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ON A STRUCTURAL PROPERTY OF THE GROUPS OF 
ALTERNATING LINKS 

E. J. MAYLAND, JR. AND KUNIO MURASUGI 

1. I n t r o d u c t i o n . In this paper, we will prove, as a consequence of the 
main theorem, 

T H E O R E M A. (See Corollary 2.6). The group of an alternating knot, for which 
the leading coefficient of the knot polynomial is a prime power, is residually finite 
and solvable. 

This enlarges considerably the class of knots with groups known to be 
residually finite [21; 24; 12; 13 ; 14], and provides a part ial answer to a question 
raised by R. H. Fox [7], L. P. Neuwir th [21], and others. Theorem A follows 
from arguments in [12] and from 

T H E O R E M B. (See Theorems 2.2 and 2.5). The commutator subgroup of the 
group of an alternating knot, for which the leading coefficient of the knot poly
nomial is a power of the prime p, is residually a finite q-group for all primes q ^ p. 

Theorems A and B are special cases of somewhat more technical results 
s ta t ing the same conclusions for links having the de te rminan t of the principal 
minors of the linking matr ix equal to ± 1 and belonging to certain classes 
of links including the class of al ternat ing links. We prove these using Brown 
and Crowell's analysis of the s t ructure of the augmenta t ion subgroup of a link 
group [5]. In terms of their decomposition of the augmenta t ion subgroup of a 
strongly indecomposable link into an i terated generalized free product , we 
have the following s t ructure theorem, from which we derive the title of the 
paper. I t is a special case of our main result, Theorem 2.5. 

T H E O R E M C. The augmentation subgroup of an alternating link is an iterated 
generalized free product of free groups X t in which the amalgamated subgroups Hi 
and Kt are free factors of respective normal subgroups with abelian quotient and 
of index equal to the leading coefficient of the reduced Alexander polynomial. 

I t can be shown tha t all known examples of residually finite knot groups 
have commuta to r subgroups which are residually a finite g-group for almost 
all primes q. For example, fibred, or Neuwir th , knots are characterized by 
having commuta to r subgroup a finitely generated free group, and therefore, 
by a well-known theorem of K. Iwasawa [10], their commuta to r subgroups are 
residually a finite g-group for all primes q. (An a l ternat ing knot , with leading 
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coefficient ± 1 is fibred [18], and therefore belongs to this class). Other examples 
include the groups of Whitehead doubles of the trivial knot [12], and all two-
bridge knot groups [13]. (Unfortunately, this last paper is seriously marred by 
misprints and minor errors. However we believe the result and method of proof 
are correct, and expect to present a second proof, from a slightly different 
point of view, in the future). The class also includes all knot groups from the 
classical knot tables [14]. Although a product knot need not have this property, 
it is shown in [3] t ha t the group of a product knot is residually finite if and 
only if each factor has a residually finite group. If the group of each factor has 
the above property, so does the group of the product knot, since by H. Schubert ' s 
factorization theorem [22], the commuta tor subgroup of the product knot is a 
free product of the commuta tor subgroups of the factors, and it follows from 
a theorem of K. Gruenberg [8], t ha t the commuta tor subgroup of such a 
product knot is residually a finite g-group for almost all primes q. In 1968, 
P. Stebe [24] proved tha t the groups of hose knots are residually finite by 
showing they are I I c. (A group is I I c if for each two elements gi and gi in the 
group, either gi = gz1 or else there is a normal subgroup N of finite index such 
tha t gi T^ g% (mod N) for each integer /.) However these knots are, in fact, 
fibred knots according to J. Milnor [15], and so these knots also belong to the 
above class. 

We also use slight generalizations of theorems in [12] and [14]. These results, 
which sometimes suffice to imply tha t the augmentat ion subgroup is residually 
a finite p-group when the leading polynomial coefficient is a composite number, 
are given in Section 2, along with group theoretical notat ions and conventions. 
In Section 3 we present technical results on certain types of matrices. We in
clude the proof of a theorem of C. Bankwitz [1] for completeness. These 
results are used in the main proofs in the later sections to convert information 
about the leading polynomial coefficient into information about the cosets of 
appropria te subgroups. In Sections 6 and 7, this information, together with 
information from the dual graph of the link /, is converted via Reidemeister-
Schreier rewriting into the requisite information about free bases for the sub
groups to complete the proof of the main theorem. In Section 4 we give defini
tions and results concerning certain classes of strongly indecomposable links 
and their algebraically unknot ted minimal spanning surfaces. Finally, Section 5 
contains two reductions. The first determines the generality of our methods, 
while the second simplifies the ensuing proofs and is very closely related to the 
arguments on the residual finiteness of knot groups given in [12] and [13]. 

2. Def in i t ions a n d s t a t e m e n t s of m a i n re su l t s . In this paper all knots 
or links are tame and oriented. We will denote the number of components of 
a link by JU, bu t will not always distinguish clearly between knots (links with 
one component) and links of more than one component. We denote the reduced 
Alexander polynomial of a link by A(/). If the link is a knot , this is jus t the 
knot polynomial. 

https://doi.org/10.4153/CJM-1976-056-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-056-8


570 E. J. MAYLAND, JR. AND K. MURASUGI 

Let I be a link in the oriented 3-sphere S3 and let G = 7n(S3 — /). If we 
define a homomorphism from G to the additive group of integers, Z, by sending 
the homotopy class of any loop to the sum of the linking numbers of this loop 
with the various components lt of /, then the kernel of this mapping is called 
the augmentation subgroup of /. If / is a knot, then the augmentation subgroup 
is just the commutator subgroup. G is an extension of the augmentation sub
group by a free cyclic group. 

The link / will be called strongly indecomposable if it has an orientable span
ning surface of maximal Euler characteristic which is connected. (For example 
every knot is strongly indecomposable.) By Theorem 2.1 of [5], the augmenta
tion subgroup E of a strongly indecomposable link / with connected spanning 
surface 5 of minimal genus g is an iterated generalized free product of the form 

(2.1) . . . * X_i * Xo * Xi * 
F F F F 

Here each X{ is isomorphic to X, the fundamental group of the three-manifold 
"S3-split-along-5," and the amalgamation from Xt to Xi+1 represents the 
identification of the appropriate copies K{ Ç1 Xt and Hi+i C Xt+i of the 
inclusion-induced images (to either side) of 7ri(5), the group of the spanning 
surface, into the group X. As indicated F = in (S) is free (of rank 2g + /* — 1). 
Also X ~ 7ri(53 — S), and we will restrict our attention to links for which S is 
algebraically unknotted, that is for which X is free (of rank 2g + JU — 1). 

If C is a class of groups, we say that the group G is residually-C provided for 
each element 1 ^ x in G there exists a group H in C and a homomorphism <j> 
from G onto H such that 1 9^ <f>(x). Given a group G, we denote the terms of 
the lower central series of G by jiG = G, 72G = G', 73G, . . . . Then a group G 
is parafree (in the variety of all groups) if G is residually nilpotent and G has 
the same sequence of quotients G/72G, G/73G, . . . by the terms of its lower 
central series as some free group F. If G/G' is free abelian of rank r, then we 
also say that G is parafree of rank r. (See [2]). 

With these concepts we turn to consideration of a link group G with H, K, X, 
and augmentation subgroup E as given by (2.1). If the link / has components 
ki, . . . , &M, then the linking matrix, L = ||z^||, is the /x X M matrix defined by 
Zij = lk(ku kj), for i ^ j , and zu = —zn — . . . — zU-.i — zii+i — . . . — zilt. 
(Note that this matrix is not equal to the link matrix used in later sections.) 
We denote by L* any principal minor, L(i\i), of L (obtained by deleting the 
ith row and column from L). Writing Xn for the subgroup of E generated by n 
consecutive factors X if and observing the complete analogy between the 
decomposition (2.1) and Neuwirth's decomposition of the commutator sub
group of a knot group, we can parrot the proof of Theorem 3.2 in [14] to 
obtain the following 

THEOREM 2.2. Let the link I have the group G with H, K, X, and augmentation 
subgroup E as in (2.1). Suppose that H and K are free factors respectively of the 
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(free) subgroups M and N of X. If \X : N\ = \X : M\ = pm, for some prime p, 
and det L* = ± 1 , then E is an ascending union of the parafree groups Xn, and 
residually a finite q-group for any prime q ^ p. 

Under the same conditions as Theorem 2.2, we have the following two 
corollaries. 

COROLLARY 2.3. [14] Any two-generator subgroup of E is free. 

COROLLARY 2.4. [12, p. 224]. G is residually a finite solvable group. 

These results motivate our main result, namely the following. 

THEOREM 2.5. Let I be a pseudo-alternating link (see Section 4) in S3. Then 
(1) I has an orientable connected spanning surface S of maximal Euler charac

teristic that is algebraically unknotted, and therefore X == wi (S3 — S) is free of 
rank 2g + jit — 1. 

(2) \X : H • X'\ = \X : K - X'\ = A(0), for H and K as following (2.1). 
(3) H and K are respective free factors of H • X' and K • X'. 

In particular Theorem 2.5 applies to any pseudo-alternating knot (see 
Section 4) and therefore to any alternating (link or) knot. 

Corollary 2.4 and Theorem 2.5 imply 

COROLLARY 2.6. The group of a pseudo-alternating link is residually a finite 
solvable group if A(0) is a prime power and the linking matrix minor L* has 
determinant ± 1 . 

The proof of Theorem 2.5.1 and Theorem 2.5.2 will be given in Section 4, 
and that of Theorem 2.5.3 in Section 7. 

3. Matrix properties. In this section we will prove several basic properties 
of matrices of particular types. These results will be used frequently in the 
remainder of the paper. We begin with some definitions. 

Let M = \\aij\\ be an n X m real matrix with n ^ m. M is said to be of 
special type (on the rows) if (1) ati > 0, for all i, (2) atj ^ 0, for i ^ j , and 
(3) ]C5=i aîj = 0, foi alH = 1, . . . , n. We will sometimes write ti(M) for the 
row sum X^=i atj. A matrix of special type on the columns is defined similarly, 
when n ^ m. 

Given an n X m matrix M, we denote by M(i\ . . . ik\jt . . . jd) the minor of 
M consisting of the i\-} . . . , 4-th rows and the ji-, . . . , jd-th columns of M. 
Similarly, M(i\ . . . 4 | i i • • • jd) denotes the complementary minor obtained by 
striking out the ii-, . . . , 4-th rows and the ji-, . . . , jVth columns of M. By a 
principal minor of M we mean a matrix M(i\ . . . ik\i\ . . . ik), and if 1 S k ^ 
n — 1, it will be called a proper principal minor. 

PROPOSITION 3.1. Let M be an n X m real matrix of special type on the rows. 
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Then 

(1) det M{1 • • • s\\ . . .s) è 0, fori ^ s ^ n, 

(2) ( - l ) m + 1 d e t M ( l . . . s | l . . .k...si) è 0, / o r l = * = 5, 

and 5 + 1 = i = w, 

(3) det M(l...s\l...s) ^ E U + i l d e t M( l . . . s|l . . .k . . . si)\, 

We remark that by interchanging rows and columns simultaneously, any 
principal minor of M can be brought into the form described in (3.1.1). 
Therefore (3.1.1) actually claims that the determinant of any principal minor 
of M is non-negative. Similar remarks apply to (3.1.2) and (3.1.3). 

Proof. Since (3.1.1) is an immediate consequence of (3.1.3), we need only 
prove (3.1.2) and (3.1.3). By simultaneously interchanging rows and columns, 
if necessary, it suffices to prove (3.1.2) and (3.1.3) for k = s. 

The proof will proceed by induction on s. For 5 = 1, everything is obvious. 
Suppose (3.1.2) and (3.1.3) hold for 5—1. To prove (3.1.2) we compute 
det M (I . . . s\l . . . 5— 1 i) by expanding along the 5-th row, obtaining 

, detMil...s\l...s - I t ) = (-l)2s (asi) det M(l... s-l\l... s-1) 
{6-2) + E U (-l)s+j(asj) det Mil... s-l\l . . . j . . . 5 -1 i). 
By the inductive assumptions both ( — l)s+i det M(l ... s — l\l.. .j... s — 1 i) 
and det M (I . . . 5 — 1 | 1 . . . 5 —1) are non-negative, implying that all the 
summands on the right-hand side of (3.2) are non-positive. Therefore (—1) det 
M (I . . . 5 - 1 i) ^ 0. This proves (3.1.2) in the case k = s. 

Next, in order to prove (3.1.3), we expand det M(l . . . s|l . . . 5) along the 
5-th row, and then compute both sides of (3.1.3). Using (3.2), we obtain 

D = d e t A f ( l . . . 5 |1 . . . 5 ) - I X X H - I det M( l . . . s\l ... s-li)\ 

= detM(l . . . 5 | 1 . . . 5 ) + E U + i d e t A f ( l . . . *|1 . ..s-li) 

= E U (-IY+J(asj) det MiX... s-l\l ...j...s) 

(3.3) + E I H I { E U (-l)s+i(asj) det M (I . . . s\l . . . j . . . s-li) 

+ (-l)2s(asi) det M{1... s-l\l . . . 5 -1)} 

= E ? = i ( - l ) S + ; ' ( 0 { d e t M ( 1 . . . 5 - l | l . . . j . . . 5 ) 

+ E i s + i det Mil . . . 5 - 1|1 . . .7 . . . 5 - 1 i)} 

+ d e t A f ( l . . . , 5 - l | 1 . . . 5 - l ) • jyi=sasi. 
Since es(M) ^ 0, we have X ! U ^n è E U (-~asj)\ and hence (3.3) 

becomes 
D = Z i = î ( - a S J ) d e t i k f ( 1 . . . 5 - l | 1 . . . 5 - l ) 

+ Z i - î ( " l ) s + ; ' ( 0 {det Mil... 5 - l | l . . . j . . . 5) 
(3.4) + JX*+idetMil . . . 5 - l | l . . .j ...s-li)} 

= E £ î ( - a „ ) {det Mil... s-l\l . . . s-1) 
+ ( - l ) s + ; + 1 E U det Mil... s-l\l ...j... s-li)}. 
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Now by the inductive assumption, det M (I . . . s — 1|1 . . . s — 1) ^ 
J2n

t=s |det M(l . . . 5- —1|1 . . . j . . . s—1 i)\, and consequently each of the 
bracketed expressions in the last equation in (3.4) is non-negative. Therefore 
D ^ 0. This proves (3.1.3) and completes the proof of Proposition 3.1. 

As a special case, when s = n — 1 and m = n, we get the following 

COROLLARY 3.5. Let M be an n X n real matrix of special type on the rows. Then 

(1) (~l)i+jdet M(i\j) è 0, 

(2) det M(i\i) ^ [det M(i\j)\, forj = 1, . . . , n,j ^ i, and 

(3) det AT = Zî-i«<i|detJ0T(i|j) | . 

In general we cannot replace ^ by strict inequality in (3.1.1). In terms of 
the following definitions we will give below a sufficient condition for any 
principal minor of M to be non-singular. 

An n X m matrix M is said to be of positive type (on the rows) if (1) M is of 
special type (on the rows), and (2) at least one of the row sums et(M) is 
non-zero. Moreover, if every principal minor of M is of positive type, then we 
say M has strictly positive type. A matrix of strictly positive type on the columns 
will be defined in the same manner. Obviously, any principal minor of a matrix 
of strictly positive type on the rows (columns) is also of strictly positive type 
on the rows (columns). 

PROPOSITION 3.6. Let M be an n X n matrix of strictly positive type on the 
rows. Then det M(i\ . . . ik\i\ . . . ik) > 0, for 1 ^ k ^ n. 

Proof. Since M(i\ . . . ik\i\ . . . ik) is of strictly positive type on the rows, it 
suffices to show that det M(l • . . n\l . . . n) > 0. The proof will be by induc
tion on n. The cases n = 1 and n = 2 are obvious. Therefore suppose that 
the proposition is true for any (n — 1) X (n — 1) matrix of strictly positive 
type. 

We may assume without loss of generality that an + • • • + #in > 0. Also, 
if all an = 0, for i ^ 1, then det M = an - det If (1|1) > 0, because au > 0 
and det M(l\l) > 0 by induction. Therefore we can assume that at least a2i, 
say, is not zero. Since an ^ 0, we can eliminate all but the first entry from 
the first row of M so that det M = an • det N, where N is an (n — 1 ) X in — 1 ) 
matrix | |ô^| | defined as 

aij+i ' at+n . . 
bij = at+\j+\ - , for i, j = 1, . . . , n - 1. 

an 
To prove the proposition, it now suffices to show that N is of strictly positive 
type on the rows. 

First, since an > |«i<+i| and ai+ii+i ^ |#i+n|, it follows that b{i > 0, for 
all i, and also that btj ^ 0, for all i 9^ j . (Note that atj ^ 0, for i 9^ j). Further-
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more, a simple computa t ion yields 

v a n 

Zn- l (li+ll X^n-l 

a n 

= 6 i + 1 ( M ) - ^ e i ( i k D . 
a n 

Since ei(Tlf) > 0 and a2i < 0, we have in part icular 

I X = €2(M) - — 1 . e i ( M ) > 0 . 
;=i a n 

Therefore iV is of positive type on the rows. 
Finally we must prove t h a t every principal minor of TV is of positive type 

on the rows. Assume not. Then there is a principal minor N0 of N t h a t is not 
of positive type, and for simplicity we can assume tha t N0 = i V ( 2 . . . r a | 2 . . . m ) , 
for 2 ^ m ^ n — 1. 

Then £7=2 &2< = 0, . . . , £ 7 = 2 &™* = 0, where 
m m 

£ bji = 2-. {a^+H+i — ( a ; + i ] / a n ) a n + 1 } , 

for j = 2, . . . , m. Since a n + . . . + a\n > 0, it follows t h a t if aj+u 9^ 0, then 
- ( a m i / a n ) £7=2 aii+i > — ( a , + n / a n ) ( — a n ) = a i + n , which in tu rn im
plies t h a t 0 = £ * 1 2 bJt > £ ? = 2 a^-fif-j-i -f- aj_(_ii =̂  0, a contradict ion. T h u s 
a J + i i = 0, so we obtain a ; + i 3 + . . . + aj+im+i = 0, for j = 2, . . . , m. Equiv-
alently, M(3 . . . r a + l | 3 . . . m + l ) i s not of positive type , contradict ing 
our hypotheses. This proves Proposition 3.6. 

We still need to s t rengthen Proposition 3.1 under certain conditions. Suppose 
t h a t we are given a n w X w matr ix M of positive type on the rows and the 
columns. Then we can enlarge M to an (w + l ) X ( w + l ) matr ix MQ by 
adding one row and one column to M, where the (n + 1, k) en t ry of MQ is 
— £ l = i aik; the (k, n + 1) ent ry is — £ l = i a**; and the (n + 1, w + 1) en t ry 
is £ * = i £ l = i aik. I t is evident t ha t ikf0 is also of special type on the rows and 
columns, bu t is never of positive type, since the sum of the entries on each 
row and column is zero. Therefore, de t MQ — 0. This matr ix M0 will be called 
the augmented matrix of M. Obviously, de t MQ(Î\I) = de t M, for any i. 

A matr ix of special type on the rows and columns is said to be irreducible 
if none of the principal minors M0(i\i) of the augmented matr ix MQ of M can 
be transformed into a block tr iangular matr ix by only interchanging rows and 
columns simultaneously. 

P R O P O S I T I O N 3.7. Let M be a matrix of strictly positive type on the rows and 
columns. Let MQ be the augmented matrix of M. Then for any i, M0(i\i) is of 
strictly positive type on the rows and columns. 
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Proof. I t suffices to prove tha t M0(l\l) is of strictly positive type. Assume, 
to the contrary, t ha t M 0 ( l | l ) is not of strictly positive type on the rows. Then 
there is a principal minor TV of M0{1\1) t ha t is not of positive type. Since M is 
of positive type, N must contain the (n + l)-st row and column. Therefore, 
wi thout loss of generality, we may assume tha t 

N = Mo(m m + 1 . . . n + l\m m + 1 . . . n + 1). 

By the assumption, £*±J, amj = Y!]=m am+\j = . . . = Y^=m an+ij = 0. 
On the other hand, by the definition of M0, Ylnj=l akj = 0, and therefore 
Y.l=i amj = . . . = Y.l=i an+ij = 0. Then atj ^ 0, fo r i ^ j , implies aml = 

dm2 — • • • = CLmm-1 = 0> • • • » # n + l l = • • • = <2w+im- i = 0 , 2.£., t h a t 

ilfo(m . . . n + 1|1 . . . m — 1) = 0. 

Since Mo is the augmented matrix of M, it also has zero column sums, and 
therefore J^™Ii aa = . . . = YUi^i atm-i = 0. This shows tha t 

M(l . . . m — 1|1 . . . w — 1) 

is not of positive type on the columns, contradicting the hypothesis t ha t M is 
of strictly positive type on the columns. I t follows symmetrically tha t N is of 
strictly positive type on the columns, and this proves Proposition 3.7. 

4. P s e u d o - a l t e r n a t i n g l inks a n d *-products of l inks . A link / in S3 is 
alternating if it has a diagram, or regular projection, which is connected and 
al ternat ing. Following [19], a link / with an al ternat ing diagram L can be 
decomposed, utilizing Seifert circuits, into al ternat ing links lt having so-called 
special diagrams Lt (containing no Seifert circuits of the second type) so tha t 
the Lt decompose L. Then / is called a ^-product of the {special alternating links) 
lt, and this is denoted symbolically by / = l\ * . . . * lm with L = L\ * . . . * Lm. 

As was shown in [19], we can associate to any diagram L of a link / in S8, 
a square matr ix M, called the link matrix of / (associated with L). Then, 
if / = /i * . . . * lm, the matrix of / is a block matrix M = | | M ^ | | , 1 ^ i, j ^ m, 
where Mit is the link matrix of lt. An L-principal minor, M*, of AI is defined 
as the principal minor of M obtained from M by deleting m rows and m columns 
containing a diagonal element in each Ma, 1 ^ i ^ m. We will say the link 
matrix M is irreducible if each L-principal minor L* of L is irreducible. In order 
to analyze the link matrix of an alternating link, we must first consider the 
link matrices of special al ternat ing links. Such matrices wrere studied in [17], 
where the following proposition was proven: 

P R O P O S I T I O N 4.1. Let M be the link matrix of a special alternating link I with 
reduced Alexander polynomial A(/). Then M {or — M) has the following proper
ties: 

(1) The L-principal minor M* {or — M*) of M {or — M) is of strictly positive 
type on the rows and columns, 
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(2) If I is a prime link, then M* cannot be brought into block diagonal form 
only by simultaneously interchanging rows and columns, and 

(3) det M* = zhA(O). 

PROPOSITION 4.2. Let the alternating link I have ^-decomposition I = h * . . . * ln. 
Let A(t) and At(t) denote the reduced Alexander polynomials of I and lt respec
tively. Then dzA(O) = Ai(0) . . . An(0). 

For a proof of this proposition, see [17] or [19]. Note that At(t) ^ 0, since 
the lt are special alternating [6], and therefore A(0) ^ 0. 

Next, we need to establish that any alternating link spans an algebraically 
unknotted, connected surface of maximal Euler characteristic. A very original 
construction by Seifert, given in [23], actually produces an appropriate surface 
for an alternating link. The proof is given in [6] or in [16]. However, for use in 
later sections, we will give an alternative construction of such a spanning sur
face for an alternating link from a slightly different point of view. 

Let 5 be a connected surface in S3, consisting (as illustrated in Figure 4.1) 
of a finite number of disks Di, . . . , Dt and a finite number of bands, each of 
which connects two disks in such a way that 

(1) each band is twisted only once in the same direction, 
(2) the spine of 5 is a graph in the plane, i.e., S has a planar graph as a 

deformation retract, 
(3) the bands are pairwise disjoint, and 
(4) S is orientable. 

Then the boundary of 5 is a special alternating link /, and 5 will be called a 
primitive flat (Seifert) surface for /. For example, every special alternating link 
spans a primitive flat surface. If 5 contains only two disks, then 5 was called 
a primitive s-surface in [18]. 

FIGURE 4.1. A primitive flat surface. 

We now consider two primitive flat surfaces S\ and 52 in 53 , spanning 
respective links h and /2. We take disks Dn and Dt2 from S\ and S2 respectively, 
and identify them so that the resulting orientable surface 5 = Si VJ 52 spans 
a link and that S — Si and 5 — 5 2 are separated, i.e., so that there exists a 
2-sphere T in 53 such that T C\ S = Dtl(= Di2) and each component of Sz — T 
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contains points oî S — Dn. Then 5, or any surface obtained by a finite iteration 
of this construction, will be called a generalized flat surface, and the link 
spanned by S will be called a pseudo-alternating link. As an immediate conse
quence of the definitions we have 

PROPOSITION 4.3. Any alternating link is pseudo-alternating. 

The converse to the above proposition is false. For example, any torus link 
of type (m, n), \m\, \n\ ^ 3, is pseudo-alternating but not alternating. 

Also the conclusions of Propositions 4.1 and 4.2 hold for pseudo-alternating 
links as well, essentially by the same proofs. However, the "factors" of an 
arbitrary pseudo-alternating link cannot, in general, be recovered from the 
diagram using Seifert circuits, and we do not know whether every pseudo-
alternating link is a *-product. 

PROPOSITION 4.4. Let I be a pseudo-alternating link with generalized flat span
ning surface S. Then S has maximal Ruler characteristic. 

PROPOSITION 4.5. Let S be a generalized flat surface. Then S is algebraically 
unknotted, i.e., TTI(S3 — S) is free (of finite rank). 

Propositions 4.4 and 4.5 were essentially proven in [6; 16; and 20], and we 
omit the details. 

Combining the previous propositions with the formula for the rank of the 
group of a spanning surface of maximal Euler characteristic, we obtain the 
following proposition, which is exactly Theorem 2.5.1. 

PROPOSITION 4.6. Any pseudo-alternating link spans a (generalized flat) 
surface S of maximal Euler characteristic with TTI(SS — S) = 7%+M-i, a free 
group of rank 2g + n — 1, where g is the genus of S and /x is the number of 
components of the link. 

If / is the boundary of the generalized flat surface 5 constructed from primi
tive flat surfaces Sif 1 ^ t ^ m, spanning special alternating links li} then 
it also follows, just as for alternating links, that the link matrix M for / is 
a block matrix M = ||ikf*;-||, 1 ^ i} j ^ m, where Mu is the link matrix of lu 

and one of each pair M^ and Mjt is the zero matrix. It follows that by simul
taneously interchanging rows and columns (of blocks), M can be reduced to 
block triangular form. Furthermore, it is easy to show that if Mu is not 
irreducible, then the primitive flat surface 5* will be a generalized flat surface 
obtained from two smaller primitive flat surfaces. This allows us to assume, for 
the remainder of the paper, that any primitive flat surface spans a link whose 
link matrix is irreducible. 

Much of the algebraic information connected with a special alternating link / 
can be computed from a spine for the primitive flat surface 5 spanning /. This 
spine can be obtained from the diagram L of the link and is sometimes called 
the dual graph of L or /. Following, for example, [19], we give a more detailed 
description. Suppose L divides S2 into a finite number of regions ri, . . . , rn+1. 
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Now each of these regions belongs to one of two classes a and /3, where we say 
r f belongs to the fi-class, or rt is a (3-region, if the boundary of rt const i tutes an 
oriented circuit in L under the orientation induced by /. (In this case the 
boundary of rt is a Seifert circuit of the first type. ) Otherwise we say rt is an 
a-region (or belongs to the a-class). I t is not hard to check t h a t no two regions 
of the same type have a side in common and t h a t the number of sides on each 
a-region is even. Now we take a point, called the centre, from the interior of 
each a-region, and draw a simple arc through each double point of L connect
ing the centres of the two a-regions meeting there. T h e resulting 1-complex is 
called the graph of L or /, and is planar and connected (since L is connected) . 
We will make more use of the dual graph, which we will denote by @, obtained 
similarly by connecting the centres of adjacent ^-regions through each double 
point. Of course, @ is also planar, connected, has edges in one-to-one correspon
dence with those of the graph of the link, and is dual to the graph of the link. 

Conversely, any planar graph © of even valency is the dual graph of a special 
a l ternat ing link, for we can replace each vertex by a small disk and each edge by 
a band in the plane connecting the two corresponding disks. If each band is 
then twisted once in the same direction wi thout causing any ' ' complicat ion" 
in the resulting surface S, this surface will have spine ®, be orientable, and 
span a special a l ternat ing link /. Evident ly 5 is a primitive flat surface for /. 
Later , for the purposes of simplicity, we will choose a preferred sense of twisting 
on these bands so tha t , among other things, the link matr ix M* (as opposed to 
— M*) is of special positive type . 

5. T w o r e d u c t i o n s . In order to prove Theorem 2.5.3, we will spend the 
next two sections specifying the position of the inclusion-induced images, H 
and K, of the group of a spanning surface in the group of the complement of 
the surface. We begin, in this section, by reducing the complexity of the link 
diagrams to be considered. 

Let / be a strongly indecomposable link in 5 3 , and consider, for each con
nected, algebraically unknot ted spanning surface of maximal Euler character
istic, the corresponding decomposition of the augmenta t ion subgroup, as given 
by (2.1). If, for some decomposition, X contains subgroups M and N with 
(1) X ^ M ^ H • X' and X ^ N ^ K • X', and (2) H and K are contained 
respectively in M and N as free factors, then we will say / (or the group G of /) 
has the free factor property (with respect to M and TV). For example, each fibred, 
strongly indecomposable link has the free factor proper ty (since we do not 
exclude improper free factors). 

We observe the following straight-forward consequence of the Reidemeister-
Schreier rewriting process. 

LEMMA 5.1. Let F = Gi * G2be a free group and H be a free factor of a subgroup 
of finite index in G\. Then H * G2 is a free factor of a subgroup of F (of the same 
index). 
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T H E O R E M 5.2. Let h and l2 have the free factor property with respect to subgroups 
of respective index n\ and n2. Let these links span respective generalized flat sur
faces Si and S2 giving rise to the appropriate decompositions and containing the 
respective disks D\ and D2. If we identify these disks so that the resulting surface 
S spans a link I and so that S — S\ and S — S2 are separated, then I has the free 
factor property with respect to subgroups of index n\ • n2. 

Proof. We choose a basepoint p on the identified disk, and generators 
au . . . , ar for 7n(5i; p); /3i, . . . , ($s for 7n(52 ; p); and Au . . . , Ar and Bu . . . , 
Bs for Xi = 7ri(53 — Si) and X2 = TTI(S3 — S2) respectively. We suppose tha t 
we have chosen the indices so tha t Si a t taches to the sharp side of S2, and we 
consider first the various inclusion-induced homomorphisms to the sharp side, 
ii*, i$, and i* : in(S) —>X = Xi * X2, where ii*, i2* are monomorphisms by 
definition and i* is also a monomorphism by Proposition 4.4. Now 

i* (aj) = ii* (aj) for j = 1, . . . , r, 
while 

i* (At) = Vk(Aj) • H* (At) • Uk(Aj), for k = 1, . . . , s, 

where Vk and Uk are words on Ai, . . . , Ar. (See Figure 5.1). If Hi = gp 
(ii* (aj); 1 ^ j S y ) and H2 = gp (i2* (ftO;-l ^ k ^ s) are respectively free 

factors in Mi and M2, then, by Lemma 5.1, Xi * M2 and therefore Xi * H2 are 
free factors in a subgroup of finite index in X. In fact this subgroup is ker </>, 
where </> : X —» X2/M2 homomorphically. Now applying Whitehead 's T-auto-
morphisms (see, e.g., [11, p . 166]) to the free group ker <f>, we affect a free 
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subst i tut ion of i# (ft) for i2
# (ftt), 1 ^ k ^ s, in a free basis for ker 0. Therefore 

X i * gp (i# (ft) ; 1 ^ & ^ 5 ) is a free factor of ker <£. Since i ï i is a free factor 
of a subgroup Mi of finite index in X\, applying Lemma 5.1 again, we have 
H = Hi* gp {i* (ft) ; 1 ^ & ^ ^ ) is a free factor of a subgroup of finite index 
in ker <j> (and in X). 

T h e augument to the flat side is symmetr ic and the remark on indices is 
obvious, so this completes the proof of Theorem 5.2. 

COROLLARY 5.3. If the link I spans a generalized flat surface constructed from 
primitive flat surfaces spanning links U satisfying the free factor property for 
subgroups of index nu then I satisfies the free factor property for subgroups of 
index the product of the nt. In particular, this applies to any pseudo-alternating 
link I. 

T h e above results imply t h a t we can restrict our a t ten t ion to special alter
nat ing links with irreducible link matr ix when proving Theorem 2.5.3. T h e 
next proposition, which allows us to simplify the link diagrams under considera
tion by removing certain bands connecting given pairs of disks, could be de
duced from Proposition 5.2 and the observation t h a t torus links have the free 
factor proper ty . However, we include a proof, which may be of independent 
interest. 

P R O P O S I T I O N 5.4. Let @0 be a planar graph containing adjacent vertices vi and 
v2. Let the planar graph @ be obtained from @o by adjoining a path consisting of 
2& — 1 consecutive edges which join Vi to v% and which lie in a region adjacent to 
the edge connecting V\ and v2. Let l0 and I be the alternating links associated with 
@o and ©, so that the surface S for I is obtained from the surface S0for lQ by adding 
a band. Then U is special alternating and satisfies the free factor property with 
respect to subgroups of index n if and only if I is special alternating and satisfies 
the free factor property with respect to subgroups of index k • n. 

Proof. Choose orientations, indices, distinguished meridians, etc. , so t h a t 
the appropr ia te portions of the spanning surface are given by Figure 5.2 and 
Figure 5.3. Choose V\ as basepoint for the fundamental group of each surface. 

We can assume t h a t @0 — {̂ 1} is connected, implying t h a t the regions on 
either side of ei are distinct. Otherwise /0 is a product link in the sense of 
Schuber t [22] or Hashizume [9]. I t is easy to see t h a t this case need not be 
considered, and it also follows immediately t h a t l0 is special a l ternat ing if and 
only if I is. 

Choose a maximal tree X in @0 — { î} and a free basis «i , . . . , ac for 7ri(5o) 
in one-to-one correspondence with the edges of @0 — Ï so t h a t ai corresponds 
to e\. Choose a dual basis Au . . . , Ac for 7ri(53 — S0) so t ha t A t and at have 
linking number + 1 . We can now obtain a free basis for in(S) by adding a 
generator corresponding to the added band. In order to simplify the images of 
TTI(S) in 7ri(53 — S), we choose a basis for 7ri(53 — S) to consist of the A u 
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FIGURE 5.2. A portion of the surface S0. 

2 ^ i ^ c, together with A and A\ as indicated in Figure 5.3. Then the inclu
sions i* and ib mapping 7n(50) and TI(S) into H0, Ko Ç 7Ti(53 — So) and 
H, K Ç 7ri(53 — 5) are as follows: 
(5.5) For S0: 

Ui(Aj) <-«<-> Wi(Aj), 2 S i è c, and 
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(5.6) For S: 

Ak- UMd'-oc -*Ak~l- WI{AJ) 

Ui(A*)*-"i-*Wi{Ai),2 ^ i S c , 

where the words Ut and Wu 1 ^ i ^ c, are the same for each surface and 
do not contain the generator A. T h e proof of the proposition now proceeds 
jus t as the proof of Theorem 5.2, using Lemma 5.1 and the Whitehead T-
automorphisms. 

We remark tha t , in the notat ion of the above proof, @0 — {#1} is discon
nected if and only if / contains a prime factor which is a (2,2)-torus link or a 
non-fibred (2fe, 2)-torus link, for k ^ 2. 

Now let / be a prime special a l ternat ing link from whose diagram we have 
removed as many bands as possible using Proposition 5.4. In part icular we 
can remove one of any pair of bands corresponding to the boundary of a 2-gon 
in the complement of the link dual graph @* wi thout affecting the free factor 
proper ty . 

6. Cose t representa t ives a n d 7^5-rewriting. In this section we will 
choose free bases for TI(S) and 7ri(53 — S) which will enable us to relate the 
primit ive flat surface 5 and the link matr ix M for special a l ternat ing links. 
We will use these to define coset representat ive systems for X/H • X' and 
XIK - X' needed for the rewriting processes which compute the inclusion-
induced images H and K of 7n(S) in H • X' and K • X'. 

Let I be a special a l ternat ing link with primitive flat spanning surface 5 and 
dual graph @. Let Vo be a vertex of @. T h e group 7n(S, x0) is a free group of 
rank 2g + \x — 1, and it is freely generated by the classes «i, . . . , an of simple 
closed curves corresponding to the boundaries of the bounded regions rx, . . . , rn 

in the complement of @. We will assume tha t the at are oriented counter
clockwise. 

We assume tha t 5 is embedded in R X R X [-h è] £ R X R X R, and 
constructed from ® which is contained in R X R X {0}. (We select a point a t 
infinity co from 5 3 and consider a Cartesian coordinate system R X R X R = 
S3 - oo.) We take p0 = (0, 0, 1) as basepoint for TTI(53 - S) ^ X. Let ct be 

a point from the interior of the region ru 1 ^ ^ ^ w + 1, and define the 
oriented closed curve at = fn+i W gn+1 KJ gfl \J ff1, where fj is a directed arc 
joining p0 to cjy gj is an arc joining Cj to the point (0, 0, —1) in Ss, and fj~l 

and gf~l denote the arcs fj and gj with reverse direction. Then it is obvious 
t ha t the at form a set of free generators for 7n(S3 — S, po) = X which are 
dual to the at. The at will be called a set of standard generators for X. 

We now turn to consideration of the precise form of the free generators 
i* (OLJ) and ib(aj) for H and K respectively. Suppose the boundary of rt consists 
of 2k edges e1} . . . , e2k- Denote by R(et) and L(et) the regions lying to the right 
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and left side respectively of the edge et (with respect to the counter-clockwise 
orientation). Then we denote the closed path fs U gs U gt~

l ^Jfr1 by R(s)L(t), 
so that R(s)L(t) and as~

lat represent the same element of X. In order that we 
consider link matrices of positive type (instead of negative) we will consider 
only the case where the sense of twisting of the bands of 5 is such that the 
lefthand boundary component crosses over the righthand component at each 
crossing. Then it follows from our definitions that 

i* (a,) = P, • R(e1)L(e2j. . . R{eU-i)L{eu] • P f \ 

where Pj is the image under i# of a path of even length in © from v0 to some 
"first" vertex Vj on the boundary of r j . For later use we will define Â  by 
^ (<*j) = Pj ' Ay • Pj"1. We also note that Rfas-i), s = 1, . . . , k, is always a 
region adjacent to rjf while L(e2S) is always r ;. In particular, A; has the form 
ias~

laj) . . . (as^dj). 
Consider now the equations 

(6.1) i* (a,) = ai^'1 • . . . • an
v''» (mod X'), for j = 1, . . . , n. 

Define V* to be the exponent matrix of the system (6.1). Then V* is an 
n X n integer matrix, and we observe 

PROPOSITION 6.2. F# is an L-principal minor of the link matrix M of I associated 
with the above diagram. Furthermore, if Vb denotes the matrix of exponents for 
ib(aj) (mod X'), then Vb = (V*)1. 

From this proposition and the definition of the reduced Alexander poly
nomial, we have immediately (see Propositions 4.1 and 4.2) 

COROLLARY 6.3. For pseudo-alternating links I, det V* = |A(0)| = [X : H - Xf] 

The proof of Proposition 6.2 follows from the définition of the link matrix 
and the fact that / is special alternating, and will be omitted. 

Let Ai, . . . , An be some fixed permutation of the ajf and suppose V* is row 
equivalent (after simultaneously exchanging rows and columns) to 

1 

1 

(-xw) 

0 

pll 

(Pit) 

0 Pmm 

(6.4) U = 
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where || — X^|| is a q X m matr ix (q may be equal to 0) , and we may assume 
pu > 1, 0 ^ pij < pjj for j > i, and 0 g X0- < pjjt 

Then X/H • X' is an abelian group defined by the following relations: 

/A, = Aq+1*" . . . . -Aq+m^ 

^ 1 q+m 

A , Vim 

\ 1 = /I , pmm 

Since ptj < pjS and \X : H - X'\ = £ n • . . . • pmm = de t F # , we can select 
as right coset representat ives of X modulo H • X' the elements 

(6.6) {AQ+1
S> • . . . • Aq+n'»; 0 ^ Sj £ p}j - 1). 

Let <j> be the coset representat ion function for X modulo H • X' defined by 
(6.5) and (6.6). If we use the cosets (6.6) and the coset representat ion function 
<t> to define a Reidemeister-Schreier rewriting process r for H • X', then H • X' 
will be freely generated by the non-trivial symbols among those of the form 

(6.7) A(j;Sl, . . . ,sn) = Aq+1
s>- . . . -A^^-Aj- [Aq+1^ • . . . • ^ j r + w

1 » ] - 1 . 

where the exponents ^ are determined by the equat ions (6.5). Note t h a t only 
pu ' • • • • pmmiq + m — 1) + 1 of the generators in (6.7) are non-trivial since 
each A (q + j ; si . . . , sj} 0, . . . , 0) œ 1, for 0 ^ Sj < pôi — 1. 

We have already chosen generators for H of the form i# (at) = Pt • A* • Pf~l, 
i — 1, . . . , n = q + m, where Pt denotes some pa th joining the basepoint for 
7Ti(5) to some vertex on the boundary of ru At is of the form A* = (Akl~

lAi) 
(Ak2~~lAi) • . . . • (Ajc^Ai), and e = an. We apply the Reidemeister-Schreier 
rewriting r to i# (a*), obtaining 

r o i* (a,) = r ( P , ) • [A (ku su . . .)^A (i; /1? . . . ) • . . . ] • rCP, )" 1 , 

and we claim 

P R O P O S I T I O N 6.8. Any generator A(i; t\, . . . , tm) appears at most once in 
r(A*), that is, all generators occuring in r(A<) are distinct. (Of course any trivial 
generators appearing will represent the same group element.) 

Proof. Because of the similarities of the arguments , we will prove Proposition 
6.8 only for i = 1. Assume t h a t - 4 (1 ; h, . . . , tm) occurs twice in r(Ai) = 
(Akl~

lAi) • . . . • ( i ^ ^ i ) , say a t the p-th and q-th term. (Note t h a t An+1 is 

A0 = A 
(6.5) = A 

(7+1 
V 

q+1 
L<7+2 
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trivial, so some factors may not involve a non-trivial Aki~
l, bu t consist only 

of Ai.) Since <j)(w) represents the right coset containing w, we have therefore 
assumed <£(Pi • Ak~

lAl • . . . • Ak~
l) = 0(P X • Ak-

lAx • . . . • Ak~
l), or equiv-

alently 

(6.9) 4>(A1'Akp+r1A1....-Ak-i) = 1. 

If we consider (6.9) as a relation in X / i 7 • X', i.e., as a consequence of the 
relations (6.5), and replace the relation i# (ai) = 1 by (6.9), then the resulting 
exponent matr ix U is of special type on the rows (implying det U = 0) and 
satisfies det U = 0 (mod D = det V* = det M*). On the other hand, if we 
replace i* (on) = 1 by its product with the inverse of (6.9), the resulting 
exponent matrix W is still of special type on the rows, so det V* — det U = 
det W^O. Thus det V* è det U, and either det U = D or det U = 0. If 
de t U = D, then det W = 0. We wish to obtain a contradiction from det 
U = 0 or det VF = 0. The arguments are identical, bu t for notational simplicity 
we will consider only the case det [7 = 0. Suppose tha t U is obtained from 
V* by replacing the first row (cn, • • • , C\n) of F# by (bi, . . . ,bn), with &i > 0, 
&< = 0 for i j* 1, and &i + . . . + &n ^ 0. Then U is of special type on the 
rows, Û(l\x) = W (l\x) for each x, and in particular £7(1|1) = F # ( l | l ) , so 
£7(111) is of strictly positive type. We will show F# is not irreducible, contra
dicting our assumptions. 

We compute det £7 by expanding along the first row to obtain (see Corollary 
3.5.3) 

0 = det £7 = 6 i - d e t tf(l|l) + Z?2|clet tf(l|2)| + . . . + 6n |det Û(l\n)\ 

= (-b2 - . . . - bn + €i(£/))det tf(l|l) + 62 |det £7(1|2)| 

(6.10) + . . . +bn\det Û(l\n)\ 

= -b2{det £7(1|1) - |det tf(l|2)|} - . . . 

-bn{det £7(l | l ) - |det # (1 |» )} + ei(£7) det tf(l|l). 

Since det tf(l|l) = |det t / ( l | i ) | , i è 2, and since det tf(l|l) > 0 by Corol
lary 3.5.2 and Proposition 3.6, it follows from (6.10) tha t ei(£7) = bx + . . . 
+ bn = 0. Therefore, b\ > 0 yields a t least one negative ft*, say, b2 < 0. Then 
(6.10) implies tha t det [7(111) = |det tf(l|2)|. Since |det tf(l|2)| = - d e t 
£7(1|2) by Corollary 3.5.1, we have det £7(1|1) + det £7(1|2) = 0, implying 
t ha t the following (n — 1) X (n — 1) matrix P is singular: 

P = 

C21 + C22 £23 

£31 + £32 £33 

Cnl + cn2 Cn% 

C2n 
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Since P is of special type, P cannot be of strictly positive type on the rows, for 
otherwise det P > 0. Therefore P contains a principal minor P 0 which is not 
of positive type on the rows. We note that P 0 must contain the first column, 
or else P 0 would be a principal minor of £/(12|12) = F#(12|12), which is of 
strictly positive type, implying P 0 would be of positive type. Now we may 
assume without loss of generality that P 0 = P(12 .. .k\12... k), 1 ^ k Sn — 1. 
Then 

(6.11) 0 = e,(Po) = (cji + cj2) + cn + ...+ cjJc, 2 ^ j S k + 1. 

Since e2(U) à 0, . . . , ek+1(U) ^ 0, (6.11) implies that e2(U) = 0, . . . , 
ek+i(U) = 0, and further that c2,fc+2 = • • • = c2,n = 0, . . . , ck+u+2 = . . . = 
Ck+2,n = 0. This means that U(2 . . . k -{- l\k + 2 . . . n) = 0 and that 
V* (2 . . . k + l\k + 2 . . . n) = 0, since tf (1|1) = V* (1|1). Therefore V* is 
not irreducible, since F# is a principle minor of the link matrix M with iff (1|1) 
not irreducible. This contradiction completes the proof of Proposition 6.8. 

7. The proof of Theorem 2.5.3. We are now in a position to prove the 
final proposition establishing the free factor property for pseudo-alternating 
links. In view of the definitions and reductions of the last two sections, it 
suffices to show 

PROPOSITION 7.1. Let I be a special alternating link. Let M = | |c^ | | be the link 
matrix of I assoicated with the diagram L. Suppose that M is irreducible. Then 
the group of I has the free factor property. 

Proof. We will consider only the images to the #-side, as the proof of the other 
case is similar. 

Suppose we choose a vextex v0 on ® as basepoint for wi(S) ; basis an, . . . , an 

for 7ri(5, y0); basis A\, . . . , An for X; and coset representatives as given by 
(6.5) with representative function <j>; all as in Section 6. We can then assign 
to each vertex vt of & a unique, well-defined coset representative, namely 
(j) o i# (Pi)y for some path Pt from v0 to vt in @. This allows us to assign to any 
directed edge in © a unique, possibly trivial, P5-generator A (j; *)e from (6.7), 
where e = ± 1 is determined by the orientation of the edge. It follows that 
whenever the given edge occurs in a loop in ®, the corresponding occurrence of 
A j in the image of the loop under z'# rewrites to A (j\ * ) ± € under r. We will call 
the edge non-trivial if its corresponding PS-generator is non-trivial. 

Consider now the collection of those edges in the graph of the link which are 
dual to non-trivial edges in the dual graph @. This collection forms a subgraph 
of the graph which is connected and which includes the centre of each a-region, 
for if not, in either case, there is a non-trivial loop in & with trivial image 
under i#. Let Ï * be a maximal tree in this subgraph. We choose as a root for 
Ï*, the vertex x0 of the region rn+i, and assign to each vertex of %* (and 
therefore to each a-region) a non-negative integer, or level, namely the minimal 
number of edges of Ï * separating this vertex from x0. We can assume that the 
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bounded regions r ; have been indexed so that i < k implies level (rt) ^ 
level (rk). Then each region Yj will be connected via an edge of Ï * to a unique 
region of one lower level, and we substitute i# (a;) for the non-trivial RS-
generator A {ij\ *j) which corresponds to the edge of ® dual to this connecting 
edge. To see that this is a free substitution, we note that by Proposition 6.8 
this generator can appear at most once in r(A ;), while by the above construc
tion it does not appear at all in r(Ak) for k < j . If we choose the paths Pu 

1 ^ i ^ n} in the complement of X*, then in fact the generator A {iô\ *j) will 
not appear in any r{Pt), nor in r{ak) for k < j . It follows that these free 
substitutions can be performed on the regions in order, completing the proof 
of Proposition 7.1 and Theorem 2.5.3. 
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