Appendix 4
 Transversity amplitudes

We briefly introduce the concept of transversity amplitudes and mention some of their key properties.

A4.1 Definition of transversity amplitudes

It has been known for a long time that certain simplifications occur if the spin quantization axis for each particle in the reaction

$$
A+B \rightarrow C+D
$$

is taken along the normal to the reaction plane (Dalitz, 1966). The usefulness of transversity states and transversity amplitudes in a modern context was emphasized by Kotanski (1970).

The transversity amplitudes $T_{c d ; a b}(\theta)$ are defined by

$$
\begin{align*}
T_{c d ; a b}(\theta)= & \sum_{\text {all } \lambda} \mathscr{D}_{c \lambda_{C}}^{\left(s_{C}\right)^{*}} \mathscr{D}_{d \lambda_{D}}^{\left(s_{D}\right)^{*}} e^{i \pi\left(\lambda_{D}-\lambda_{B}\right)} \\
& \times H_{\lambda_{C} \lambda_{D} ; \lambda_{A} \lambda_{B}}(\theta) \mathscr{D}_{\lambda_{A} a}^{\left(s_{A}\right)} \mathscr{D}_{\lambda_{B} b}^{\left(s_{B}\right)} \tag{A4.1}
\end{align*}
$$

where the argument of each \mathscr{D}-function is

$$
r_{x}(-\pi / 2)=r(\pi / 2, \pi / 2,-\pi / 2)
$$

so that

$$
\begin{equation*}
\mathscr{D}_{\lambda \mu}^{(s)}\left(r_{x}(-\pi / 2)\right)=\exp [i \pi(\mu-\lambda) / 2] d_{\lambda \mu}^{s}(\pi / 2) \tag{A4.2}
\end{equation*}
$$

The transversity amplitudes measure the probability amplitudes for transitions amongst states of the type, $\left|\mathbf{p}_{A} ; a\right\rangle_{T}$, which corresponds to particle A having spin component $s_{z}=a$ in the transversity rest frame S_{A}^{T} of A. S_{A}^{T} is obtained from the helicity rest frame S_{A} of A by a rotation

Fig. A4.1. Transversity rest frames for final particles in $A+B \rightarrow C+D$.
through $-\pi / 2$ about the X axis of S_{A}. This is illustrated in Fig. A4.1 1^{1} for particles C and D.

A4.2 Symmetry of transversity amplitudes

The symmetry properties of helicity amplitudes give rise to analogous properties for the transversity amplitudes as follows.
(a) Parity. With the intrinsic parities η_{i} one finds

$$
\begin{equation*}
T_{c d ; a b}(\theta)=\frac{\eta_{C} \eta_{D}}{\eta_{A} \eta_{B}}(-1)^{a+b+c+d} T_{c d ; a b}(\theta) \tag{A4.3}
\end{equation*}
$$

Thus invariance under space inversion makes

$$
\begin{equation*}
T_{c d ; a b}(\theta)=0 \quad \text { if } \quad \frac{\eta_{C} \eta_{D}}{\eta_{A} \eta_{B}}(-1)^{a+b+c+d}=-1 \tag{A4.4}
\end{equation*}
$$

This simplifies the appearance of the density matrix in the transversity basis giving it a 'chequer board' pattern, as discussed in subsection 5.4.1.
(b) Time reversal. In general

$$
\begin{equation*}
T_{c d ; a b}(A B \rightarrow C D)=(-1)^{b-a+c-d} T_{a b ; c d}(C D \rightarrow A B) \tag{A4.5}
\end{equation*}
$$

and for elastic reactions $A+B \rightarrow A+B$

$$
\begin{equation*}
T_{a^{\prime} b^{\prime} ; a b}=(-1)^{b-a+a^{\prime}-b^{\prime}} T_{a b ; a^{\prime} b^{\prime}} \tag{A4.6}
\end{equation*}
$$

[^0](c) Identical particles. For the correctly symmetrized amplitudes one finds the following.
For $A+B \rightarrow C+C$,
\[

$$
\begin{equation*}
T_{c c^{\prime} ; a b}^{\mathscr{C}}(\theta)=(-1)^{s_{B}-s_{A}+a+b+c+c^{\prime}} T_{-c^{\prime}-c ;-a-b}^{\mathscr{G}}(\pi-\theta) . \tag{A4.7}
\end{equation*}
$$

\]

For $A+A \rightarrow C+D$,

$$
\begin{equation*}
T_{c d ; a a^{\prime}}^{\mathscr{S}}(\theta)=(-1)^{s_{D}-s_{c}+a+a^{\prime}+c+d} T_{-c-d ;-a^{\prime}-a}^{\mathscr{S}}(\pi-\theta) . \tag{A4.8}
\end{equation*}
$$

For $A+A \rightarrow C+C$, both the above, as well as

$$
\begin{equation*}
T_{c c^{\prime} ; a a^{\prime}}^{\mathscr{S}}(\theta)=T_{c^{\prime} c ; a^{\prime} a}^{\mathscr{S}}(\theta) \tag{A4.9}
\end{equation*}
$$

For states of definite isospin the right-hand side of (A4.7) and (A4.8) should contain an extra factor $(-1)^{I+1}$.

A4.3 Some analytic properties of transversity amplitudes

As remarked in Section 4.3 the analytic properties of the transversity amplitudes are only simple at thresholds and pseudothresholds. Their behaviour at $\theta=0, \pi$ is just given by using (4.3.1) in (A4.1) and does not simplify.
In high energy models based on t-channel amplitudes the behaviour at the thresholds and pseudothresholds is important (Kotanski, 1970):

$$
\begin{equation*}
T_{c d ; a b}^{(t)} \sim \varphi_{a b}^{\epsilon(a+b)} \varphi_{c d} \varphi_{c d}^{\epsilon(c+d)} \psi_{a b}^{\epsilon \epsilon_{A B}(a-b)} \varphi_{c d}^{\epsilon \epsilon c D(c-d)} \tag{A4.10}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{i j} & =\left[t-\left(m_{i}+m_{j}\right)^{2}\right]^{1 / 2} \\
\psi_{i j} & =\left[t-\left(m_{i}-m_{j}\right)^{2}\right]^{1 / 2} \\
\epsilon & =\operatorname{sign}\left\{t(s-u)+\left(m_{A}^{2}-m_{B}^{2}\right)\left(m_{C}^{2}-m_{D}^{2}\right)\right\} \tag{A4.11}\\
\epsilon_{i j} & =\operatorname{sign}\left\{m_{i}-m_{j}\right\}
\end{align*}
$$

If any of these thresholds or pseudothresholds is close to the physical region then the correct behaviour (A4.10) must be built into the models of $T_{c d ; a b}^{(t)}$.

[^0]: ${ }^{1}$ Note that some authors use a different convention. We have followed the original paper of Kotanski cited above.

