structure
characteristics. The green dotted line indicates the boundary where turbulence occurs. C, cross-flow structure;
T, turbulent structure; S, centreline streak structure.

y = 1 mm arising from the DNS simulation. The appearance of travelling cross-flow
vortices, as well as the secondary finger-like structures, are also presented in the DNS
result. A good agreement has been achieved in the wavelength of travelling cross-flow
waves and the secondary structures between the DNS and experiments, which are 12 and
5 mm in the streamwise direction, respectively, corresponding to frequencies of about 50
and 120 kHz. By comparison with the linear stability theory in figure 6, it is seen that
these cross-flow and secondary streaks respectively correspond to the travelling cross-flow
waves and the second mode. Previous studies have shown that stationary cross-flow
vortices dominate transitions in low-disturbance flows (Borg & Kimmel 2016; Yates
et al. 2020), whereas travelling waves dominate in high-disturbance flows. In this study,
the wind tunnel runs under noisy conditions with the suction valve closed so that the
disturbance level of the coming stream is as high as 1 %, which benefits the growth of
travelling cross-flow waves. Moreover, the surface of the model is highly polished so that
the stationary cross-flow vortices are depressed. Hence, the travelling cross-flow vortices
rather than their stationary counterparts are observed in this study.

The evolution of the instabilities is then presented in figure 11 in the form of pressure
sensor measurement. Figure 11(a) shows the power spectrum of the surface pressure
pulsation measured by the PCB sensors. A line with the slope of −5

3 , indicating a
turbulent state, is also added. Since the low-frequency cutoff frequency of the PCB
sensor is 11 kHz, the original signal is filtered with a band of 11–900 kHz before the
power spectrum calculation is performed. It can be seen that there are three spectral
peaks located at 11–30 kHz, 30–50 kHz and 110–130 kHz, as shown by arrows ‘1’, ‘2’
and ‘3’, respectively. Note that the sensor’s frequency response is only flat to about
100 kHz (Schneider 2019), and thus the amplitude distribution presented in figure 11(a)
might be distorted from the reality. However, in this study, only the frequency rather
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Figure 10. (a) Single-pulsed flow visualisations on the x–z section of the delta wing at y = 1 mm. The black
area indicates high temperatures and the sublimation of carbon dioxide (>143 K), the white area indicates low
temperatures and gaseous carbon dioxide(<143 K) and the black-and-white boundary gives the flow structure
characteristics. (b) DNS temperature contours at y = 1 mm. C, cross-flow structure; T, turbulent structure; S,
centreline streak structure; F, finger-like secondary structure.

than the amplitude information is considered so that the effect of the sensor’s response
function can be neglected. Figures 11(b)–11(d) show the time series of the pressure
pulsation measured by the PCB sensors under different filter bandwidths of 11–30 kHz,
30–50 kHz and 110–130 kHz, respectively. Here, six typical PCB positions are selected
for analysis to facilitate the observation. By comparison with the flow visualisation and
linear stability theory discussed previously, the instabilities with frequencies 30–50 kHz
and 110–130 kHz can be seen to correspond to the travelling cross-flow instability and the
second mode, respectively. The instability at 11–30 kHz appears further. Finally, the flow
becomes turbulent with the slope approaching −5

3 .

980 A57-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.42


H. Qiu, M. Shi, Y. Zhu and C. Lee

0 0.5 1.0

0.58

0.62

0.65

0.69

0.73

0.76

0.80

0.84

0.87

x/
L

t (ms)

0.58

0.62

0.65

0.69

0.73

0.76

0.80

0.84

0.87

x/
L

0 0.5 1.0 0 0.5 1.0

t (ms)

0.58

0.62

0.65

0.69

0.73

0.76

0.80

0.84

0.87

0 1 2 3 4 5

f (Hz) (×105)

10–12

10–10

10–8

10–6

P
S

D
 (

p
si

2
 H

z–
1
)

(261.5 mm, 37.4 mm)
(276.0 mm, 33.6 mm)
(290.5 mm, 29.7 mm)
(305.0 mm, 25.8 mm)
(334 mm,18.1 mm)
(348.5 mm, 14.3 mm)

1
2

3

–5/3 law

(a) (b)

(c) (d )

Figure 11. Wall pressure fluctuations measured by the PCB sensors. (a) The power spectrum of the pressure
fluctuation signals measured by the PCB sensors. (b–d) The time series of surface pressure fluctuations with
frequency bands of 11–30 kHz, 30–50 kHz and 110–130 kHz, respectively. The PCB positions are from x =
232.5 mm to 377.5 mm with an intervals of 14.5 mm and from z = 45.1 mm to 6.5 mm with an interval of
−3.8 mm. The dashed arrow in the figure indicates the direction of the disturbance evolution.

The high-speed schlieren technique is further used to obtain the global evolution of
density gradient disturbances on the delta wing. During a wind tunnel blow, 150 000
images were collected at a frequency of 380 kHz. Different instability modes were
then obtained from both the schlieren data and DNS through band-pass filtering at
12–32 kHz, 38–58 kHz and 108–128 kHz and are compared in figure 12. The wave angles
of the three modes differ significantly. The low-frequency wave grows with the longest
wavelength of the three modes, as shown in figures 12(a) and 12(d). The angle between
its wavefront and the x-axis is about −20◦. The high-frequency instability evolves with
the shortest wavelength of the three modes, as shown in figures 12(c) and 12( f ). The
medium-frequency instability is shown in figures 12(b) and 12(e). It should be emphasised
here that only the DNS results show the travelling cross-flow instability structure near the
leading edge; the experiments do not because that region is opaque in the model, as shown
in figure 1(b).

The disturbance amplitudes are calculated for each pixel of the schlieren images from
the root mean square (RMS) of the time series. Figure 13 shows the amplitude distribution
of the different modes on the delta wing. The two red dotted lines indicate the locations of
the maximum values of the medium- and high-frequency instabilities along the streamwise
direction, which are approximately parallel to the leading edge when z > 30 mm.
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Figure 12. The transient amplitude distribution of the schlieren intensity with filter bandwidths in the ranges
(a,d) 12–32 kHz, (b,e) 38–58 kHz and (c, f ) 108–128 kHz. Panels (a–c) arise from experiments and panels
(d–f ) arise from the DNS. The amplitude is normalised by the maximum value.

The medium-frequency instability, the cross-flow instability, grows first and decays along
the streamwise direction. The second mode increases significantly downstream. The region
where the second mode grows has a similar shape to the region where the cross-flow
instability grows, but its location is shifted downstream. The attenuation of the second
mode can be observed near the tail of the model, where the low-frequency mode begins
to grow. The region where the low-frequency wave grows is triangular, and the growth
follows the completion of the transition, as shown by the ‘M’ shape in the IR image
(figure 8).

4.2. DNS simulation results
To identify these observations in experiments, the DNS flow structures are presented as
Q-criterion isosurfaces (Q = 0.02) in figure 14(a). The colour map indicates the height to
the surface. The structures of the travelling cross-flow vortices (shown by redder colours
at higher positions) are clearly displayed (figure 14b), aligned at an inclined angle of about
30◦ to the x-axis. As shown in figure 14(c), these cross-flow vortices intersect with the
bluer structures near the wall. The height of the cross-flow vortices is about 1.0 mm. In
figure 10, the laser sheet is at a height of about 1.0 mm, so the flow visualisation clearly
captures the cross-flow vortices. The wavelengths of the cross-flow vortices and the bluer
structures near the wall are, respectively, 12.5 and 5 mm, corresponding to frequencies of
48 and 118 kHz.

To further identify the nature of the disturbance around 118 kHz and the corresponding
bluer structures in figure 14(c), the streamwise velocity disturbance profiles are extracted
from the DNS data and are depicted in figure 15. The shape function of the second mode is
also given by linear stability theory for comparison. Notably, the profile of the instability
agrees well with the linear stability theory prediction at x = 150 mm (at a distance of
approximately 20 mm from the leading edge), showing that it indeed belongs to the
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Figure 13. The amplitude distribution filtered from the schlieren images. The filter bandwidths are (a,d)
12–32 kHz, (b, f ) 38–58 kHz and (c,g) 108–128 kHz. Panels (a–c) arise from experiments and panels (d–f )
arise from DNS. The amplitude is normalised by the maximum value.
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Figure 14. (a) The DNS flow structures shown by isosurfaces of Q-criteria (Q = 0.02) covering the range of
x ∈ [100, 300] mm and z ∈ [0, 80] mm with the appearance of (b) travelling cross-flow vortices, (c) second
mode, (d) secondary vortices and (e) low-frequency hairpin-like structures. The contours stand for the normal
height relative to the wall.

second mode. The reason for this can be attributed to the typical characteristic of the
second mode: the presence of large disturbances beneath the sonic line, accompanied by
a compression and expansion motion. These compression and expansion motions persist
over a long distance, as shown by the agreement between the instability’s profile and linear
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Figure 15. Streamwise velocity disturbance profiles for the instability around 118 kHz filtered from the DNS at
z = 29 mm, (a) x = 150 mm, (b) x = 180 mm, (c) x = 210 mm and (d) x = 250 mm. These are compared with
the shape function of the second mode as predicted by linear stability theory. The black dotted lines represent
the sonic line.

stability theory beneath the sonic line in figures 15(b)–15(d) and the existence of ‘bluer’
structures near the wall in figure 14. Moreover, with an increase in the streamwise location,
a new disturbance peak appears at about y = 2–3 mm, corresponding to the appearance
of the secondary finger-like instability, as shown in figures 10 and 14(d). A detailed
explanation of these secondary instabilities is presented in the subsequent section. In
general, the instability around 118 kHz is equivalent to the ‘bluer’ structures of the second
mode near the wall and the resulting secondary vortices in figure 14.

The instability filtered in the range 12–32 kHz corresponds to the low-frequency waves
appearing at the end of the transition process (figure 14e), which were previously observed
by Bountin, Shiplyuk & Sidorenko (2000) and Li et al. (2010) in both experiments and
numerical simulations. Zhu et al. (2016) first experimentally demonstrated that the fast
growth of the second mode can trigger these low-frequency waves through a nonlinear
interaction process over a Mach 6 flared cone. Chen et al. (2017a) studied this problem
using nonlinear parabolised equation analysis, showing that a phase-locking interaction
mechanism first transfers energy from the second mode to low-frequency waves, and
then a parametric resonance takes effect. Li, Zhang & Lee (2020) also investigated this
phenomenon over a Mach 6 flat plate, which is a condition more similar to that used in
this study. The low-frequency waves are identified as the vortical first-mode-like waves
and can be enhanced by the second mode through a phase-lock interaction. Zhu et al.
(2021) recently studied the role of low-frequency waves in the turbulence production
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Figure 16. The convection of flow structures from x = 215–280 mm with a time interval of 5 μs. The flow
structures are shown by their Q criterion isosurfaces (Q = 0.0025) from the DNS results. The contours stand
for the normal height relative to the wall.

process, which is the same as in the low-speed boundary layers, as well as in turbulent
stratified shear layers, discussed recently by Jiang et al. (2020a,b, 2021, 2022). As shown in
figure 14, low-frequency waves appear as hairpin-like vortices before the flow is turbulent.
The origin of these hairpin-like vortices is shown in figure 16. The secondary vortex first
appears where the cross-flow vortex intersects with the second mode in the wall-normal
direction, aligned in the mirrored direction of the cross-flow vortex with respect to the x
direction and, hence, forms a short ‘leg’ of a Λ-like structure. As time goes by, a head
of the Λ-like structure forms, connecting the secondary vortex to the cross-flow vortex.
The structures then evolve into an asymmetric hairpin-like vortex, with the cross-flow
vortex disappearing and the secondary vortex extending and finally becoming turbulent at
x = 280 mm.

5. Analysis and discussion

5.1. Instability interaction
Figure 17 shows the amplitude evolution of the three unstable modes along their
respective disturbance propagation directions at z = 18 mm, 23 mm, 27 mm, 29 mm
and 37 mm. During data processing, we first select a channel where the second mode
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grows and extract the amplitude evolution of the high-frequency instability along it.
Concurrently, we find the low-frequency channel, whose spanwise position is similar to
that of the high-frequency channel, and the amplitude evolution of the low-frequency
channel is then determined. As the wave angle of the medium-frequency instability
(the cross-flow vortices) is very different from that of the high-frequency instability
(see figure 17a), its wavefront intersects with the latter when it travels downstream.
A selected low-frequency wave packet encounters three to six cross-flow streaks in the
process of downstream propagation and development. The red lines in figure 17 represent
the amplitude characteristics of the cross-flow wave that meets the second mode at
a certain moment along the cross-flow streaks, and the red dotted line represents the
amplitude evolution of the cross-flow instability along the x-axis. The DNS results at
z = 29 mm are also presented in figure 17(g) and can be compared with the experimental
results in figure 17(e). For the experiments, the locations of the maximum amplitude for
the travelling cross-flow instability, the second mode, and the low-frequency wave are
respectively x = 248 mm, 276 mm and 349 mm. For the DNS, they are x = 238 mm,
260 mm and 370 mm, respectively. The difference between the experiment and DNS is
between 4 % and 5.7 %.

It can be seen from the amplitude evolution curves in figure 17(b) that, at x =
150 mm and z = 18 mm, all three modes have a positive growth rate. The growth
rate of the medium-frequency instability is obviously higher than that of the low- and
high-frequency instability. The medium-frequency instability increases rapidly at first,
reaches its peak at x = 250 mm, and then undergoes amplitude attenuation. The amplitude
of the high-frequency instability increases significantly in the range x = 200–330 mm,
reaches its peak value at 330 mm and then decreases. At x = 300 mm, the amplitude
growth rate of the low-frequency instability increases, showing a trend of rapid growth
until, at the tail of the model, its absolute amplitude exceeds those of the other two growing
upstream, leading to transition. The three unstable modes reach their maximum values in
the following order: the medium-frequency, high-frequency and then low-frequency, and
amplitude attenuation occurs in the medium- and high-frequency instabilities, suggesting
that there are interactions among the three modes.

Figure 18 presents the normal-distributed time-averaged profiles of u and ρ(du/dy) at
different streamwise locations from the DNS. For x = 150 mm, the disturbances are small,
and thus the profiles agree well with their undisturbed counterparts. For x = 230 mm, the
travelling cross-flow disturbance grows to a sufficiently large amplitude (figure 17d), a
nonlinear effect occurs, and the time-averaged profiles are distorted compared with their
undisturbed counterparts. A prominent feature in the ρ(du/dy) profile is the appearance
of an additional point where d(ρ(du/dy))/dy = 0. This point is called the generalised
inflection point, and it is a necessary condition for inviscid instability in a compressible
boundary layer (Lees & Lin 1946). It explains why the second mode is enhanced at this
location. For x = 310 and 340 mm, the profiles approach turbulent boundary layers with
increasing momentum and Reynolds stress in the near-wall region. Such profiles help the
growth of the first mode (figure 18).

Based on a nonlinear critical layer theory developed using a small parameter
perturbation and the asymptotic matching method, Wu (2004) proposed a phase-locking
mechanism to explain the rapid growth of 3-D disturbances, but their research focused
on the fundamental resonance of the same frequency disturbance. Later, Li et al. (2020)
and Zhang, Li & Lee (2020) extended the phase-locked mechanism to the interaction of
different frequency disturbances, holding that the phase velocity locking mechanism can
explain the interaction between the second mode and the first mode, and the second mode
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Figure 17. (a) A sketch of the instabilities’ evolution paths and their interaction. The amplitude evolution
of the low-frequency wave, the travelling cross-flow instability, and the second mode at (b) z = 18 mm,
(c) z = 23 mm, (d) z = 27 mm, (e) z = 29 mm and ( f ) z = 37 mm from the schlieren data, which are compared
with (g) DNS data for z = 29 mm. The solid red line represents the amplitude distribution of the travelling
cross-flow instability along the direction of the cross-flow streaks, the dotted red line represents the amplitude
envelope of the travelling cross-flow instability, the black line represents the amplitude evolution of the second
mode and the green line represents the amplitude evolution of the low-frequency wave.
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Figure 18. DNS-provided normal-distributed profiles of u and ρ(du/dy) at z = 29 mm, (a) x = 150 mm,
(b) x = 230 mm, (c) x = 310 mm and (d) x = 350 mm.

can transfer energy to the first mode through the phase velocity locking mechanism. In
addition, the phase difference locking mechanism can explain the interaction between the
first mode and the second mode, which causes the first mode to transfer energy to the
second mode. Here, we adopt the method that Li et al. (2020) and Zhang et al. (2020)
used to study the interaction between modes in a flat-plate boundary layer to analyse
whether interactions exist between the travelling cross-flow mode and the second mode;
the second mode and the first mode; and the travelling cross-flow mode and the first mode.
We investigate the internal mechanisms of these interactions; therefore, we need to know
the correlation between the phase angle and phase velocity of the three unstable modes.

Information on the phase-angle difference between disturbances can be obtained from a
fast Fourier transform (FFT) of the schlieren time series. The phase-angle difference can
then be obtained using the formula

dφf1−f2 = φ(ω( f1)) − φ(ω( f2)), (5.1)

ω( f ) = FFT(x(t)), (5.2)
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where dφf1−f2 is the phase-angle difference between disturbances of different frequencies
f1 and f2, φ(ω) represents the phase angles of ω (which is a complex number) and ω( f )
represents the FFT of the time series x(t).

Figure 19 shows the RMS of the phase difference between the travelling cross-flow
waves and the second mode, the second mode and the first mode, and the travelling
cross-flow waves and the low-frequency waves. It can be seen that the phase difference
between the travelling cross-flow waves and the second mode is relatively constant, and
the RMS of the phase difference is about 20◦, which is significantly smaller than the RMS
of the phase difference between the second mode and the first mode or the cross-flow
waves and the low-frequency waves. The RMS of the phase difference between the second
mode and the first mode is about 35◦, and the RMS of the phase difference between
the cross-flow waves and the low-frequency waves is about 40◦. In particular, the phase
difference between the cross-flow instabilities and the second mode is constant in the flow
direction for x from 150 mm to 330 mm, which indicates that there is a phase difference
locking mechanism between the two. The amplitude of the cross-flow instability is large
in this region; it then increases further and finally decays. The amplitude of the second
mode is small at x = 150 mm and increases gradually along the streamwise direction.
For x from 250 mm to 330 mm, the growth rate of the second mode wave increases
rapidly and the amplitude of the cross-flow wave decreases gradually. This shows that
the cross-flow instability transfers energy to the second mode through the phase difference
locking mechanism. This result is consistent with experimental results in the flat boundary
layer (Zhang et al. 2020), wherein the low-frequency waves are observed to transfer energy
to the second mode wave via a similar phase difference locking mechanism. There is no
phase difference locking mechanism between the cross-flow instability and the first mode
nor between the second mode and the first mode.

To gain deeper insights into the phase-locking mechanism, phase analyses of the
travelling cross-flow waves and the second mode at z = 37 mm are conducted based on
the schlieren data from the DNS, as shown in figure 20. One wave crest of the second
mode is traced over time (the green asterisk marker in figure 20a–e). Notably, as the
amplitude of the travelling cross-flow waves increases, a gradual augmentation of the
second mode is observed. The wave crest of the second mode aligns with the trough of
the travelling cross-flow waves (figure 20a,b). Subsequently, a distinct phase shift occurs
at approximately x = 225 mm (figure 20c). Following this, the amplitude of the travelling
cross-flow waves begins to decrease, whereas the second mode undergoes rapid growth.
The wave crest of the second mode becomes positioned on the upslope of the travelling
cross-flow waves (figure 20d,e). The phase difference between the two modes remains
relatively constant. To validate the influence of the travelling cross-flow waves on the
growth of the second mode, an additional DNS case with only one frequency disturbance is
implemented, which means in (3.10), A1 is set to 0 whereas A2 is kept at 0.5. A comparison
between the two cases is shown in figure 20( f ). It can be seen that the absence of the initial
48 kHz disturbance leads to subdued growth rates for both the travelling cross-flow waves
and second mode. Moreover, no obvious phase shifts or abrupt alterations in the growth
rate manifest in the new case, which confirms the effect of the energy transfer from the
travelling cross-flow waves to the second mode.

As discussed previously, the phase-locking mechanism plays an important role in the
nonlinear interaction process. The mechanism shows that resonance comes into effect for
two waves with a certain amplitude, given that they have the same or similarly close phase
speeds, which leads to the rapid growth of oblique waves. To verify whether this is related
to the wave interaction in this case, the phase velocities of different modes in the boundary
layer are obtained using the high-frequency schlieren method.
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Figure 19. The RMS distribution of the phase difference between the low-frequency wave, the second mode
and the travelling cross-flow wave from experimental schlieren data.

In figure 21, the black line represents the phase velocity of the second mode and
the green line represents the phase velocity of the low-frequency waves. The phase
velocity of the second mode is between 0.9U0 and U0, and it gradually decreases as
the streamwise location increases. The phase velocity of the low-frequency waves is
between 0.6U0 and 0.8U0; it remains more-or-less constant in the 150–280 mm range of
the streamwise position and increases significantly in the range x = 280–370 mm, where
the low-frequency waves grow rapidly. Looking at trends, the phase velocities of the
second mode and the low-frequency waves in the range 280–370 mm have a tendency
to draw close to each other. According to phase-locking theory, a similar phase speed
may give rise to a more intense interaction between the two modes. The phase speed gap
between the two different modes is even narrower at x = 280–370 mm, indicating that the
low-frequency waves gain energy from the interaction with the second mode. Considering
that the amplitude of the second mode is much larger than that of the low-frequency waves,
second mode transfers energy to the low-frequency waves through the phase velocity
locking mechanism, promoting a rapid increase in the amplitude of the low-frequency
waves. This result is consistent with the interaction mechanism experimentally obtained
on a flat plate (Li et al. 2020). The amplitude of the travelling cross-flow wave is 50 % of
that of the low-frequency waves for x between 280 and 370 mm.

In a study of cross-flow transitions at low speed, Reed & Lin (1987) analysed the
interaction between the cross-flow instabilities and the Tollmien–Schlichting wave, and
found that the former leads to double exponential growth of the latter. In the hypersonic
cross-flow boundary layer, there have been few studies on modal interaction. The
interaction mechanism that transfers energy from relatively low-frequency cross-flow
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Figure 20. Phase results and amplitude evolution information of the travelling cross-flow waves and the
second mode at z = 37 mm from the schlieren data from the DNS. (a,b) The travelling cross-flow waves
and the second mode grow at x = 190 mm and x = 210 mm. (c) Phase shift point at x = 220 mm. (d,e) The
travelling cross-flow waves attenuate while the second mode grows rapidly at x = 238 mm and x = 264 mm.
The travelling cross-flow waves and the second mode are extracted by the Butterworth filter with the frequency
bands of 42–54 kHz and 112–124 kHz, respectively. The dotted blue line represents the amplitude envelope
of the travelling cross-flow instability, the dotted red line represents the amplitude envelope of the second
mode, and the vertical dotted cyan line and the green asterisk marker represent the wave crest location of
the second mode. The thick blue line and thick red line represent the adjacent waveform of the travelling
cross-flow instability and the second mode, respectively. The thin black line represents the entire waveform of
the two modes.
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Figure 21. The phase velocity of the Mack’s first mode and second mode at z = 18 mm. The black line
represents the phase velocity of the second mode and the green line represents the phase velocity of the first
mode. The phase velocities are normalised using the mainstream velocity U0.

instabilities to the high-frequency second mode is the phase difference locking mechanism.
The interaction mechanism that transfers energy from the relatively high-frequency second
mode to the low-frequency first mode is the phase velocity locking mechanism. This is
a generalisation of phase-locking theory that is consistent with the findings of previous
studies on the hypersonic boundary layer (Li et al. 2020; Zhang et al. 2020).

5.2. Generation of secondary vortices
As discussed previously, the second mode strengthens with the travelling cross-flow
vortices as x increases to 250 mm. We show in the following that the near-wall ‘bluer’
structures aligned in the direction normal to x in figure 14 are created by the second mode.

The evolution of the cross-flow and secondary structures is dynamically captured
by ultrafast flow visualisations with a time interval of 10 μs, as shown in figure 22.
Following the red arrows, one cross-flow vortex moves downstream (figure 22a), and then
periodic small structures appear on the vortex (figure 22b). As time passes, each small
structure extends in a direction nearly symmetric to the cross-flow vortex in the x-axis
(figure 22c–h). At first glance, these structures look like a series of Λ or cane-like vortices
commonly observed in boundary layer transitions. However, these small structures are
higher than the primary cross-flow vortex because they are absent at the lower height
(figure 9). All these streaks move at a streamwise speed of about 0.85U0.

Figure 23 further shows Rayleigh scattering flow visualisations on the y–z cross-sections
of the delta wing. Initially (x = 70 mm), arrow S points to the centreline, which is a
low-speed streak structure caused by the convergence of fluids on both sides to the
centre. At x = 150 mm, there are wavy structures in the cross-flow region. The wavy
structures are travelling cross-flow waves with small amplitudes (indicated as point C).
At x = 190 mm, 230 mm and 270 mm, the amplitude of the travelling cross-flow vortices
gradually increases until saturation. Arrows F at x = 290 mm, 310 mm and 350 mm point
to a new structure rolling in the direction opposite to that of the cross-flow vortex. It will be
further discussed in the following section that the structures indicated by F correspond to
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Figure 22. Eight-pulsed flow visualisations of the delta wing on the x–z plane at y = 1 mm. Among (a–h),
the interval between every two frames is 10 μs. The flow is from left to right and the shooting area is x ∈
(215, 280) mm, z ∈ (5, 38) mm.

the finger-like structures shown in figures 10 and 22(a), which are at a higher position than
the cross-flow vortices in the surface-normal direction. The formation of the hairpin vortex
structure appears at x = 390 mm, like a mushroom in the y–z cross-section, indicated as
‘H’. This leads to the completion of the transition.

As introduced in § 1, the second mode can cause a flow to be alternatively compressed
and expanded near the wall, which can also be represented by the divergence of the velocity
field

θ = ∇·u, (5.3)

in figure 24(a). The red colour represents expansion (θ > 0) and the blue colour represents
compression (θ < 0). Isolines of the Q criterion are also plotted. As shown, the cross-flow
vortices are located at medium height in the boundary layer, while the second mode
is basically located near the wall. The Q criterion core caused by the second mode is
generally located between the expansion and compression regions. In the near-wall region,
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Figure 23. Flow visualisations at different y–z sections of the delta wing. From top to bottom, the flow position
moves downstream. C, cross-flow structure; S, centreline streak structure; F, finger-like secondary structure; H,
hairpin-like structure.

the expansion region corresponds to an accelerating region, whereas the compression
corresponds to a decelerating region. Thus the most accelerated region (MAR) has been
produced between the expansion and compression regions in figure 24(b). Considering
the no-slip condition at the wall, the MAR intensifies the wall shear there, as seen by the
corresponding high Q value (figure 24c).

As shown in figure 14, the secondary structures appear where the cross-flow vortices
encounter the MAR caused by the second mode. The directions of the three structures are
briefly sketched in figure 25. Further downstream, secondary finger-like structures appear
with the same frequency as the second mode, which is consistent with the observation in
figures 10, 14 and 22.

We decompose the vorticity vector of the secondary vortices ωi (indicated by the green
lines in figure 14b) into ωix and ωiz along the x- and z-axes, respectively. Obviously, ωix
has an opposite direction to the cross-flow vortices, whereas ωiz is in the same direction.
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Figure 24. (a) The dilatation distribution, as well as Q criterion isolines, in the x–y plane at z = 38 mm. (b)
The local dilatation distribution around a Q criterion core caused by the second mode and (c) corresponding z
vorticity.

ωiz

ωix

ωi

Second-mode-induced MAR

Cross-flow travelling vortices

Secondary vortices

Figure 25. A sketch of the secondary vortices.

We discuss the generation of ωix and ωiz in the y–z and x–y planes, respectively, in the
following.

Figure 26 shows the dynamic process of a cross-flow vortex travelling across a MAR
induced by the second mode in the x–y plane at z = 38 mm. The structures are shown
using the Q criterion values, which are extracted from the DNS calculation. The yellower
colour stands for a larger positive Q criterion value and the bluer colour stands for a
smaller one. When the cross-flow vortex is upstream of the second-mode-induced most
accelerated region (SMAR), the Q value in the core of the former is much larger than
that of the latter, as shown in figure 26(a,b). When the cross-flow vortex approaches the
SMAR, it becomes weaker and weaker, as shown in figure 26(c). Then, a new vortex, ωiz,
appears over the cross-flow vortex, as shown in figure 26(d,e). As the cross-flow vortex
departs from the MAR, the induced ωiz is still present, forming a leg of the comb-teeth-like
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Figure 26. The contours of the Q-criteria in the x–y plane for (a) z = 32 mm, (b) z = 31 mm, (c) z = 30 mm,
(d) z = 29 mm, (e) z = 28 mm and ( f ) z = 27 mm. Streamwise velocity profiles along white lines at (b) and
(d) are plotted as red and green lines, respectively, in (g).

structure, as shown in figure 14. The rotation of the cross-flow vortex creates a relatively
streamwise and anti-streamwise motion, respectively, above and beneath the vortex core.
Because the streamwise acceleration caused by the second-mode (SMAR) has an opposite
direction to the relative motion beneath the cross-flow vortex, it makes the cross-flow
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Figure 27. (a) x vorticity and (b) Q criteria on the y–z plane at x = 250 mm.

vortex spin down. Correspondingly, the tangential velocity above the cross-flow vortex is
decreased so that the shear strength between the freestream and the cross-flow vortex is
intensified, as shown by the black arrow in figure 26(g). Consequently, a new vortex, i.e.
ωiz, is generated there (y = 3.5 mm in figure 27).

Figure 27 shows the generation of ωix in the y–z plane. As shown in figure 27(a), the
rotation of the cross-flow vortex (red colour) induces vorticity in the opposite direction
(blue colour) above the vortex at y = 3.5 mm in the y–z plane. The negative vorticity
naturally generates rotational motion through ωix, as shown by the positive Q criterion
value in figure 27(b).

In recent calculations by Chen et al. (2021a), who studied the stationary cross-flow
instabilities over a Mach 6 swept wing, these secondary finger-like structures were
also observed connecting to the primary stationary cross-flow vortex. Because their
frequencies are the same as that of the z-mode secondary instability mechanism predicted
by theoretical analysis, they are believed to be caused by the z-mode secondary
instability. These secondary structures are similar to secondary structures accompanying
the travelling cross-flow vortices in low-speed flows (Wassermann & Kloker 2003). An
important discovery by Chen et al. (2021a) is footprint structures that have the same
frequency as the secondary vortices, which are similar to the bluer structures observed
near the wall in figure 14. These structures are aligned in a direction nearly normal to
the x-axis. Following the previous discussion, these structures are possibly caused by the
second mode. As shown by simulations in low-speed boundary layers by Wassermann
& Kloker (2003), the z-mode secondary instability of travelling cross-flow vortices is an
inherent mechanism that does not depend on the second mode. It should be emphasised
here that the frequencies of the second mode and the z mode have the same scale as

f = Ue

2δ
, (5.4)

where Ue and δ are the edge velocity and thickness of the boundary layer, respectively
(Craig & Saric 2016); hence, the z-mode is easily triggered by the second mode
in hypersonic boundary layers. These secondary vortices can be triggered by the
compression–expansion motion caused by the second mode.

6. Conclusion

In this work, a cross-flow transition over a delta wing has been studied in a Mach
6.5 hypersonic wind tunnel using the Rayleigh scattering flow visualisation, high-speed
schlieren and fast-response pressure sensors. DNS under the same flow conditions,
as well as analysis based on linear stability theory, have been applied to analyse the
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transition mechanism. The incoming Mach number Ma, the total temperature T0, the
total pressure p0, the incoming stream velocity U0 and the corresponding unit Reynolds
number Reunit were 6.5, 410 K, 1.06 MPa, 850 m s−1 and 1 × 107 m−1, respectively.
Three unstable modes were detected with their frequencies centred at 22 kHz, 48 kHz
and 118 kHz. By comparing the flow visualisation, schlieren, DNS and linear stability
theory results, these modes were identified as the travelling cross-flow instabilities, the
second mode and secondary instabilities and the low-frequency first-mode-like waves.
Some conclusions were drawn as follows.

(a) The travelling cross-flow vortices first appear in the cross-flow region near the
leading edge of the model. As they grow, a new generalised inflection point in the
mean profile of the flow emerges, which benefits the growth of the second mode.
As the second mode grows to a sufficient amplitude, it triggers a z-type secondary
instability at the same frequency on the cross-flow vortices, causing a series of
secondary ‘finger’ structures connecting with the cross-flow vortex. At the end of
the transition, the low-frequency waves are excited by the second mode through a
phase speed locking mechanism with their phase speeds approaching each other.

(b) The flow structure characteristics on multiple sections of the delta wing were
obtained experimentally, and the ultra-fast flow visualisations were used in the 3-D
boundary layer for the first time to obtain the time-resolved evolution process of
the cross-flow travelling wave. It was found that the growth rate of the travelling
cross-flow mode on the delta wing plays a dominant role in the cross-flow region,
whereas the stationary cross-flow mode is not observed.

(c) The second mode introduces a periodic compression–expansion motion at the
bottom of the boundary layer, causing the local region between the expansion
and compression to be most accelerated. This MAR has the same wavelength and
frequency as the second mode and interacts with the travelling cross-flow vortex to
promote the secondary instability of the cross-flow vortex. Finger-like vortices then
appear on the updraft side of the cross-flow vortex, which have the same and opposite
rotation directions to the travelling cross-flow vortex in the streamwise-normal and
spanwise-normal planes, respectively.

(d) These secondary vortices convect downstream along the direction nearly parallel
to the streamwise direction and then further evolve into low-frequency hairpin-like
structures that finally trigger turbulence. The transition is finally triggered by such
low-frequency waves with a similar ‘M’-shaped distribution over the delta wing as
for the low-frequency wave amplitude.

In general, these observations shed light on the interaction mechanism and complex
flow structure evolution processes in 3-D hypersonic boundary layers. An investigation of
transition process over other 3-D models should be a focus for the future.
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Appendix A. Data reduction method

Zero-phase digital filtering is used to filter the time series of the original schlieren data,
with the filtering frequency bands 12–32 kHz, 38–58 kHz and 108–128 kHz. The function
performs zero-phase digital filtering by processing the input data, x, in both the forward
and reverse directions. After filtering the data in the forward direction (to get x1(t)),
filtfilt (a MATLAB command) reverses the filtered sequence and runs it back through
the filter again, so that the phase distortion is zero. In this way, the light intensity in the
measurement area corresponding to three different frequency modes can be obtained, and
the disturbance propagation path of the wave packet structure in each frame can also be
observed in the filtered data xf . The amplitude evolution of the disturbance can be obtained
by counting the RMS of the light intensity along the propagation path L. Davis 10 provided
by LaVision was used for the cross-correlation of the filtered images (xf ) to obtain the
phase velocity of the disturbances. With the built-in particle image velocimetry (PIV)
iteration algorithm of Davis 10, a 128 × 128 pixel window was first used for preliminary
cross-correlation, and then cross-correlation was performed again using a 24 × 24 pixel
window to increase the spatial resolution. The overlap was set to 75 % for the window
iteration, which gives a spatial resolution of 6 pixels, corresponding to a physical space of
2.4 mm.

x1(t) =
n∑

k=0

bkx(t + k) −
n∑

k=1

akx1(t + k), (A1)

xf (t) =
n∑

k=0

bkx1(t − k) −
n∑

k=1

akxf (t − k), (A2)

A =
√√√√ 1

N

N∑
n=1

xf (tn)2, along L, (A3)

δs = xcorrdavis(xf ), (A4)

Uc = δs/δt, (A5)

where ak, bk are coefficients of the filter, n = 5 represents the order of the filter, xf is
the filtered data, A is the amplitude of disturbances, N = 300 is the number of sampling
images, δs represents the displacement between two frames and δt represents the time
interval between two frames.

Using a Fourier transform of the schlieren time series, phase-angle difference
information between different disturbances could be obtained. The phase-angle difference
was obtained using the formula:

ω( f , t′) =
N−1∑
n=0

x(t′ + tn) exp(−2iπtn f ), (A6)

dφf1−f2(t
′) = atan

imag(ω( f1, t′))
real(ω( f1, t′))

− atan
imag(ω( f2, t′))
real(ω( f2, t′))

− 2π( f1 − f2)t′, (A7)

RMSdφf1−f2
=

√√√√ M∑
m=1

(dφf1−f2(t′m) − 1
M

M∑
m=1

dφf1−f2(t′m))2, (A8)
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where ω( f , t′) represents a Fourier transform of time series x(t) with the initial time t′,
real and imag represent the real and imaginary parts of a complex number, N = 300 is
the number of sampling points for Fourier transform, dφf1−f2 is the phase-angle difference
between disturbances of different frequencies f1 and f2, RMSdφf1−f2

is the RMS of the
phase-angle difference and M = 500 is the number of sampling points for the RMS.
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