14. COMMISSION DES ETALONS DE LONGUEUR D'ONDE ET DES TABLES DE SPECTRES

Président: Dr G. Herzberg, Director, Division of Pure Physics, National Research Council, Sussex Drive, Ottawa, Ontario, Canada.
Membres: Mlle Adam, Barrell, Dieke, Edlén, Engelhard, Harrison, Kiess, Layzer, Littlefield, McMath, Meggers, Migeotte, Minnaert, Mohler, Racah, Mme Moore-Sitterly, Terrien.

La Commission a deux Sous-Commissions: $14 a, 14 b$.

THE PRIMARY STANDARD

Following the recommendation of the Advisory Committee on Redefining the Metre (see the previous reports of Commission 14 (20) (2I)), the irth General Conference of Weights and Measures (Onzième Conférence Générale des Poids et Mesures) on 14 October 1960 has unanimously adopted the following two resolutions.
'i. La Onzième Conférence Générale des Poids et Mesures, considérant
que le Prototype International ne définit pas le Mètre avec une précision suffisante pour les besoins actuels de la métrologie,
qu'il est d'autre part désirable d'adopter un étalon naturel et indestructible, décide:
(i) Le Mètre est la longueur égale à 1650763.73 longueurs d'onde dans le vide de la radiation correspondant à la transition entre les niveaux $2 p_{10}$ et $5 d_{5}$ de l'atome de krypton 86.
(ii) La Définition du Mètre en vigueur depuis 1889 , fondée sur le Protoptype International en platine iridié, est abrogée.
(iii) Le Prototype International du Mètre sanctionné par la Première Conférence Générale des Poids et Mesures de 1889 sera conservé au Bureau International des Poids et Mesures dans les mêmes conditions que celles qui ont été fixées en 1889.
'2. La Onzième Conférence Générale des Poids et Mesures invite le Comité International
(i) à étabilir des instructions pour la mise en pratique de la nouvelle Définition du Mètre,
(ii) à choisir des étalons secondaires de longueur d'onde pour la mesure interférentielle des longueurs et à établir des instructions pour leur emploi,
(iii) à poursuivre les études entreprises en vue d'améliorer les étalons de longueur.'

Thus the labour of a large number of physicists over many years has at last come to fruition: the wave-length in vacuum of a spectral line (the orange line of Kr^{86}) is now (even legally) the international standard of length and replaces the meter bar at Sèvres.

At the same time the krypton line has become the primary standard of wave-length. This wave-length is (in vacuum)

$$
\lambda_{\text {vac }}=6057.80210_{5} \AA
$$

where now the angström unit is exactly $10^{-10} \mathrm{~m}$. If Edlén's dispersion formula for air is adopted (as recommended by the Joint Commission for Spectroscopy in 1952) the wave-length of the krypton line in standard air is

$$
\lambda_{\text {air }}=6056 \cdot 12525_{3} \AA
$$

Any future change in the dispersion of air affects only this latter value, and not the fundamental standard which is the vacuum value.
The definition of the primary standard refers to the radiation from atoms unperturbed by
external influences. Detailed investigations at the BIPM, the PTB (Germany), at NPL (United Kingdom), NRC (Canada) and NSL (Australia) of the various factors which influence the precise wave-length and the width of the line have led to the following recommendation of the International Committee for Weights and Measures for the most favourable conditions for the reproduction of the krypton line:
'Conformément au paragraphe 1 de la Resolution II adoptée par la Onzième Conférence Générale des Poids et Mesures (octobre 1960), le Comité International des Poids et Mesures recommande que la radiation du krypton 86 adoptée comme étalon fondamental de longueur soit réalisée au moyen d'une lampe à décharge à cathode chaude contenant du krypton 86 d'une pureté non inférieure à 99 pour cent, en quantité suffisante pour assurer la présence de krypton solide à la température de $64^{\circ} \mathrm{K}$, cette lampe étant munie d'un capillaire ayant les caractéristiques suivantes: diamètre intérieur $\mathbf{2}$ à 4 millimètres, épaisseur des parois i millimètre environ.
'On estime que la longueur d'onde de la radiation émise par la colonne positive est égale, à i cent-millionième (10^{-8}) près, à la longueur d'onde correspondant à la transition entre les niveaux non perturbés, lorsque les conditions suivantes sont satisfaites:
r. le capillaire est observé en bout de façon que les rayons lumineux utilisés cheminent du côté cathodique vers le côté anodique;
2. la partie inférieure de la lampe, y compris le capillaire, est immergée dans un bain refrigérant maintenu à la température du point triple de l'azote, à i degré près;
3. la densité du courant dans le capillaire est $0 \cdot 3 \pm 0 \cdot 1$ ampère par centimètre carré.'

Engelhard and Terrien (23) have published in some detail their investigations on the shifts of the Kr^{88} line as a function of pressure (p), current density (j) and temperature (T). Engelhard (22a) gives the following empirical formula for the Stark shifts (for $p<\mathrm{Imm} \mathrm{Hg}, T<75^{\circ} \mathrm{K}$, $j<3 \mathrm{~A} / \mathrm{cm}^{2}$)

$$
\Delta \nu\left(\mathrm{cm}^{-1}\right)=-0.074\left[\frac{p}{T\left(\mathrm{I}+a j^{b}\right)}\right]^{2 / 3}{ }_{j}^{\mathrm{m}}
$$

Here $a \approx \mathrm{I} / 3, b \approx 3 / 2$ for glass capillaries of 2 to 4 mm internal diameter and a wall thickness of less than 1 mm . To the above expression must be added the Doppler shift due to impact of the exciting electrons which is $+0.00019 \mathrm{~cm}^{-1}$ when $T=63{ }^{\circ} \mathrm{K}$ and the anode is nearest the observer.

Rowley (73) at NPL finds that within the limited range of measurement ($0 \cdot 07<j<\mathrm{I} \cdot \mathrm{r}$ $\mathrm{A} / \mathrm{cm}^{2}, 0.005<p<0.6 \mathrm{mmHg}, 59<T<73{ }^{\circ} \mathrm{K}$) the variations of wave-number from a Kr ${ }^{86}$ lamp may be expressed by $\Delta \nu\left(\mathrm{cm}^{-1}\right)=-0.08(p j / T)^{2 / 3}+0.000026 T-0.0018$ (cathode nearest the observer) and $\Delta \nu=-0.08(p j / T)^{2 / 3}-0.000026 T+0.0018$ (anode nearest the observer). Further work on these shifts is in progress at NRC, NSL and NPL and it is hoped will lead to considerable improvements in the accuracy to which the primary standard can be reproduced.

According to Baird (7) the work at NRC has confirmed that the practical lamp recommended by the Advisory Committee on the Metre does reproduce the unperturbed wave-length at least to an accuracy of I in 10^{8} or the wave-number to $0.00016 \mathrm{~cm}^{-1}$. On the other hand there is evidence to suggest that a slight asymmetry in the line emitted by the lamp makes the effective wave-length depend to a certain extent on the means of viewing, for example on whether a Fabry-Perot étalon or a Michelson interferometer is used. This effect, which may be as much
as $\pm 0.00005 \mathrm{~cm}^{-1}$, together with the present uncertainty in the Doppler shift due to electron impact (about $\pm 0.00005 \mathrm{~cm}^{-1}$), makes it unreliable at present to assume an accuracy much better than I in 10^{8}, or to attempt corrections (to such accuracy) according to published formulae for conditions of excitation much different from the recommended method of operation of the lamp.

CLASS A SECONDARY STANDARDS

According to Edlén (2I), class A secondary standards are highly reproducible standards which have been directly compared with the primary standard in several laboratories with an accuracy comparable to that of the primary standard and which may serve as substitutes for the primary standard to facilitate interferometric measurements in different spectral regions.

A number of Kr^{86} lines other than the primary standard have been measured at NPL (see previous report (21), Table I), at NRC (8), at NSL (14) and at NBS (46) and are being measured at BIPM (82). The results for seven of the lines are compared in Table i. Terrien (8r) has so far given only the wave-length of the green line (see Table 1) but is studying the variations of this wave-length with current density, pressure and direction of current. Once that is done, by measuring several other Kr^{86} lines, he expects to verify the combination principle in the Kr^{86} spectrum with an accuracy of 2×10^{-9} or better.

Table 1. Observed vacuum wave-lengths of $\mathbf{K r}^{88}$ lines

$\lambda_{\text {rac }}(\AA)$	NPL(21)	NRC(8)	NSL*(14)	$\operatorname{BIPM}(82)$	NBS* ${ }^{(46)}$	PTB(22a)	IML(9a)
6458	-0721	-0719	-07240			-0719	. 0723
6013	-8196				-8195		
5651	-1287	${ }^{1285}$	-12851	$\cdot{ }^{12863}$	-1286	$\cdot 12861$	-1286
4503	$\cdot 6163$	$\cdot 6159$	-61553				$\cdot 6165$
4464	. 9417	. 9414					
4455	-1668	-1664					
4377	$\cdot 3503$	-3500					

Table 2. Observed vacuum wave-lengths of Hg^{108} lines

$\lambda_{\text {vac }}(\AA)$	BIPM(20)(82)	NPL(20)	PTB* ${ }^{(20)}$	NRC(8)	NSL*(14)	NBS**(45)	IML(9a)
5792	-26851	- 2685	- 2685	$\cdot 2683$	$\cdot 2680_{4}$	\cdot^{26834}	- 2680
5771	-19857	-1985	-1985	-1982	-19819	-19829	$\cdot 1981$
5462	-27065	-2707	-2707	-2705	-27052	-27046	$\cdot 2705$
4359	$\cdot 5625$	-5625		-5621	-56196	${ }^{5} 56225$	
4047				'7144		$\cdot 71455$	

* without pressure corrections.
** argon pressure at $\frac{1}{4} \mathrm{~mm} \mathrm{Hg}$.
For Hg^{198} a set of provisional wave-length values was recommended at the last meeting but this recommendation was later withdrawn. Since then Baird and Smith (8) and Bruce and Hill (14) have published their measurements of the four or five principal lines and Terrien (82) has remeasured the green line. The new values together with the older values already included in the last report are collected together in Table 2. In addition Barger and Kessler (46) have recently measured by means of an atomic beam (emission) the two ultra-violet mercury lines 2537 and $3132 \AA$ relative to the primary standard obtaining the vacuum wave-lengths

$$
\begin{aligned}
2537 \cdot 26873 & \pm 0.00003 \AA \\
3132 \cdot 74985 & \pm 0.00004 \AA
\end{aligned}
$$

The relative values of these two lines have been measured with even higher accuracy.

In the previous report four lines of Cd^{114} were listed which would be useful as class A standards. These lines have now also been measured at NSL by Bruce and Hill (14). In Table 3 the three available sets of measurements are compared.

Table 3. Observed vacuum wave-lengths of Cd^{114} lines

$\lambda_{\text {vac }}(\AA)$	I.M.L.*	B.A.**	NSL(14)	NRC(7)
6440	$\cdot 2480$	$\cdot 2486$	$\cdot 24659$	$\cdot 2489$
5087	$\cdot 2385$	$\cdot 238 \mathrm{I}$	$\cdot 23849$	$\cdot 2385$
4801	$\cdot 2520$	$\cdot 2522$	$\cdot 25358$	$\cdot 2522$
4679	$\cdot 4583$	$\cdot 4587$	$\cdot 45526$	$\cdot 4580$

* Institute of Metrology, Leningrad: Batarchoukova, Kartachev and Efremov (9a)
** Burns and Adams ($\mathbf{1 5 \text {) }}$

CLASS B SECONDARY STANDARDS

For routine measurements of spectral lines with a precision of better than $0.01 \AA$ it is necessary to have a large number of secondary standards whose wave-lengths are known with an accuracy of $0.001 \AA$ or better but which need not be of the high accuracy of the class A standards. Until 1955 the lines of the iron arc in air were commonly used for this purpose. Commission 14 has been mainly responsible for establishing these standards and a final table was prepared by Edlén for the Dublin meeting(20). However it is now generally recognized that the lines of the open Fe arc are rather broad and liable to displacements by pole and pressure effects so that even for moderately precise measurements better standards are desirable. Fe lines emitted in hollow cathode discharges or in high-frequency discharges through Fe halide vapours, using Ne, Ar or He as carrier gases have been found to be greatly superior to Fe lines as emitted in open arcs. There are appreciable differences in the wave-lengths of the two types of sources, and new measurements of low pressure Fe lines had to be made. In the preceding report by Edlén (21) a list embodying the results of the work of Stanley and Dieke (78) (slightly corrected), Stanley and Meggers (79) and Blackie and Littlefield (12) was presented. More recently Crosswhite (18) and Hands and Littlefield (3r) have remeasured some of the lines and added others. Since it is necessary for the formal adoption of secondary standards that at least two but preferably three different laboratories arrive at concordant results, we present in Table 4 both the values listed by Edlén but referred to vacuum and the more recent values of Crosswhite and Hands and Littlefield. In most cases the differences are much less than 0.001 \AA. Those lines for which this difference is $0.0005 \AA$ or less might be considered for adoption as standards.

Table 4. Observed vacuum wave-lengths of Fe lines at low pressures

$\lambda_{\text {vai }}(\AA)$	IAU*	Cross- white $(\mathbf{I 8})$	 Littlefield $(\mathbf{3 I})$	$\lambda_{\text {vac }}(\AA)$	IAU*	Cross- white $(\mathbf{8})$
				 Littlefield $(3 \mathbf{I})$		
5710	.9618			5599		.8516

ETALONS DE LONGUEUR D'ONDE

$\lambda_{\text {rac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)	$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)
5571	. 1640			5334	3821		
5567		- 2495		5331		$\cdot 4709$	
5565		- 1442		5330		-oi3r	- 0111
5556		-4373		5329		$\cdot 5208$	$\cdot 5204$
5545		-4750		5325	. 6595		$\cdot 6587$
5544		$\cdot 7293$		5323		5219	
5536		-9554		5308	. 8370		
5508	$\cdot 3083$			5303	$\cdot 7744$		
5507		$\cdot 3986$		5289		$\cdot 9988$	
5502	$\cdot 9917$			5285	-0907	-0906	
5499	. 0433			5283	-2593	-2594	
5495		-9891		5274		. 6312	
5489		-268I		5271		-8226	. 8228
5478		-0851		5271		-0028	-0041
5475		-4212		5268	. 0206	. 0205	
5467		-9152		5264	$\cdot 7696$	7688	
5464		-7932		5254		-9450	
5464		$\cdot 4782$		5248		-5099	
5457	-1255		-1258	5243		-9496	
5448	-4306			5236		-8433	
5446	-5558			5234	-3968		$\cdot 3963$
5436	-0342		-0340	5231		$\cdot 3034$	
5434		4560		5228	-6428		$\cdot 6445$
543 I	-2055		'2055	5226		-9800	
5425	$\cdot 5764$			5218		$\cdot 8414$	
5416	'7051			5217	$\cdot 7257$	$\cdot 7261$	$\cdot 7258$
5412	-4143			5216		$\cdot 6319$	
5407	$\cdot 2773$		$\cdot 2779$	5210		-0436	
5405		-6535		5206	-0310	-03I4	
5405		-6208		5203		$\cdot 7584$	
5405		-300		5197		-5490	
5399		-1036		5196		-9199	
5398	. 6278		. 6285	5196		$\cdot 3877$	$\cdot 3884$
5394	. 6663			5193	7888	-897	
5384	$\cdot 8658$			5192	-8992	9001	
5390		. 9768		5173	-0359		${ }^{\circ} \mathrm{O} 361$
5381		. 0702		5170	$\cdot 3373$	3371	
5375		-2029		5168	$\cdot 9272$		-9274
5372	$\cdot 9829$		'9827	5167	$\cdot 7202$	7204	$\cdot 7194$
5371	-4554			5163		77090	
5368	$\cdot 9598$			5140		-8935	-8935
5366		-8919 \dagger	-8858 \dagger	5140		. 682 I	
5366		$\cdot 3638$		5135	-I193	-1188	
5342	-5092		$\cdot 5084$	5111	. 8365	-8363	.8368
5341	-4139			5109		-0642	

$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)	$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)
5070		-1780		4477	$\cdot 2728$		
5053		. 0424		4470	-6285		
5051		$\cdot 2267$		4467	-8036		. 8031
5043		$\cdot 1603$	-1616	4462	- 9045		.9041
5016		$\cdot 3400$		4428	$\cdot 5525$		$\cdot 5524$
5013		-4652		4423	. 8094		
5007		. 5136		4416	-3621		-3619
5007		-1080		4405	-9875		$\cdot 9868$
5003		$\cdot 2569$		4384	$\cdot 7765$		-7759
4995		-5216		4377	- 1586		-1584
4986		$\cdot 9369$		4370	-9991		
4986		-6426		4368	-8048		
4985		$\cdot 2422$		4353	-9572		
4983		-8878		4338	$\cdot 2653$		
4967	-4791†	-4729 \dagger		4326	-9779		$\cdot 9776$
4958	$\cdot 9787$		$` 9797$	4316	-2973		-2974
4958		. 6822		4309	-1131		-1131
4940		-1908		4300	-4432		-4433
4921	-8753		$\cdot 8757$	4295	-3321		
4920		$\cdot 3655$		4292	-6701		
4904		. 6776		4283	. 6076		-6074
4892	-8571	. 8575	$\cdot 8577$	4272	$\cdot 9623$.9618
4892		-1199		4272			$\cdot 3546$
4879		-5718		4261	$\cdot 6726$		$\cdot 6726$
4873		-4977		4259	-5137		
4872	$\cdot 6776$. 6779		4251			$\cdot 9827$
4861		-0973		4248	. 6204		
4790		-9888		4246	-4516		
4738		-0966		4240	. 0023		
4711		-6004		4237	$\cdot 1289$		
4708		-5898		4234	'794I		
4692		$\cdot 7230$		4230			$\cdot 9362$
4680		-1536		4228	. 6163		
4669		$\cdot 4392$		4227	-1455		
4668		$\cdot 7585$		4223	-4020		
4655		.9316		4220	-5482		
4648	$\cdot 7346$. 7340		4217	$\cdot 3702$		$\cdot 3706$
4626		-3393		4207	-8804		
4620		-5804		4203	-2121		$\cdot 2123$
4612		$\cdot 5685$		4200	-2779		$\cdot 2773$
4604		$\cdot 2283$		4199	- 4866		$\cdot 4857$
4529	-8831		$\cdot 8832$	4192	. 6108		
4495	. 82336			4186	-0708		
4490	'9987			4182	-9328		'93II
4483	-4260		-4271	4178	$\cdot 7707$		

ETALONS DE LONGUEUR D'ONDE							103
$\lambda_{\text {v® }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)	$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)
4153	-3401			3899	-1149		
4150	- 5359			3898	-994r		
4148	. 8383			3896	$\cdot 7600$		7590
4145	-0366		-0358	3889	. 6153		. 6144
4144			$\cdot 5826$	3888	-1489		
4138	-1642			3887	$\cdot 3833$		$\cdot 3827$
4135	. 8432			3879	$\cdot 6724$		
4133	$\cdot 2232$		-2224	3879	-1171		
4128	'7727			3874	-8588		
4121	$\cdot 3685$			3873	$\cdot 5984$		5980
4119	$\cdot 7066$			3870	. 6553		
4110	.9613			3868	-3120		
4108	-6471			3866	$\cdot 6187$		
4101	-8947			3861	-0066		-0050
4099	$\cdot 3324$			3857	$\cdot 4649$		-4639
4077	$\cdot 7804$			3847	.8913		
4075	$\cdot 9364$			3844	$\cdot 3468$		
4072	-8868		-8867	3842	-1371		-1365
4064	$\cdot 7418$		$\cdot 7407$	3841	$\cdot 5270$		$\cdot 5256$
4063	$\cdot 5882$			3835	$\cdot 3097$		-3090
4046	-9569		-9542	3828	-9088		-9077
4025	. 8625			3826	$\cdot 9664$		$\cdot 9656$
4023	-0030			3825	$\cdot 5284$		-5278
4015	-6656			382 I	$\cdot 5093$		$\cdot 5083$
4010	-8463			3816	-9231		$\cdot 9220$
4006	-3739		$\cdot 3736$	3814	-1337		
4002	-7927			3814	$\cdot 0460$		- 0456
3998	-5224			3806	- 4227		
3985	-0836			3800	. 6256		
3982	-8972			3799	$\cdot 5895$		
3978	. 8663			3796	-0793		-0789
3970	$\cdot 3797$		-3791	3791	-1686		$\cdot \mathrm{I} 678$
3957	-7966		$\cdot 7965$	3788	-9557		-9549
3953	$\cdot 7199$			3768	$\cdot 2616$		-2609
3952	$\cdot 2816$			3766	$\cdot 6084$		
3951	-0703			3764	$\cdot 8582$		$\cdot 8574$
3938	-4427			3761	$\cdot 1176$		
3936	. 9265			3759	$\cdot 3006$		-3000
393 I	-4091		$\cdot 4084$	3750	-5510		-5497
3929	-0319		-0310	3749	$\cdot 3273$		$\cdot 3264$
3924	-0222		-0215	3746	$\cdot 9636$		
3921	-3679		$\cdot 3669$	3746			-6244
3907	-5858		-585	3744	$\cdot 4256$		-4261
3904	. 0509		. 0504	3738	-1943		-193I
3900	.8124		.81if	3735	$\cdot 9263$		-9246

$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3r)	$\lambda_{\mathrm{vac}}(\AA)$	IAU*
3734	$\cdot 3784$		$\cdot 3781$	3101	- 2029
3728	. 6788		-6777	3100	. 8674
3723	-6217		-6206	3084	. 6365
3720	$\cdot 9926$. 9916	3076	-6129
3710	3011			3068	-135I
3706	. 6202		-6192	3059	-9753
3688	$\cdot 5057$		-5055	3058	$\cdot 3347$
3684	-1027			3048	- 4904
3680	-9606		-9600	3043	$\cdot 5496$
3648	-8816		-8808	3042	.6231
3632	-4982		-4972	3041	-3119
3619	. 7995		$\cdot 7984$	3038	$\cdot 2725$
361 r			- 1880	3027	$\cdot 3424$
3609	$\cdot 8885$		-8874	3026	$\cdot 7234$
3588	$\cdot 0074$			3024	-9134
3582	-2148		-2141	3021	$\cdot 9526$
3571	-1157		- 1161	3021	$\cdot 3706$
3566	-3971		$\cdot 3959$	3019	-8621
3559	-5313		- 5306	3018	. 5061
3555	- 9400		$\cdot 9389$	3010	$\cdot 4463$
3543			. 0865	3009	- 0156
3542			-0939	3008	-1588
3527	-0478			3003	$\cdot 9058$
3522	$\cdot 2678$		$\cdot 2670$	3001	-8229
3514	-8226		. 8216	3000	$\cdot 3863$
3501			. 8634	2995	$\cdot 3006$
3498	-8415		-8404	2988	-1619
349 r	- 5729		-5718	2984	-4405
3477	-6974		-6959	2982	-3150
3476	$\cdot 4448$		$\cdot 4439$	2966	- 1205
3466	$\cdot 8528$.8518	2958	$\cdot 2286$
3448			$\cdot 2612$	2954	-8032
3444	-8631			2852	. 6352
344 I	-9750			2833	$\cdot 2689$
3441			-5906	2826	$\cdot 3874$
3287			-6984	2824	-1073
3258	- 5329			2814	-1152
3237	- 1559			2807	-8145
3222			-9964	2805	$\cdot 3471$
3206	-322I			2779	-0404
3194	$\cdot 1476$			2743	-2172
3192			-5806	2738	-1199
3185			-8I44	2734	$\cdot 3901$
3135	-0181			2724	- 3843
3 IOI	$\cdot 5647$			2712	-4593

$\underset{\substack{\text { Cross- } \\ \text { white } \\(\mathbf{I 8})}}{\substack{\text { Hands } \& \\ \text { Littlefield } \\(\mathbf{3 r})}}$

$\lambda_{\text {vac }}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)	$\lambda_{v a c}(\AA)$	IAU*	Crosswhite (18)	Hands \& Littlefield (3I)
2707	$\cdot 3855$			2546	7432		
2690	-0115			2541	. 7350		
2679	-8582			2501	. 8864		
2667	-1911			2458	$\cdot 3413$		
2636	-5952						
2607	-6057						
2600	$\cdot 1735$						
2585	-3098						
2577	-4623						
2550	-3792						

*as given by Edlén (21) but converted to vacuum, based on the data of Stanley and Dieke (79), Stanley and Meggers (80), and Blackie and Littlefield (12).
\dagger The large discrepancy between wave-lengths marked by a dagger clearly indicates that one or the other of the two values must be erroneous.

Even Fe lines produced by low-pressure sources have a comparatively large Doppler width since the atomic weight is not very high, and in addition they are not very uniformly and densely distributed over the whole visible and ultra-violet spectral region. It was for these reasons that Meggers (59) first suggested the use of the spectrum of thorium as a source of standards since for it the atomic weight is high and therefore the Doppler width small and in addition the density of the lines is much greater than in the case of Fe at least in the region above $2700 \AA$ (below this wave-length the Th spectrum is much weaker). Meggers and Stanley (61) were the first to present a list of interferometrically measured Th lines. This list has recently been extended by Davison, Stanley and Giacchetti (19) at Purdue University, and independently Littlefield and Wood (52) have measured 360 Th lines in the region 2560 $9050 \AA$ which include most of the lines measured by Meggers, Davison, Stanley and Giacchetti. In Table 5 we present a combined list of these wave-lengths. Again for most lines the agreement is within less than $0.001 \AA$ and quite often within less than $0.0005 \AA$. Lines for which this is the case may be recommended as standards. A very complete list of Th lines based on grating measurements in the region 2000 to $11560 \AA$ has been published by Zalubas (90).

Table 5. Observed vacuum wave-lengths of Th lines

$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {rac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**
9050		${ }^{7} 361$	8332		7414	7981		1713
8970		. 1446	8323		-1447	7902		5333
8760		$\cdot 6500$	8254		. 6630	7849		7019
8750		$\cdot 4354$	8189		-1644	7819		9220
8711		$\cdot 6275$	8172		-0357	7800		5056
8667		-8683	8161		9723	7791		. 0803
8575	-	$\cdot 4779$	8159		$\cdot 7467$	7744		. 6391
8512		. 8602	8140		$\cdot 7148$	7649		-4852
8480		. 6879	8095		-8171	7587		. 6231
8423		$\cdot 5413$	8034		$\cdot 6424$	7569		$\cdot 9286$

$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**
7432		$\cdot 3012$	6 r 84	$\cdot 3327$	-3327	5069	$\cdot 3868$	$\cdot 3860$
7430		-9893	6r 53	-6958	. 6954	5051	-2039	- 2048
7420		-4404	6104	-2839	-2845	5030	-0588	. 0580
7387		$\cdot 5381$	6089	$\cdot 7160$	$\cdot 7172$	5018	. 6539	
7343		-1749	6087	-0592†	.0413 \dagger	5003	-4922	$\cdot 4925$
7286		-9118	6050	'7259	$\cdot 7256$	4941	-0205	-0207
7220		-0449	6039	$\cdot 3697$	$\cdot 3687$	492 I	-1890	$\cdot \mathrm{I} 894$
7209		-9944	6022	$\cdot 7040$	$\cdot 7025$	4896	-3215	- 3220
7170		. 8724	6008	$\cdot 7362$	$\cdot 7361$	4880	. 096	-0960
7152		-2559	5976	$\cdot 7207$	$\cdot 7207$	4866	.8360	. 8357
7126		-5264	5975	$\cdot 3199$	$\cdot 3199$	4864	-5307	-5309
7086		-1241	5940	-4709	-4703	4842	-195 I	-1955
7020		-5050	5887	$\cdot 3329$	$\cdot 3328$	4809	-4773	-4775
7002		$\cdot 7366$	5854	- 3040	-3038	4790	$\cdot 7256$	$\cdot 7249$
6991	-5839	$\cdot 5848$	5805	$\cdot 7508$	$\cdot 7507$	4767	-9330	
6945	- 5265	$\cdot 5275$	5791	-2494	$\cdot 2517$	4753	'7430	
6913	-1336	- 1346	5762	-1487	-1478	4705	-3060	$\cdot 3063$
6836	-8110	-8122	5726	-9770	$\cdot 9768$	4687	- 5060	-5064
6830	.9200 \dagger	$.9264 \dagger$	5708	. 6867	. 6870	4674	$\cdot 9690$	-9696
6782		-2860	5659	-4960		4669	-4788	-4792
6781		-9972	5641	$\cdot 3115$	$\cdot 3117$	4664	-5076	'5079
6758	$\cdot 3178$	$\cdot 3202$	5616	-8790	-8791	4633	-0583t	. $0548 \dagger$
6729	$\cdot 3157$	$\cdot 3175$	5588	-5778	$\cdot 5779$	4596	$\cdot 7074$	-7077
6680	-5516		5580	-9077	-9077	4589	$\cdot 7123$	$\cdot 7108$
6676		-5410	5574	-9014	-9033	4572	$\cdot 2526$	- 2537
6664	-1090	-1095	5559	-8862	. 8845	4557	-090	. 0888
6660	-516r		5549	. 7170	$\cdot 7166$	4536	$\cdot 526$	-526I
6595	-610	$\cdot 7608$	5540	-8000	-8004	4511	$\cdot 7908$	
6593	-3055	-3051	5511	- 5244	. 5230	4494	-5941	-5944
6590	$\cdot 3596$	$\cdot 3590$	5500	$\cdot 7830$	$\cdot 7834$	4483	$\cdot 4270$	-4267
6585	'725I	${ }^{7} 7240$	5453	'7341		4466	. 5938	-5930
6555	-97II	$\cdot 9703$	5432	-6212		4459	-2531	$\cdot 2526$
6533	$\cdot 1467$	-1457	5427	-1863		4446	-5561 \dagger	'5789 \dagger
6492	-5313	-5311	5418	-9916	'9918	4434	-2075	-2060
6459	-0677	-0678	5409	- 1569	${ }^{1} 572$	4410	-121I	- 1205
6415	-3880	$\cdot 3860$	5388	-1087	$\cdot 1084$	4404	-1637	-1637
6413	-6719	-6710	5345	-0676	. 0673	4402	-818I	.8170
6378	-6939	. 6919	5328	-4574	-4575	4392	- 3440	$\cdot 3441$
6344	-6538	.6132	5278	-9689		4383	-0916	.0913
6329	-0284	-0276	5259	-8245	-824I	4379	-4070	-4079
6263	-1496	-1498	5232	-6159	.6r6I	4375	$\cdot 3536$	-3529
6259	- 1546	-1552	5178	$\cdot 4025$	$\cdot 4030$	4367	-1573	-1568
6226	- 2495	- 2488	5160	. 0411	.0419	4343	$\cdot 4763$	-4747
6208	-9379	- 9377	5155	. 6787	. 6794	4332	-0619	-0614
6193	$\cdot 6187$. 6189	5116	-4697	-4702	4319	. 6305	. 6300

$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G. } \end{gathered}$	L.W.***
4316	-4681	$\cdot 4687$	3804	-1547	-1547	3397	$\cdot 7022$	$\cdot 7018$
4308	$\cdot 3878$	-3881	3786	-6749	- 6755	3394	-9671	
4301	$\cdot 0489$. 0469	3782	. 0402	-0400	3393	-0085	$\cdot .0085$
4293	-0177	.0178	3772	-4418	$\cdot 4418$	3391	-8224	
4278	-5179	-5166	3764	-0032	-0022	3386	$\cdot 5033$	-5030
4274	$\cdot 5600$	-5594	3753	.6351	. 6344	3381	.8303	.8303
4258	. 6944	-6945	3743	. 9872	. 9870	3379	-5438	
4236	-6562	. 6560	3728	$\cdot 9624$	$\cdot 9635$	3375	-9439	$\cdot 9437$
4231	.6182 \dagger	-6270才	3720	- 4925	- 4930	3367	-4846	
4216	- 0156	- 0155	3712	$\cdot 3596$		3359	-5671	$\cdot 5669$
4210	.0764	. 0755	3702	.0312	. 0310	3352	-1916	-1912
4194	-1980	-1975	3693	-6171	-6r63	335 r	$\cdot 3147$	
4179	- 2374	- 2372	3683	'5345	$\cdot 5343$	3338	-8302	$\cdot 8302$
4166	-9403	. 9400	3671	- 0139	-0126	3333	-4377	
4159	$\cdot 7076$	$\cdot 7063$	3669	-1843	-185	333 I	-4345	$\cdot 4348$
4151	- 1568	-1562	3657	-7353	-7344	3327	-4222	
4133	-9191	-9196	3643	-2867	- 2869	3326	-0772	. 0768
4128	. 5760	- 5756	3633	. 8655	. 8655	3325	$\cdot 7090$	$\cdot 7086$
4116	-9200	-9194	3623	-8281	. 8279	3319	$\cdot 345 \mathrm{I}$	
4109	$\cdot 5789$	-5790	3616	-1634	-1638	3310	3176	$\cdot 3184$
4101	-4984	-4982	3613	-4574	-457x	3309	-0107	
4095	$\cdot 9028$	-9024	3599	$\cdot 1462$	-1465	3305	-1894	-1898
4087	-6741	-6734	3593	-8041	. 8044	3303	-1432	
4068	-5993		3585	$\cdot 1983$	-1979	3294	. 8969	
4060	- 3990	$\cdot 3984$	3577	$\cdot 5784$	$\cdot 5774$	3293	-4692	-4681
4044	'5368	- 5362	3568	$\cdot 2822$	-2819	3288	-7360	$\cdot 7358$
4037	-1879	- 1878	3560	$\cdot 4657$		3284	-6168	
4020	-2649	$\cdot 2640$	3552	-4159	-4160	3279	- 6774	
4013	-6293	-6288	3545	. 0303	-0301	3278	-6464	
4009	-3435	$\cdot 3429$	3540	-5982	$\cdot 5992$	3271	. 0424	
3995	. 6786	.6784	3519	-4094	-4096	3263		.6101
398I	-2150	-2138	3512	-1612	-1609	3258		$\cdot 3057$
3968	. 5144	$\cdot 5142$	3504	$\cdot 7875$		3257		$\cdot 2128$
3950	-0813		3499	. 6216	$\cdot 6238$	3252		-8541
3934	-0243	-0237	3494	-5174		3250	$\cdot 2817$	
3924	-9104	-9096	3480	-1683		3245		$\cdot 3844$
3906	-2924	- 2929	3469	$\cdot 2125$	$\cdot 2113$	3239		$\cdot 0503$
3870	$\cdot 7605$	$\cdot 7589$	3463	-8418		3237	-5072	
3864	-5009	$\cdot 5001$	3452	-6909	. 6912	3231	$\cdot 7837$	
3855	. 6036	-6027	3443	-5651	-5644	3229		.9412
3843	-0498	-0492	3434	-9829	$\cdot 9829$	3222		. 2210
3840	$\cdot 7833$	$\cdot 7845$	3422	-1909	-1908	3221	- 2807	
3829	-4708	-4708	3413	-9918	$\cdot 9915$	3211	$\cdot 7062$	
3819	$\cdot 7692$	$\cdot 7693$	3406	-5347	-535	3211		$\cdot 2360$
3814	-1497	$\cdot \mathrm{I} 501$	3403	-6721		3209	-453 ${ }^{8}$	

$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**	$\lambda_{\text {vac }}(\AA)$	$\begin{gathered} \text { M.S. } \\ \text { D.S.G.* } \end{gathered}$	L.W.**
3201	-4110		3009		-3731	2774		$\cdot 7712$
3196		$\cdot 2443$	3005	$\cdot 1238$		2772		. 8287
3196	. 0930		3003		$\cdot 2759$	2771		. 6330
3189		-1558	2989		-1032	2769		. 6588
3185		$\cdot 8697$	2986	- 1138		2765		$\cdot 9399$
3185	-1982		+2974		. 8794	2765		-4526
3181		- II35	$+2969$		$\cdot 5528$	2764		-4215
3179		-9671	2960	$\cdot 7181$		2761	$\cdot 2064$	-2055
3176	. 6446	. 6456	2958		-4444	2752		$\cdot 9798$
3170	$\cdot 2453$	-2451	2949	-9299	$\cdot 9292$	2750		$\cdot 3437$
3167		. 0146	2944	. 5896		2747		. 9679
3155		-6888	2943		$\cdot 7199$	2743		. 8744
3155	$\cdot 2142$	- 2144	2929		- 1101	2739	-1343	
3151		$\cdot 3673$	2925		-9066	2733		-6171
3146		-9544	2920	-6956	-6952	2730		-1343
3146		-5480	2919	$\cdot 7768$		2723		-1851
3140		-2154	2918		$\cdot 2651$	2722		-4973
+3137		-1244	2912	-8617		2708		$\cdot 9784$
${ }^{+} 3131$		-9762	2903	$\cdot 5642$		2704		$\cdot 7588$
3126		$\cdot 6507$	2900		-5695	2698	$\cdot 3463$	
3126		-4131	2892		. 0958	2696		-3518
3126		$\cdot 1146$	2888	$\cdot 6647$. 6640	2693		-2153
3125		- 2926	2885		-8943	2691	$\cdot 7988$	
3123		-8678	2885		-1342	2688		$\cdot 4503$
3120		'4304	2879	-5016		2687	.9305 \dagger	-9353 \dagger
3116	$\cdot 4413$		2871		$\cdot 2480$	2685		. 0856
3109		$\cdot 1983$	2855	- 18 I O		2680	-6797	
3107	-9274		2852		.098I	2659	-4547	
3103		$\cdot 5637$	2850	$\cdot 1635$		2651	$\cdot 3722$	-3713
3090	-9908		2843		$\cdot 6477$	2642		$\cdot 2749$
3089		$\cdot 3658$	2838		-1289	2626		-5199
3081		- 1116	2835	-3111		2624		$\cdot 2308$
3079		$\cdot 7227$	2833		-1475	2619		$\cdot 7891$
3077	. 3040		2831		- 2740	2601		. 6597
3073	-0080		2827		-6868	2597		. 8229
3068	. 6213	. 6206	2822		. 8559	2589		-8332
3062		-5896	2821		-1650	2577		$\cdot 4595$
3049		$\cdot 9789$	2820		-1521	2567		-3570
3047	. 8379		2816		-8994	2566		$\cdot 3615$
3042	-8257		2815		$\cdot 1477$	\ddagger Adde	values	
3035		-9925	2808		. 6543	3133	-0109	
3034	$\cdot 9487$	$\cdot 9480$	2798		$\cdot 5609$	3021	-9360	
3028	$\cdot 1103$		2795		-0787	2971	'4332	
+3027		$\cdot 4556$	2787		-9526			
${ }^{+3011}$	-6130		2781	-5368 \dagger	-5150才			

* Meggers and Stanley (6r), Davison, Stanley and Giacchetti ($\mathbf{r} \mathbf{9}$).
** Littlefield and Wood (52). The wave-lengths above $7000 \AA$ are considered by them to be provisional.
\dagger The large discrepancy between wave-lengths marked by a dagger clearly indicates that one or the other of the two values must be erroneous.

Good standards in the infra-red are still rather scarce. Littlefield and Rowley (50) have measured thirteen intense Ar lines in the region $1 \cdot 2$ to $1 \cdot 7 \mu$. The spectrum was excited in a liquid nitrogen cooled Geissler tube and also in an electrodeless high frequency discharge tube. The measurements were made relative to the orange line of Kr^{86} using a reflecting echelon having 40 plates each of thickness 7 mm , a lead sulphide cell being used for detection of the infra-red radiation. These lines as well as several others have also been measured by Humphreys and Paul (38) (39a) with the aid of a Fabry-Perot interferometer and by Peck (69a) by direct fringe count. The three sets of measurements are compared in Table 6.

Littlefield and Rowley have also recalculated by the combination principle the infra-red wave-lengths given in Table 8 of the previous report (2r) which was based on older measurements of Humphreys and Paul. Using Humphreys and Paul's revised values of Table 6, a very satisfactory agreement is obtained with the Ritz standards of Littlefield and Rowley except for the lines involving the level $3 d_{1}{ }^{\prime \prime}$. This discrepancy seems to be related to the comparatively large discrepancy in the lines 12806 and $13626 \AA$ as measured by the two groups of investigators according to Table 6.

Table 6. Observed vacuum wave-lengths of Arr lines in the infra-red

$\lambda_{\text {vac }}(\AA)$	Humphreys and Paul (39a)	Littlefield and Rowley (50)	Peck (69a)
8266			$\cdot 7945$
9125			$\cdot 47 \mathrm{I}_{4}$
9227			-0302
10472			-922
10676	$\cdot 489$		- 4907
10684	-698		
11081	$\cdot 901$		
11671	$\cdot 903$		
12115	. 639		
12346	770		
12406	-220	-218	
12442	724		
12459	-523		
12491	- 079	$\cdot 079$	
12705	-755		
12806	-24I	$\cdot 247$	-2401
12960	$\cdot 203$	$\cdot 203$	-2004
13011	-822	.821	
13217	-606		
13231	'727		
13276	$\cdot 266$.266	
13316	-850	-855	
13370	$\cdot 766$	${ }^{7} 768$	
13507	. 883	-882	-884
13626	$\cdot 383$	-391	$\cdot 387$
13682	$\cdot 290$	- 292	
13722	$\cdot 327$	-329	-3271
14097			-4914
16945	. 210	-213	$\cdot 209$

In Table 4 of the previous report (2I) a number of infra-red lines of Hg^{198} were given. Slight revisions have been made by Humphreys and Paul (39a) in their values and Peck (69a) has made new measurements. In Table 7 these new measurements are compared with the older ones of Rank, Bennett and Bennett ($\mathbf{6 9 b}$). Table 8 gives similar measurements by Littlefield, Rowley and Sharp (5I) and Batarchoukova, Kartachev and Efremov (9a) on several strong infra-red lines of Kr^{86} in an Engelhard lamp.

Table 7. Observed vacuum wave-lengths of Hg^{198} lines in the infra-red

$\lambda_{\text {vac }}(\AA)$	Humphreys and Paul (39a)	Rank et al. (69b)	Peck (69a)
10142	'572*	$\cdot 5698$	'5733
11290	$\cdot 4963$		4974
13074	'9066		
13574	-2822	-2933	
13677	${ }^{1351}$		-1342
15300	\cdot^{1543}	-1456	-1539
* Assumed as standard.			

Table 8. Observed vacuum wave-lengths of $\mathbf{K r}^{86}$ lines in the infra-red (Batarchoukova, Kartachev and Efremov (9a); Littlefield, Rowley and Sharp (5I))

$7603.6337 \AA$	$8776 \cdot 1579 \AA$	$13626 \cdot 141 \AA$	$15339 \cdot 154 \AA$
7854.9810	$8931 \cdot 1428$	14430.735	$15376 \cdot 233$
$8511 \cdot 2073$	9754.4317	15243.78 r	$16789 \cdot 722$

Rank and his collaborators (70) (70a) have suggested the use of molecular absorption lines as standards in the infra-red. In particular they have given an extensive table of wave-numbers and wave-lengths of the 001-000, 002-000, 101-000 and oro-000 bands of HCN and of the $\mathrm{I}-\mathrm{O}$ and $2-\mathrm{o}$ bands of CO. These bands cover (with some gaps) the region $\mathrm{I} \cdot 82 \mu-16 \cdot 0 \mu$. Some lines have been measured interferometrically, others by a large grating using overlapping orders, and still others are calculated from well-known molecular formulae using molecular constants determined from the directly measured lines.

A considerable number of Ritz standards for the vacuum ultra-violet have been obtained by Herzberg (33). These standards are based on the measurement, in a high grating order, of certain secondary standards against other Ritz standards (of $\mathrm{Hg}^{198}, \mathrm{Mg}$ II, Ni and Ger; see Edlén's previous report (2I)). Edlén (22) and Minnhagen (63) have somewhat extended and very slightly corrected this list. The new list is presented in Table 9.

Table 9. Vacuum ultra-violet standards based on the combination principle

Spectrum $\lambda_{\text {vac }}(\AA)$	Spectrum $\lambda_{\text {vac }}(\AA)$	Spectrum $\lambda_{\text {vac }}(\AA)$	Spectrum $\lambda_{\text {ra }}(\AA)$
A II 1973.4837*	CII 1329.6005	O 1 1306.0286*	$\mathrm{C}_{11} 1139.3317$
A III 1961.36io*	$\mathrm{CiI}_{\text {I }} \mathrm{I} 329.5775$	O I 1304.8575*	C 1111388.9358
A III 1941.0724**	C I 1329.1230	O 1 1 $302 \cdot 1686^{*}$	CiI 1066-1332
A II 1909.5689**	Ci 1329•1001	N $1{ }^{\text {r }} 200.7113^{*}$	C 11 1065.9199
Cii 1760.8191*	C 11329.0863	N I 1200.223 ${ }^{*}$	C II 1065.8913
$\mathrm{C}_{\text {II }} 1760 \cdot 4735$		N I 1199.5490*	C II 1037.0182
C in 1760.3954*	C 111323.9955	C 111141.7445	$\mathrm{C}_{\text {II }} 1036 \cdot 3367$
	C iI 1323.9513	C 1111416574	Ni 965.0415
C II 1335.6627	C 111323.9059	C II 1141.6246	N I $964 \cdot 6258$
C in 1334.5323*	C 111323.8617	C 111139.4730	NI 963.9904

Spectrum $\lambda_{\text {vac }}(\AA)$		Spectrum $\lambda_{\text {vac }}(\AA)$		Spectrum $\lambda_{\text {vac }}(\AA)$		Spectrum $\lambda_{\text {yac }}(\AA)$	
Ni	$955 \cdot 4376$	A II	697.4893	A II	$573 \cdot 3622$	A II	$528 \cdot 6508$
Ni	$955 \cdot 2647$	A II	693.3015	A II	572.0139	A III	526.4971
Ni	952.5231	A II	$69 \mathrm{I} \cdot 0377$	CII	$560 \cdot 4386$	AII	$524 \cdot 6805$
Ni	$952 \cdot 4151$	CII	687.3521	C II	$560 \cdot 4367$	A II	522.7921
$\mathrm{N}_{\text {I }}$	$952 \cdot 3037$	Cil	$687 \cdot 3453$	C II	$560 \cdot 2394$	A II	519.3271
A II	932.0528*	C II	$687 \cdot 0526$	A II	$560 \cdot 2229$	A II	518.9090
A II	919.7815*	A II	$686 \cdot 4888$	A II	556.8172	A II	514.3097
N 1	910.6456	A II	679.4001	A II	555.7662	A II	$510 \cdot 5566$
Ni	910.2785	A II	679.2187	A II	553.1260	A II	510.5511
NI	$909 \cdot 6976$	A II	677.9521	A II	$550 \cdot 9042$	A II	505.0119
C II	904.4801	A II	$676 \cdot 2428$	A II	$550 \cdot 4807$	A II	503.6501
C II	904.1416	A II	$672 \cdot 8565$	CII	549.5700	A II	$502 \cdot 1632$
C II	903.9616	A II	$671 \cdot 8516$	C II	549.5110	A 11	501•1899
CII	$903 \cdot 6235$	A II	670.945°	C Ir	549.3785	A II	500.8019
CII	$858 \cdot 5590$	A II	$666 \cdot 1112$	C II	$549 \cdot 3195$	A II	$496 \cdot 6594$
C II	858-0918	A II	664.5626	A II	548.7810	A II	$496 \cdot 6438$
A II	$762 \cdot 1995$	A II	$66 \mathrm{I} \cdot 8692$	A II	547.9958	A II	$494 \cdot 6678$
A II	$754 \cdot 8243$	Cin	$636 \cdot 2511$	A II	$547 \cdot 4602$	A II	$492 \cdot 4080$
A II	748-1977	CiI	$635 \cdot 9945$	A II	$547 \cdot 1647$	A II	$490 \cdot 7010$
A II	745:3217	A II	$612 \cdot 3719$	A II	$546 \cdot 1770$	A II	489•1955
A II	744.9252	A II	$602 \cdot 8581$	A II	543.7307	A II	$488 \cdot 9616$
A II	$740 \cdot 2695$	A II	597.7003	AII	$543 \cdot 2035$	A II	$488 \cdot 7928$
A II	$737 \cdot 4541$	C II	595•0245	A II	$542 \cdot 9125$	A II	$487 \cdot 2274$
A II	$730 \cdot 9293$	C II	595.0219	A II	5413017		
A II	$725 \cdot 5481$	CII	$594 \cdot 8000$	A II	$540 \cdot 8063$		
A II	$723 \cdot 3611$	A II	583.4368	A II	537.4195		
A II	$718 \cdot 0903$	A II	580.2634	A II	537•1398		
A II	704.5233	AII	$578 \cdot 6046$	A III	$535 \cdot 0713$		
A II	$698 \cdot 7748$	A II	$578 \cdot 1068$	A III	$533 \cdot 0796$		
A II	$697 \cdot 9414$	A II	576.7361	A II	530.495		

* Measured by Herzberg (33) against other Ritz standards.

Reader, Meissner and Andrew (72) have measured by means of Fabry-Perot interferometers Cu II lines in the region 2885 - $1979 \AA$ while independently Littlefield and Wood (52) have measured, by means of a reflection echelon with 25 plates of 7 mm thickness, Cu II lines in the regions $8513-7399$ and 2885-2190 \AA. Where they overlap the two sets agree quite well with some exceptions probably due to unresolved hyperfine structure. Both groups of authors have calculated vacuum ultra-violet standards from their data using the combination principle. In Table io the two sets of wave-lengths are given. They will be very useful for work in the vacuum ultra-violet.

Kiess and Corliss (47) and Martin and Corliss (54) have made a detailed study of the first and second spectra of iodine in the visible and ultra-violet regions. From this work they have derived by the combination principle about 100 lines of II and 300 lines of III in the region below $2000 \AA$ which may serve as standards of intermediate accuracy particularly when Fe or thorium iodide lamps are used.

Table 10.
Vacuum ultra-violet standards of Cu in based on the combination principle

$\lambda_{\text {vac }}(\AA)$	R.M.A.(72)	L.W.(52)	$\lambda_{\text {vac }}(\AA)$	R.M.A.(72)	L.W.(52)	$\lambda_{\text {vac }}(\AA)$	R.M.A.(72)	L.W.(52)
1989		. 8541	1535	-0024	-0033	1020	-1075	-1073
1979		-9550	1531	-8557	-8555	1019	-6545	$\cdot 6542$
1970		- 4927	1519	-8370	-8370	IOI8	$\cdot 7075$	$\cdot 7052$
1944		$\cdot 5866$	1519	-4917	-4917	1018	-0643	
1663	-0017	-0022	1517	. 6312		1017	-9983	-9973
1660	-0009	-0026	1496	. 6860	. 6874	1013	-4002	-3994
1656	$\cdot 3216$	-3218	1488	. 6373	. 6380	1012	-6834	-6827
1649	-4573	-4573	1485	-6777	-6772	rOI2	-5972	-5951
1621	-4256	-4270	1485	-6104		IOII	-4362	-4360
1617	-9151	-9151	1473	-9788		IOIO	-6395	
16 II	- 1180	-1190	1444	-1305	-1305	1008	$\cdot 7284$	-7280
1610	$\cdot 2964$	-2979	1442	- 1389		1008	-5692	$\cdot 5674$
1608	. 6396		1065	$\cdot 7822$	${ }^{7} 7824$	1006	-9843	-9834
1606	. 8338	. 8341	1059	-0960	-0962	1004	. 0557	-0526
1604	. 8474	$\cdot 8482$	1056	-9545	-9544	1001	- 0130	- 0124
1602	$\cdot 3882$		1054	. 6903	.6911	999	-7944	$\cdot 7948$
I 598	-4024	-4034	1049	$\cdot 7556$	$\cdot 7548$	998	-3063	$\cdot 3058$
1593	-5557	- 5546	1044	$\cdot 7434$	-743 ${ }^{\text {I }}$	992	$\cdot 9533$	$\cdot 9525$
1590	-1646	-1649	1036	-4695	- 4690	989	. 2368	- 2340
r 569	-2123	-2135	1035	-163 ${ }^{1}$	-1630	983	$\cdot 9804$	-9773
1566	-4151		1033	-5679	. 5675			
1565	$\cdot 9240$	-9240	1031	.766I	$\cdot 7659$			
1558	$\cdot 3446$	$\cdot 3453$	ro28	$\cdot 328 \mathrm{I}$	- 3282			
1541	$\cdot 7031$	$\cdot 7017$	1027	-8312	-8305			
1540	$\cdot 3889$		1022	-102I	-1022			

NEW WORK ON SPECTRA OF INDIVIDUAL ATOMS
A large number of investigations of individual atomic spectra have been published during the last three years or are in the process of publication. The following is a partial list of work that has come to the writer's attention:

He i:	Herzberg (33), Martin (53a) Li i	Johansson (41)
Li II:	Herzberg and Moore (34), Freytag (26) Li ini:	Freytag (26)
C 1:	Herzberg (33), Minnhagen (64) C II:	Herzberg (33)
Ni:	Eriksson (25), Herzberg (33) N II:	Eriksson (24)
Ois:	Herzberg (33) Ne r:	Hepner (32)
Si II:	Shenstone (75) Si III: Toresson (85)	Silv: Toresson (84)
PI and PII:	Martin (53) S I:	Toresson (85)
Cl I:	Humphreys and Paul (39), Minnhagen (65a)	
Ar I:	Paul and Humphreys (69) Ar II:	Minnhagen (63), Herzberg (33)
CaI:	Kaiser (43) V III:	Iglesias and Velasco (40b)
Tin:	Kiess and Thekaekara (47a), Wilson and Theka	ekara (88a)
Mn II:	García-Riquelme, Iglesias and Velasco (28) Mn	III: Catalán (16)
Fe I:	Kiess, Rubin and Moore (48) Co int:	Shenstone (76)
Ni ini:	García-Riquelme (27)	
Ge I:	Andrew and Meissner (4), (5), Meissner, VanV	eld and Wilkinson (62)
Ge II:	Andrew and Meissner (6), Meissner, VanVeld a	nd Wilkinson (62)
BriI:	Rao (71), Martin and Tech (55a)	
Kris:	Thekaekara and Dieke (83), Paul and Humphre	ys (69)
Zris:	Howe (37) Nbir:	Iglesias (40)

Ru I: Kessler (44), McNally and Kessler (57), Trees (86)
Ru II: \quad Shenstone and Meggers (77)
Te II: Handrup (30a)
I I: Kiess and Corliss (47), Murakawa (67) I II: Martin and Corliss (55)
XeI: Thekaekara and Dieke (83) Bai: Garton and Codling (29)
Pri and II: Belyanin (ro) Ho I: Belyanin (ir)
Er I and II: McNally and Vander Sluis (58), Vander Sluis (88)
Hf III and Iv: Klinkenberg, Van Kleef and Noorman (48c) Ta II: Kiess (46a)
ReI: Trees (87) Re II: Meggers, Catalán and Sales (60)
Os I and II: Van Kleef (48a), Van Kleef and Klinkenberg (48b) Au III: Iglesias (40a)
Th I: Zalubas (89) (90)
Pu i: Bovey (13), Gerstenkorn (30), Bovey and Gerstenkorn (r3a)
Pu II: McNally and Griffin (56) Pm II: Johnson (42)
A general discussion of the present state of work on the rare earth spectra has been given by Moore (66).

SOLAR SPECTROSCOPY

The subject of solar spectroscopy in general is of course the domain of Commission 12. However a number of studies have been reported and suggestions been made by members of Commission 14 which refer to work for which both Commissions may be jointly responsible.

Miss Adam and her collaborators (1), (3), (68) have continued the measurements of absolute wave-lengths for solar and vacuum arc lines. A few measurements have also been made using integrated light from the solar disk (Higgs (36)). In view of the local velocity fields which are known to exist on the Sun such wave-lengths may well be more reliable than centre of disk values for a moderate number of observations, though allowance must be made for the centre to limb change in wave-length. A new determination of this 'limb-effect' has been made for medium strength iron lines in the $6300 \AA$ region (Adam (2)). This indicates a red shift at the extreme limb greater than the relativity value. The work has been continued by Higgs (36) who finds that the increasing red shift towards the limb is accompanied by line asymmetry. Similar measurements have been made in the 8500 and $8900 \AA$ regions for lines of $\mathrm{Fe} \mathrm{I}_{\mathrm{I}}, \mathrm{Si} \mathrm{i}_{\mathrm{I}}$ and $\mathrm{Ca}{ }_{\text {II }}$ by Mrs. Herzberg (35). She finds that for the Ca II lines near $8500 \AA$ the wavelengths near the limb are significantly larger than those predicted by relativity theory while for the Fe lines they are in good agreement. See also Schröter (74).

With a view to identifying some of the fainter solar lines Kiess, Rubin and Moore (48) have measured about 1800 new faint iron lines, in an arc in air, of which 700 have been newly classified. Nearly 400 of the faint lines are found in the Sun's spectrum, of which 75% are unblended lines and 25% are blended with lines to which other chemical origins have been assigned.

At the McMath-Hulbert Observatory three investigations concerned with the determination of the wave-lengths of solar lines are under way with the vacuum spectrograph:
(x) The first of these deals with the complete identification of the faint lines present in sunspot spectra in the region including $\mathrm{H} a$. The identification and measurement of these lines is essential for a definitive study of the possibility of detecting deuterium in the solar spectrum.
(2) W. E. Mitchell of the Ohio State University is measuring the wave-lengths of about 100 lines in the ultra-violet part of the solar spectrum between 3000 and $3600 \AA$. Direct intensity photo-electric tracings constitute the fundamental observational data for Mitchell's investigation. He also hopes to provide from his tracings an improved calibration of this portion of the Sun's ultra-violet spectrum.
(3) An observational programme carried out with the vacuum spectrograph is directed toward the accumulation of a large sample of sunspot spectra. There still remain several thousand unmeasured and unidentified lines in the spectra of sunspots. It is hoped that most of these unidentified and unmeasured features can be assigned preliminary wavelengths and intensities.
The problem of identifications of weak solar lines due to molecular lines is dealt with in the report of Sub-Commission 14 b .

TABLES AND OTHER AIDS FOR WORK IN SPECTROSCOPY
The National Bureau of Standards has published in two large volumes a Table of Wavenumbers prepared by Coleman, Bozman and Meggers (17). This Table gives, on the basis of the Edlén formula for the dispersion of air, the vacuum wave-numbers corresponding to wavelengths in air from $2000 \AA$ to 1000μ (from $2000-10000 \AA$ in steps of $0.01 \AA$). The vacuum corrections are also given.

The revision of the 1928 edition of Rowland's Solar Spectrum Table by Mrs MooreSitterly of NBS and M. Minnaert and J. Hougast of the Utrecht Observatory is nearly completed. A prepublication of the photometric data may be found in Rech. Astron. Obs. Utrecht 15 , 1960 , giving equivalent widths and reduced widths for the region $\lambda_{31} 6_{4}-\lambda 8770 \AA$. A definitive edition which in addition contains improved wave-lengths, identifications, excitation potentials and multiplet numbers is being prepared as an NBS Monograph.

Mrs Moore-Sitterly is in the process of completing Section 3 of 'An Ultra-violet Multiplet 'Table' covering the elements 42 Mo through 57 La and 72 Hf through 89 Ac . It is planned to conclude this work with a Finding List for all three sections. The 1945 Multiplet Table (Princeton Observatory Contribution No. 20) has been reprinted as Technical Note No. 36 of NBS. A new multiplet table extending from the X-ray region to the micro-wave region has been started in order to take account of the much increased range of astrophysical observations.
A new Photometric Solar Atlas covering the spectral region $7500-12000 \AA$ is being prepared by L. Delbouille of the Institut d'Astrophysique de l'Université de Liège. It is based on recordings made at the Jungfraujoch with an Ebert-Fastie type spectrometer of 7.3 m focal length. The same recordings are being used by Delbouille, Roland, Swensson and Mohler for the preparation of wave-length tables with identifications of solar and terrestrial lines.

A similar table for the region 2.9 to 3.7μ is being prepared by Mohler and collaborators at McMath-Hulbert Observatory with the large vacuum spectrograph. In this connection it is pointed out by McMath that the comparatively low degree of precision (I in 500000) for solar lines in the infra-red from r to 3μ is due to the great width of the solar lines and to the irregular and variable wave-lengths of these features. McMath recommends that all tables of wave-lengths for solar lines specify completely and with great detail the circumstances under which the observations have been made. The pertinent data are: area of the Sun's surface observed, position of the observed area, the duration of the observation, and the proximity of disturbed regions of the solar surface.
J. Junkes and his collaborators at the Vatican Observatory have started the preparation of an atlas of thorium lines. Such an atlas will be extremely important if the thorium standards are to be more widely used. Junkes and Milazzo are in addition planning an atlas of spectra in the vacuum ultra-violet.

The preparation of a revised and extended version of Grotrian's Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei und drei Valenzelektronen to include most other atoms has been suggested by Lochte-Holtgreven. He and Unsöld have also suggested the preparation of an atlas of standard stellar spectra.

Harrison at MIT is continuing efforts to rule gratings larger than io inches in ruled width. He is also developing new automatic devices for reducing wave-lengths from echellegrams. Rank, Saksena and McCubbin, Jr. (70b) and Svensson (80) have measured the dispersion of air in the regions 365 I to $\mathrm{I} 5300 \AA$ and $2302-6907 \AA$ respectively and have found excellent agreement with Edlén's formula.

G. HERZBERG
President of the Commission

REFERENCES

1. Adam, M. G. M.N. 118, $106,1958$.
2. Adam, M. G. M.N. 119, 460, 1959.
3. Adam, M. G. and Nichols, S. M.N. 118, 97, 1958.
4. Andrew, K. L. and Meissner, K. W. F. opt. Soc. Amer. 48, $31,1958$.
5. Andrew, K. L. and Meissner, K. W. F. opt. Soc. Amer. 49, 146, 1958.
6. Andrew, K. L. and Meissner, K. W. f. opt. Soc. Amer. 49, 1086, 1959.
7. Baird, K. M. submitted to Comm. I4 for this report.
8. Baird, K. M. and Smith, D. S. Canad. F. Phys. 37, 832, 1959.
9. Batarchoukova, N. R., Kartachev, A. I. and Romanova, M. F. Procès-Verbaux Com. Int. Poids Mes. 2^{e} ser. 24, 12 I, 1954.
9a. Batarchoukova, N. R., Kartachev, A. I. and Efremov, Y. P. All-Union Conf. on Spectroscopy, in press.
10. Belyanin, V. B. Optika i Spektr. 4, 264, 1958.
11. Belyanin, V. B. Optika i Spektr. 5, 236, 1958.
12. Blackie, J. and Littlefield, T. A. Proc. roy. Soc. 234A, 398, 1956.
13. Bovey, L. Spectrochimica Acta 10, 383, 1958.

13a. Bovey, L. and Gerstenkorn, S. f. Opt. Soc. Amer. 51, 522, 196 r.
14. Bruce, C. F. and Hill, R. M. Australian F. Phys. 14, 64, 196r.
15. Burns, K. and Adams, K. B. F. opt. Soc. Amer. 46, 94, 1956.
16. Catalán, M. A. An. Real Soc. Espan. Fis. Quim. 53A, 179, 1957.
17. Coleman, C. D., Bozman, W. R. and Meggers, W. F. NBS Monograph 3, 1960.
18. Crosswhite, H. M. Johns Hopkins Spectroscopic Rep. no. 13, 1958.
19. Davison, A., Stanley, R. W. and Giacchetti, A. submitted to Comm. 14 for this report.
20. Edlén, B. Trans. $I A U$ 9, 201 , 1957.
21. Edlén, B. Trans. $I A U$ 10, $21 \mathrm{I}, 1960$.
22. Edlén, B. submitted to Comm. I4 for this report.

22a. Engelhard, E. submitted to Comm. 14 for this report.
23. Engelhard, E. and Terrien, J. Rev. d'Optique 39, II, 1960.
24. Eriksson, K. B. S. Ark. Fys. 13, 303, 1958.
25. Eriksson, K. B. S. Ark. Fys. 13, 429, 1958.
26. Freytag, E. Naturwissenschaften 46, 314, 1959.
27. García-Riquelme, O. 7. opt. Soc. Amer. 48, 183, 1958.
28. García-Riquelme, O., Iglesias, L. and Velasco, R. An Real Soc. Espan. Fis. Quim. 53A, 77, 1957.
29. Garton, W. R. S. and Codling, K. Proc. phys. Soc. 75, 87, 1960.
30. Gerstenkorn, S, C.R. Acad. Sci., Paris 250, 825, 1960.

30a. Handrup, B. Physica (in press), i96i.
31. Hands, R. A. and Littlefield, T. A. submitted to preceding report and revised for this report.
32. Hepner, G. C.R. Acad. Sci., Paris 248, 1 I42, 1959.
33. Herzberg, G. Proc. roy. Soc. 248A, 309, 1958.
34. Herzberg, G. and Moore, H. R. Canad. 7. Phys. 37, 1293, 1959.
35. Herzberg, L. Canad. F. Phys. 38, 853, 1960.
36. Higgs, L. A. M.N. 121, 42 I , 1960.
37. Howe, W. E. W. J. opt. Soc. Amer. 48, 28, 1958.
38. Humphreys, C. J. and Paul, E. F. de Physique 19, 424, 1958.
39. Humphreys, C. J. and Paul, E. F. opt. Soc. Amer. 49, i 180 , 1959.

39a. Humphreys, C. J. and Paul, E. Naval Ordnance Lab. Corona Rep. 464, 1959.
40. Iglesias, L. An. Real Soc. Espan. Fis. Quim. 53A, 249, 1957.

40a. Iglesias, L. I. Res. nat. Bur. Stand. 64A, 481, 9660.
4ob. Iglesias, L. and Velasco, R. An. Real. Soc. Espan. Fis. Quim. 54A, 83, 1958.
41. Johansson, I. Ark. Fys. 15, 169, 1959.
42. Johnson, L. C. (to be published).
43. Kaiser, T. R. Proc. phys. Soc. 75, 152, 1960.
44. Kessler, K. G. F. Res. nat. Bur. Stand. 63A, 213, 1959.
45. Kessler, K. G. submitted to Comm. I4 for this report.
46. Barger, R. L. and Kessler, K. G. F. opt. Soc. Amer. 51, 827, 1961.

46a. Kiess, C. C. F. Res. nat. Bur. Stand (in press), 196ı.
47. Kiess, C. C. and Corliss, C. H. F. Res. nat. Bur. Stand. 63A, i, 1959.

47a. Kiess, C. C. and Thekaekara, M. P. Astrophys. Э. 130, 1008, 1959.
48. Kiess, C. C., Rubin, V. C. and Moore, C. E. F. Res. nat. Bur. Stand. 65A, 1, 1961.

48a. Van Kleef, Th. A. M. Proc. Amst. B63, 501, 1960.
48b. Van Kleef, Th. A. M. and Klinkenberg, P. F. A. Physica 27, 83, 196 r.
48c. Klinkenberg, P. F. A., Van Kleef, Th. A. M. and Noorman, P.E. Physica 27, 151, 1961 .
49. Hands, R. A. and Littlefield, T. A. submitted to Comm. 14 for this report.
50. Littlefield, T. A. and Rowley, W. R. C. submitted to Comm. i4 for this report.
51. Littlefield, T. A., Rowley, W. R. C. and Sharp, G. R. submitted to Comm. I4 for this report.
52. Littlefield, T. A. and Wood, W. A. submitted to Comm. I4 for this report.
53. Martin, W. C. F. opt. Soc. Amer. 49, 1071, 1959.

53 a. Martin, W. C. F. opt. Soc. Amer. 50, 174; 7. Res. nat. Bur. Stand. 64A, 19, 1960.
54. Martin, W. C. and Corliss, C. H. F. opt. Soc. Amer. 48, 865, 1958.
55. Martin, W. C. and Corliss, C. H. F. Res. nat. Bur. Stand. 64A, 443, 1960.

55a. Martin, W. C. and Tech, J. L. F. opt. Soc. Amer. 51, 591, 196i.
56. McNally, J. R., Jr. and Griffin, P. M. F. opt. Soc. Amer. 49, 162, 1959.
57. McNally, J. R., Jr. and Kessler, K. G. F. Res. nat. Bur. Stand. 63A, 253, 1959.
58. McNally, J. R., Jr. and Vander Sluis, K. L. f. opt. Soc. Amer. 49, 200, 1959.
59. Meggers, W. F. Trans. IAU 9, 2251957.
60. Meggers, W. F., Catalán, M. A. and Sales, M. F. Res. nat. Bur. Stand. 61, 441, 1958.

6r. Meggers, W. F. and Stanley, R. W. F. Res. nat. Bur. Stand. 6I, $95,1958$.
62. Meissner, K. W., VanVeld, R. D. and Wilkinson, P. G. 7. opt. Soc. Amer. 48, 1001, 1958.
63. Minnhagen, L. Ark. Fys. 14, 123,483 , 1958.
64. Minnhagen, L. Ark. Fys. 14, 481, 1958.
65. Minnhagen, L. Ark. Fys. 18, 97, 1960.

65a. Minnhagen, L. F. opt. Soc. Amer. 51, 298, 1961.
66. Moore, C. E. 7. opt. Soc. Amer. 50, 407, 1960.
67. Murakawa, K. 7. phys. Soc. fapan 13, 484, 1958.
68. Nichols, S. and Clube, S. V. M. M.N. 118, 496, 1958.
69. Paul, E., Jr. and Humphreys, C. J. F. opt. Soc. Amer. 49, i186, 1959.

69a. Peck, E. R. submitted to Comm. 14 for this report.
6gb. Rank, D. H., Bennett, J. M. and Bennett, H. E. F. opt. Soc. Amer. 46, 477, 1956.
70. Rank, D. H., Skorinko, G., Eastman, D. P. and Wiggins, T. A. F. mol. Spectr. 4, 518 , 1960.

70a. Rank, D. H. F. opt. Soc. Amer. 50, 657, 1960.
7ob. Rank, D. H., Saksena, G. D. and McCubbin, T. K., Jr. J. opt. Soc. Amer. 48, 455, 1958.
71. Rao, Y. B. Ind. F. Phys. 32, 497, 1958.
72. Reader, J., Meissner, K. W. and Andrew, K. L. Y. opt. Soc. Amer. 50, 221, 1960.
73. Rowley, W. R. C. submitted to Comm. 14 for this report.
74. Schröter, E. H. Monatsber. Deutsche Akad. Wiss. Berlin r, 738, 1959.
75. Shenstone, A. G. (to be published).
76. Shenstone, A. G. Canad. 7. Phys. 38, 677, 1960.
77. Shenstone, A. G. and Meggers, W. F. F. Res. nat. Bur. Stand. 61, 373, 1958.
78. Stanley, R. W. and Dieke, G. H. F. opt. Soc. Amer. 45, 280, 1955.
79. Stanley, R. W. and Meggers, W. F. F. Res. nat. Bur. Stand. 58, 41, 1957.
80. Svensson, K. F. Ark. Fys. 16, 361, 1960.
81. Terrien, J. C.R. Acad. Sci., Paris 246, 2362, 1958.
82. Terrien, J. submitted to Comm. 14 for this report.
83. Thekaekara, M. and Dieke, G. H. Phys. Rev. 109, 2029, 1958.
84. Toresson, Y. G. Ark. Fys. 17, 179, 1960.
85. Toresson, Y. G. Ark. Fys. 18, 389, 417, 1960.
86. Trees, R. E. F. Res. nat. Bur. Stand. 63A, 255, 1959.
87. Trees, R. E. Phys. Rev. 112, 165, 1958.
88. Vander Sluis, K. L. (to be published).

88a. Wilson, C. M. and Thekaekara, M. P. F. opt. Soc. Amer. 5r, 289, 196r.
89. Zalubas, R. F. Res. nat. Bur. Stand. 63A, 275, 1959.
90. Zalubas, R. nat. Bur. Stand. Monograph 17, 1960.

14a. SOUS-COMMISSION DES TABLES D'INTENSITES

Président : Professor M. G. J. Minnaert, Director of the Astronomical Observatory, Zonnenburg 2, Utrecht, the Netherlands.

Membres: Allen, Bates, Garstang, Green, R. B. King, Layzer, Lochte-Holtgreven, Smit, Zirin.

REPORT ON TRANSITION PROBABILITIES

Note. General references will be found in the Bibliography, in the same order in which they are quoted in the text. References to special transition probabilities, however, are collected into a separate section.

Since the last meeting of the IAU, the interest in fundamental data on transition probabilities has considerably increased. On one hand it became clear that the determination of cosmical abundances, for which they are needed, is of the greatest importance for a study of stellar evolution. On the other hand the investigation of the atomic processes in the chromosphere, in nebulae, in interstellar space, where thermodynamic equilibrium does not exist, requires a detailed knowledge of the atomic interactions with radiation and with particles. This increased interest has not only stimulated to new experimental and theoretical research, but also to special symposia, survey papers and general projects.

At the end of our 1958 report, we mentioned already the excellent monograph by Kolesnikov and Leskov, with an extensive bibliography, in which a serious attempt was made to compile a general table of f values for atoms and diatomic molecules. Shortly afterwards, in March 1959, a conference on Measurement and Calculation of Oscillator Strengths was held at the Physics Research Institute of the Leningrad State University (Report published in the same year). A bibliographic survey on transition probabilities up to 1958 is found in Varsavsky's thesis.

