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Abstract

Let G be a real reductive group and Z = G/H a unimodular homogeneous G space.
The space Z is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the
Banach representations Lp(Z) vanish at infinity, 1 6 p <∞. For H connected we show
that Z satisfies VAI if and only if it is of reductive type.

1. Introduction

In many applications of harmonic analysis of Lie groups it is important to study the decay of
functions on the group. For example, for a simple Lie group G, the fundamental discovery of
Howe and Moore [HM79, Theorem 5.1], that the matrix coefficients of non-trivial irreducible
unitary representations vanish at infinity, is often seen to play an important role. In a more
general context it is of interest to study matrix coefficients formed by a smooth vector and a
distribution vector. If the distribution vector is fixed by some closed subgroup H of G, these
generalized matrix coefficients will be smooth functions on the quotient manifold G/H. This
leads to the question which is studied in the present paper, the decay of smooth functions on
homogeneous spaces. More precisely, we are concerned with the decay of smooth Lp-functions
on G/H.

Let G be a real Lie group and H ⊂ G a closed subgroup. Consider the homogeneous space
Z = G/H and assume that it is unimodular, that is, it carries a G-invariant measure µZ . Note
that such a measure is unique up to a scalar multiple.

For a Banach representation (π,E) of G, we denote by E∞ the space of smooth vectors. In
the special case of the left regular representation of G on E = Lp(Z) with 1 6 p <∞, it follows
from the local Sobolev lemma that E∞ is the space of smooth functions on Z, all of whose
derivatives belong to Lp(Z) (see [Pou72, Theorem 5.1]). Let C∞0 (Z) be the space of smooth
functions on Z that vanish at infinity. Motivated by the decay of eigenfunctions on symmetric
spaces [RS91], the following definition was taken in [KS12].

Definition 1.1. We say that Z has the property VAI (vanishing at infinity) if for all 1 6 p <∞
we have

Lp(Z)∞ ⊂ C∞0 (Z).

By [Pou72, Lemma 5.1], Z = G has the VAI property for G unimodular and H = {1}. The
main result of [KS12] establishes that all reductive symmetric spaces admit VAI. On the other
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hand, it is easy to find examples of homogeneous spaces without this property. For example, it
is clear that a non-compact homogeneous space with finite volume cannot have VAI.

The main result of this article is as follows.

Theorem 1.2. Let G be a connected real reductive group and H ⊂ G a closed connected
subgroup such that Z = G/H is unimodular and of algebraic type. Then VAI holds for Z if
and only if it is of reductive type.

Here we recall the following definitions, in which G is a real reductive group (see [Wal88] for
this notion), and for which we letAddenote the adjoint representation of G on the Lie algebra g.

Definition 1.3. Let H ⊂ G be a closed connected subgroup.

(1) We say that H is a reductive subgroup and that Z is of reductive type if H is real reductive
and the representation Ad of H on g is completely reducible.

(2) We say that H is an algebraic subgroup and that Z is of algebraic type if Ad(H) is the
connected component of an algebraic subgroup of Ad(G).

In Theorem 1.2, the implication ‘only if ’ is valid without the assumption of algebraicity, and
we do not know whether ‘if ’ is also valid without this assumption. Note that both (1) and (2)
are fulfilled when H is semisimple. Note also that Z is unimodular when it is of reductive type.

If Z is of reductive and algebraic type and B ⊂ G is a compact ball, then we show in § 5
(see also [LM00]) that

inf
z∈Z

volZ(Bz) > 0.

In view of the invariant Sobolev lemma of Bernstein (see Lemma 3.2), this readily implies that
Z has VAI.

The converse implication is established in Proposition 7.1. As a consequence of the proof, it
is seen that in the non-reductive case the volume of the above-mentioned sets Bz can be made
arbitrarily small by letting z tend to infinity in a suitable direction (see (7.6)).

2. Notation

Throughout, G is a connected real reductive group and H ⊂ G is a closed connected subgroup
such that Z := G/H is unimodular. We write µZ for a fixed G-invariant measure and volZ for
the corresponding volume function.

Let g be the Lie algebra of G. We fix a Cartan involution θ of G. The derived involution
g → g will also be called θ. The fixed point set of θ is a maximal compact subgroup K of G
whose Lie algebra will be denoted k. Let p denote the −1-eigenspace of θ on g; then g = k ⊕ p.
Let κ be a non-degenerate invariant symmetric bilinear form on g such that

κ|p > 0, κ|k < 0, k ⊥ p.

Having chosen κ, we define an inner product on g by

〈X,Y 〉 = −κ(θ(X), Y ).

We denote by h the Lie algebra of H and by q its orthogonal complement in g.
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Lemma 2.1. The space Z is of reductive type if and only if there exists a Cartan involution θ of
G which preserves H. With such a choice, we have [h, q] ⊂ q.

Proof. See [Hel78, Exercise VI A8] or [Wol67, Theorem 12.1.4]. The last statement follows
easily. 2

Remark 2.2. Let Z be of reductive type and choose θ and κ as above. Then [q, q] ⊂ h if and only
if the pair (g, h) is symmetric, that is, if and only if

h = {X ∈ g | σ(X) = X}

for an involution σ of g. When g is semisimple, it then follows that

q = {X ∈ g | σ(X) = −X}.

3. VAI versus volume growth

For a compact set B ⊂ G, we shall consider the volume function

FB : G → R>0, g 7→ volZ(Bg · z0).

For that, we recall some results from [Ber88]. By a ball in G, we will understand a compact
symmetric neighborhood of 1. A continuous function w : G → R+ is called a weight provided
that for all balls B ⊂ G there exists a constant CB > 0 such that w(xg) 6 CBw(g) holds for all
x ∈ B and g ∈ G (see [Ber88]). Two weights G → R+ are called comparable if their mutual ratio
is bounded from above and below by positive constants.

Let Z(G) denote the center of G.

Lemma 3.1. Fix a ball B ⊂ G. Then:

(1) FB is a weight;

(2) if B′ ⊂ G is another ball, then FB is comparable to F ′B;

(3) FB factors to a continuous function on Ad(G) ' G/Z(G).

Proof. The last statement is easy. For the others, see [Ber88, p. 683, Lemma–Definition]. In the
proof it is shown that mZ := F−1

B µZ is a so-called standard measure. 2

Let 1 6 p <∞. For every k ∈ N, we let ‖ · ‖p,k be a kth Sobolev norm of ‖ · ‖p, the Lp-norm
on Lp(Z) (see [BK14, § 2]). Note that the collection {‖ · ‖p,k : k ∈ N} determines the Fréchet
topology on Lp(Z)∞.

For a subset Ω ⊂ Z, we write ‖ · ‖p,k,Ω for the seminorm on Lp(Z)∞, which is obtained by
integrating the derivatives over Ω.

In this context we recall the invariant Sobolev lemma of Bernstein.

Lemma 3.2. Fix k > (dimG)/p. Then for every ball B there is a constant CB > 0 such that

|f(z)| 6 CB volZ(Bz)−1/p‖f‖p,k,Bz (z ∈ Z)

for all smooth functions f on Z.
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Proof. See [Ber88, ‘Key lemma’ on p. 686], and note that mZ := F−1
B µZ is a standard measure.

The cited lemma has p = 2, but its proof is valid for 1 6 p <∞ as well. 2

For v ∈ U(g) and f ∈ Lp(Z)∞, as Lvf belongs to Lp(Z), its norm over Bz will be arbitrarily

small for z outside a sufficiently large compact set. Hence, for f ∈ Lp(Z)∞ with 1 6 p <∞, we

obtain that

lim
z→∞

‖f‖p,k,Bz = 0.

Hence, we have shown the following result.

Proposition 3.3. If infg∈G FB(g) > 0 for some ball B, then VAI holds.

We shall establish this lower bound on FB for spaces of reductive and algebraic type in the

course of following two sections.

4. Algebraic lower bound of the volume function

In the following, we shall employ a complementary subspace to h,

g = v⊕ h.

Given such a subspace, we let πv denote the projection g → v along h, and accordingly identify

v ' g/h with the tangent space Tz0Z of Z at z0. Given g ∈ G, we further note that the differential

of the left multiplication τg : Z → Z by g provides an isomorphism

dτg : Tz0Z = v
∼−→ Tg·z0Z. (4.1)

We know from Lemma 3.1 that FB factors through the adjoint representation G →Ad(G).

Let FAd(B) be the map corresponding to FB for the space Ad(G)/Ad(H). By replacing B with

a ball which is the product of a ball in the semisimple part of G and a ball in the center Z(G),

we see from Lemma 3.1(2) that the factored map of FB is comparable to FAd(B). In order to

study FB, we may hence assume that G is adjoint. In particular, there exists a semisimple linear

complex algebraic group GC with real points GR such that G = (GR)e.

In addition, we assume in this section that Z is of algebraic type. Hence, there exists a

connected complex algebraic subgroup HC < GC such that H = (HC ∩G)e. With HR = G∩HC,

we form ZR = G/HR and observe that the volume functions of Z and ZR are comparable. It is

thus no loss of generality to assume in addition that Z = ZR (by allowing H to have finitely

many components). Note that then

Z = G/H ⊂ ZC := GC/HC.

Lemma 4.1. Assume that G/H is of algebraic type and let B ⊂ G be a ball. Then there exists

a left K-invariant and right H-invariant algebraic function F on G such that F (1) > 0 and

0 6 F (g) 6 FB(g)2 (4.2)

for all g ∈ G.
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Proof. We need a few geometric preparations. As g is reductive, the vector complement v of
h can be chosen such that it has a basis consisting of ad-nilpotent elements Y1, . . . , Yn. As
explained above, we may assume that G is linear and semisimple. This implies in particular that
exp(CYj) < GC is a unipotent algebraic subgroup for each 1 6 j 6 n.

We define a map Exp: v → G by

Exp

( n∑
j=1

tjYj

)
:= exp(t1Y1) · . . . · exp(tnYn)

and, for g ∈ G, we then consider the smooth map

Φg : v → Z, Y 7→ Exp(Y )g · z0.

If for each Y ∈ v we identify TΦg(Y )Z with v as in (4.1), we see that the differential of Φg at
Y is given by

dΦg(Y )(Y ′) = πv

(
Ad(g)−1

n∑
j=1

t′j Ad(yj+1 · . . . · yn)−1Yj

)
(4.3)

for Y ′ =
∑n

j=1 t
′
jYj , Y =

∑n
j=1 tjYj and yi := exp(tiYi). In particular, Φ1 defines a local

diffeomorphism at Y = 0. We are concerned with the cardinality of the fibers Φ−1
g (z) ⊂ v at

generic elements z ∈ Z and for generic g ∈ G.

Lemma 4.2. There exists N ∈ N such that the generic fibers of Φg are bounded by N for generic
elements g ∈ G.

Proof. We recall the following result from algebraic geometry (see [Gro66, Proposition 15.5.1(i)]).
Let Z1, Z2, Z3 be complex irreducible algebraic varieties with dimZ1 = dimZ3 and further let

f : Z1 × Z2 → Z3

be an algebraic map, such that for one z′2 ∈ Z2 the map f(·, z′2) is dominant. Then there exists
an N ∈ N such that the generic fibers of f(·, z2) are bounded by N for all generic z2 ∈ Z2.

We apply this to Z1 = exp(CY1)× · · · × exp(CYn), Z2 = GC, Z3 = ZC and the map

f((z1, . . . , zn), g) := z1 · . . . · zng · z0.

Observe that f is defined over R. The assertion follows. 2

We can now complete the proof of Lemma 4.1. Fix an open relatively compact neighborhood
V ⊂ v of zero with Exp(V ) ⊂ B and for which Φ1 restricts to a diffeomorphism onto its image.
Set φg := Φg|V . It follows from our formula (4.3) for the differential that the Jacobian

Jg(Y ) := det dφg(Y ) (g ∈ G, Y ∈ V )

depends algebraically on g. Let ωZ be a G-invariant differential form of Z and ωg its pull-back
to V under φg. Note that ωg depends algebraically on g as an element of Ωn(V ), i.e. ω ∈
C[G]⊗ Ωn(V ). Define a function

fV (g) :=

∫
V
ωg (g ∈ G).

Then it is clear that fV is a polynomial function on G with fV (1) > 0.
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It follows from the uniform fiber bound that

|fV (g)| 6 N · FB(g)

for g ∈ G generic, and hence for all g ∈ G by continuity. Hence, FV := f2
V /N

2 is a non-negative
algebraic function which is dominated by F 2

B.
It follows from Lemma 3.1 that we can assume in addition that the ball B is right K-invariant,

that is,
BK = B. (4.4)

Then the volume function FB is left K-invariant, and hence the average of FV over K from the
left is algebraic and satisfies (4.2). 2

Corollary 4.3. Let G/H be of algebraic type (see Definition 1.3(2)) and let B ⊂ G be a ball.
There is a finite-dimensional representation (π,W ) of G with a cyclic K-fixed vector vK ∈ W
and a cyclic H-fixed vector vH ∈W such that 〈vH , vK〉 > 0 and

0 6 〈π(g)vH , vK〉 6 FB(g)2 (g ∈ G). (4.5)

Here 〈· , ·〉 is an inner product on W which is θ-covariant: 〈π(g)v, w〉 = 〈v, π(θ(g))−1w〉 for g ∈ G
and v, w ∈W .

Proof. It follows from the remark at the beginning of this section that we may assume that
G is linear semisimple algebraic. With the right action the algebraic function F of Lemma 4.1
generates a finite-dimensional representation W in which vH = F is H-fixed and cyclic. Moreover,
evaluation at 1 is a K-fixed cyclic vector for the dual representation. Finally, the inner product
〈· , ·〉 exists since θ is a Cartan involution, and with that we obtain vK and F (g) = 〈π(g)vH , vK〉.

2

5. Reductive spaces are VAI

For G and H both semisimple it was shown with analytic methods in [LM00] that infg∈G FB(g) >
0. In this section we give a geometric proof, which is valid more generally for spaces which are
of both reductive and algebraic type. Combined with Proposition 3.3, this completes the proof
of the implication ‘if’ of Theorem 1.2.

Lemma 5.1. Let Z = G/H be of reductive and algebraic type and let B ⊂ G be a ball. Then
there exists a constant c > 0 such that

volZ(Bz) > c (5.1)

for all z ∈ Z.

Proof. By Lemma 3.1, it is no loss of generality to request in addition to (4.4) that B has the
property

θ(B) = B. (5.2)

As Z is of reductive type, we can apply Lemma 2.1 and arrange that H is θ-stable. Then θ
induces an automorphism on Z which is measure preserving. Hence, (5.2) implies that

FB(g) = FB(θ(g)) (g ∈ G). (5.3)
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Let F be a matrix coefficient as in Corollary 4.3 such that

0 6 F (g) 6 FB(g)2

for all g ∈ G. Because of (5.3), we also have

0 6 F (θ(g)) 6 FB(g)2

for all g ∈ G. Hence, it suffices to show that

inf
g∈G

[F (g) + F (θ(g))] > 0.

We recall the following fact from convex geometry. Let (WR, 〈· , ·〉) be a Euclidean vector
space and C ⊂WR a regular cone, i.e. C is convex, closed, contains no lines and has non-empty
interior. Let C? ⊂ W be the dual cone to C. Then C? is regular as well. Fix an element v? in
the interior of C?. Then there exists a constant c > 0 such that

(∀v ∈ C) 〈v?, v〉 > c
√
〈v, v〉. (5.4)

We wish to apply this fact to F and the representation W in Corollary 4.3. Note that W has
a real structure WR with vK , vH ∈WR. As these vectors are cyclic, the closed convex cones CH
and CK , generated by the G-orbit through the rays R+vH and R+vK , respectively, both have
non-empty interior. As F is non-negative, we clearly have CH ⊂ C?K and CK ⊂ C?H . As CK is
regular, we conclude that CH is regular as well. Further, vK lies in the interior of CK (see [HO97,
Lemma 2.1.15]) and with (4.5) and (5.4) we obtain a constant c > 0 such that

F (g) > c‖π(g)vH‖ (5.5)

for all g ∈ G.
For each X ∈ p, we let vH = v+

H + v0
H + v−H be the decomposition into sums of eigenvectors

for X, with positive, fixed and negative eigenvalues, respectively. We obtain for g = expX that

‖π(g)vH‖2 > ‖v0
H‖2 + ‖v+

H‖
2

and

‖π(θ(g))vH‖2 > ‖v0
H‖2 + ‖v−H‖

2.

Hence, by (5.5),

F (g) + F (θ(g)) > c(‖v0
H‖2 + ‖v+

H‖
2 + ‖v−H‖

2)1/2 = c‖vH‖,

and the lemma is proved. 2

Remark 5.2. If Z = G/H is a reductive real spherical space (in particular, a reductive symmetric
space), an upper volume bound of exponential type is also valid. See [KKSS14].

Remark 5.3. For a semisimple symmetric space the wave front lemma (see [EM93, Theorem 3.1])
shows that there exists an open neighborhood V of z0, such that Bz contains a G-translate of
V for all z ∈ Z. This implies (5.1) for this case.
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6. The differential of exp

Let v ⊂ g be a complementary subspace to h, and consider the map

Φg : v → Z, Y 7→ exp(Y )g · z0. (6.1)

The following formula for its differential is well known.

Lemma 6.1. The differential of Φg at Y ∈ v is given by

dΦg(Y ) = dτexp(Y )g ◦ πv ◦Ad(g)−1 ◦ β(Y ) ◦ ιv, (6.2)

where

β(Y ) =
1− e−adY

adY
∈ End(g)

for Y ∈ v, and ιv : v → g is the inclusion map.

Remark 6.2. In fact, we shall apply the lemma in a more general situation where the
complementary subspace v splits in a direct sum of subspaces. For example, if v = v1 ⊕ v2,
we can replace (6.1) by

Φg : v1 × v2 → Z, (Y1, Y2) 7→ exp(Y1) exp(Y2)g · z0.

Similar to (6.2), we find in this case for W = (W1,W2) ∈ v that

dΦg(Y )(W ) = dτexp(Y1) exp(Y2)gπv Ad(g)−1(SY,W ),

where

SY,W := Ad(exp(Y2)−1)β(Y1)(W1) + β(Y2)(W2) ∈ g.

7. Non-reductive spaces are not VAI

In this section we prove that VAI does not hold on any homogeneous space Z = G/H of G,
which is not of reductive type. We maintain the assumptions in § 2 and establish the following
result.

Proposition 7.1. Assume that Z = G/H is unimodular and not of reductive type. Then for all
1 6 p <∞ there exists an unbounded function f ∈ Lp(Z)∞. In particular, VAI does not hold.

Proof. As in Lemma 4.1, the key to the proof is the construction of a suitable vector complement
v to h in g.

Let uH be the largest ideal of h which acts by nilpotent morphisms on g. As H is not reductive
in G, we have uH 6= {0}. Let LH < H be a Levi complement to UH . According to Borel and Tits
(see [BT71] or [Hum75, § 30.3, Corollary A]), we find a parabolic subgroup Q of G with Levi
decomposition Q = LU such that LH ⊂ L and UH ⊂ U . Let θ be a Cartan involution of G which
fixes L and let U = θ(U). We recall that according to the Bruhat decomposition,

U × L× U → G, (u, l, u) 7→ ulu (7.1)

is a diffeomorphism onto its Zariski open image.
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Let X ∈ z(l) be an element in the center of l such that adX|u has positive spectrum and set

at := exp(tX) for t ∈ R.

Notice that we cannot have X ∈ h, as in that case adX would have a positive trace on

h = lH + uH , contradicting that G/H is unimodular. It follows that at · z0 →∞ in L/L∩H and

hence also in Z for |t|→∞.

We now construct a complementary subspace uX to uH as follows. If uH = u, then uX = {0}.
Otherwise we choose an adX-eigenvector, say Y1, in u\uH with largest possible eigenvalue. If

uH + RY1 ( u, we choose an eigenvector Y2 ∈ u\(uH + RY1) with largest possible eigenvalue.

We continue this procedure until Y1, Y2, . . . span a complementary subspace. This subspace we

denote uX .

Let l0 = l⊥l
H denote the orthocomplement of lH in l. Then

v = u + l0 + uX

is an adX-stable complement to h in g.

Before proceeding, we note some important consequences of this construction of v. Firstly,

it follows that

uX → U/UH , Y 7→ exp(Y )UH (7.2)

is a diffeomorphism. This boils down to a general property of graded nilpotent Lie algebras that

will be established in Lemma 7.5. Secondly, the following lemma holds.

Lemma 7.2. With uX and v defined as above, we have supt<0(Mt) <∞, where

Mt := sup
W∈g,‖W‖=1

‖Ad(at)πv Ad(at)
−1W‖.

Proof. For W ∈ v, we have

Ad(at)πv Ad(at)
−1W = W

and, for W ∈ lH , we have

Ad(at)πv Ad(at)
−1W = 0.

Hence, we may assume that W ∈ uH . We can write W as a combination of adX-eigenvectors

Yλ ∈ u with eigenvalues λ. Then

Ad(at)
−1W =

∑
e−λtYλ.

If Yλ ∈ uX , then

Ad(at)πve
−λtYλ = Yλ.

Finally, if Yλ is not in uX , then it is the sum of an element from uH and some eigenvectors

Vµ ∈ uX . Moreover, all these Vµ must have eigenvalues µ > λ, since otherwise Yλ would have

been preferred before such a Vµ in the construction of uX . Thus,

Ad(at)πve
−λtYλ =

∑
µ>λ

e(µ−λ)tVµ,

which stays bounded for t → −∞. 2
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We now continue with the proof of Proposition 7.1. Let V0 ⊂ l0 be an open neighborhood of
0 such that V0 → L/LH , Y 7→ exp(Y )LH is a diffeomorphism onto its image. It follows that the
map

V0 × U/UH → Q/H, (Y, uUH) 7→ exp(Y )u · z0 (7.3)

is a diffeomorphism onto its image.
Combining (7.3) and (7.2) with (7.1), we obtain a diffeomorphism

Φ : u× V0 × uX → G/H,

(Y −, Y 0, Y +) 7→ exp(Y −) exp(Y 0) exp(Y +) · z0

onto its image.
Further, we let V − and V + be open relatively compact convex neighborhoods of 0 in the

vector spaces u and uX . Set V := V − × V 0 × V +.
For t ∈ R, we set at := exp(tX) and consider the map Φt : V → G/H,

Φt(Y ) := exp(Y −) exp(Y 0) exp(Y +)at · z0,

where Y = (Y −, Y 0, Y +) ∈ V . It follows that Φt is a diffeomorphism onto its open image for all
t ∈ R. We need the following property for which we recall the identification (4.1) of the tangent
spaces of Z with v.

Lemma 7.3. There exists a linear map L(Y ) : v → g such that

dΦt(Y ) = Ad(at)
−1(1v + Ad(at)πv Ad(at)

−1L(Y )) (7.4)

for all t 6 0, and such that ‖L(Y )‖→ 0 for Y → 0.

Proof. Let Y = (Y −, Y 0, Y +) and X = (X−, X0, X+) in v. It then follows from Remark 6.2 that

dΦ(Y −, Y 0, Y +)(X−, X0, X+) = dτy−y0y+at(z0) ◦Ad(at)
−1(SY,X),

where y− = exp(Y −) etc, and where SY,X ∈ g is the element

Ad(y0y
+)−1β(Y −)(X−) + Ad(y+)−1β(Y 0)(X0) + β(Y +)(X+).

Defining L(Y ) by L(Y )(X) = SY,X −X for X ∈ v, we obtain the expression in (7.4). It is easily
seen that ‖L(Y )‖→ 0 for Y → 0. 2

Let Jt = |det dΦt|. By Lemmas 7.3 and 7.2, there exists a constant C > 0 such that the
following bound holds for V sufficiently small:

Jt(Y ) 6 CetλX (t 6 0, Y ∈ V ) (7.5)

with λX = −trace adX |u+uX . Note that λX > 0 since uH is non-trivial.
Fix a function ψ ∈ C∞c (V ) with 0 6 ψ 6 1 and ψ(0) = 1. For all t ∈ R, define χt ∈ C∞c (Z)

by χt(z) = ψ(Φ−1
t (z)) and set

χ :=
∑
n∈N

nχ−n.

It is clear that χ ∈ C∞(Z) and that χ is unbounded. We claim that χ ∈ Lp(Z)∞ for all 1 6 p <∞.
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It follows from the estimate in (7.5) that for all 1 6 p < ∞ there exists C > 0 such that
‖χt‖p 6 CetλX/p for all t 6 0. Hence,

χ =
∑
n∈N

nχ−n ∈ Lp(Z)

for all 1 6 p <∞, and it only remains to be seen that also the derivatives of χ belong to Lp(Z).
We first show this for first-order derivatives. Let W ∈ g and consider the derivative L(W )χt.

At z = Φt(Y ), this is given by

L(W )χt(z) = d/ds|s=0χt(exp(sW )yatz0),

where y = exp(Y ). For Y in a compact set, we can replace W by its conjugate by y without loss
of generality, and thus we may as well consider the s-derivative of

χt(y exp(sW )atz0).

We rewrite this as
χt(yat exp(sAd(at)

−1W )z0)

and apply the projection along h. It follows that the derivative can be rewritten as

d/ds|s=0χt(yat exp(sπv Ad(at)
−1W )z0)

and then finally also as

d/ds|s=0χt(y exp(sAd(at)πv Ad(at)
−1W )atz0).

Note that Ad(at)πv Ad(at)
−1W ∈ v. We conclude that the derivative is a linear combination

of derivatives of ψ on V , with coefficients that are smooth functions on V . Furthermore, it
follows from Lemma 7.2 that the coefficients are bounded for t 6 0. As before, we conclude that
L(W )χt ∈ Lp(Z) for all t 6 0, with exponentially decaying p-norms. It follows that L(W )χ ∈
Lp(Z).

By repeating the argument for higher derivatives, we finally see that χ ∈ Lp(Z)∞. This
concludes the proof of Proposition 7.1. 2

Remark 7.4. It follows from the proof of the proposition that

lim
t→−∞

vB(at · z0) = 0. (7.6)

In fact, if we apply the invariant Sobolev lemma 3.2 to the function χ with p = 1, we get

n 6 χ(a−n · z0) 6 CBvB(a−n · z0)−1‖χ‖1,2 dimG (n ∈ N).

Thus, for a constant C > 0,

vB(a−n · z0) 6
C

n
(n ∈ N).

The assertion (7.6) follows from the facts that the equivalence class of vB is independent of the
choice of the ball B and that ata

−1
[t] ∈ B

′ for all t ∈ R and a certain ball B′.

The following general result was used in (7.2) above.
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Lemma 7.5. Let u =
⊕

j>0 u
j be a positively graded nilpotent Lie algebra and h< u a subalgebra.

Let u0 ⊂ u be a graded vector complement to h, which is constructed as follows: if h = u,
then u0 = {0}. Otherwise we choose a vector, say Y1, in uj1\h, with j1 as large as possible. If
h + RY1 ( u, we choose Y2 ∈ uj2\(h + RY1) with largest possible j2. We continue this procedure
until Y1, Y2, . . . span a complementary subspace. This subspace we denote u0.

Let U be a simply connected Lie group with Lie algebra u and H < U the connected subgroup
associated to h. Then the map

u0 → U/H, X 7→ exp(X)H

is a diffeomorphism.

Proof. This is by induction on dim u. The one-dimensional case is trivial. Let 0 6= Y be an
element in u of top degree, chosen as follows according to two cases. If Y1 ∈ utop, we choose
Y = Y1. Otherwise utop⊂ h, and we choose Y arbitrarily. Note that Y is central.

We consider the graded Lie algebra ũ := u/RY and the subalgebra h̃ = (h + RY )/RY . In
both cases the assertion now follows easily by applying the induction hypothesis to this pair.
Note that in the first case when Y = Y1,

exp(t1Y1 + · · ·+ tmYm) = exp(t1Y1) exp(t2Y2 + · · ·+ tmYm)

since Y is central. 2

7.1 Final remarks
(1) We did not address here the case where G is not reductive. One might expect in general

for G/H unimodular and algebraic that Z has VAI if and only if the nilradical of H is contained
in the nilradical of G.

(2) The following may be an alternative approach to Theorem 1.2. To be more specific,
assume Z = G/H to be unimodular, algebraic and quasi-affine. Under these assumptions we
expect that there are a rational G-module V and an embedding Z → V such that the invariant
measure µZ , via pull-back, defines a tempered distribution on V . Note that if Z is of reductive
type, then there exists a V such that the image of Z → V is closed, and hence µZ defines a
tempered distribution on V . If Z is not of reductive type, then by Matsushima’s criterion [BH62,
Theorem 3.5] all images Z → V are non-closed and the expected embedding would imply that
VAI does not hold. This is supported by a result in [Rao72], which asserts that for a reductive
group G and X ∈ g := Lie(G) the invariant measure on the adjoint orbit Z := Ad(G)(X) ⊂ g
defines a tempered distribution on g. Various particular results in the theory of prehomogeneous
vector spaces provide additional support (see [BR05]).
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