J. Austral. Math. Soc. 22 (Series A) (1976), 421-430.

RUDIN-SHAPIRO SEQUENCES FOR ARBITRARY COMPACT GROUPS

For George Szekeres on his sixty-fifth birthday

J. R. MCMULLEN and J. F. PRICE

(Received 26 August 1975)

Abstract

Let G be a compact group. A sequence $\{f_n\}_{n=1}^{\infty}$ of functions in $L^{\infty}(G)$ is said to be a *Rudin-Shapiro sequence* (briefly, an RS-sequence) if the following conditions hold:

(1)
$$\inf ||f_n||_2 > 0;$$

$$\sup \|f_n\|_{\infty} < \infty;$$

$$\lim_{n \to \infty} \|\hat{f}_n\|_{\infty} = 0$$

The main purpose here is to prove the following theorem:

THEOREM. Let G be an infinite compact group. Then G has an RS-sequence consisting of trigonometric polynomials.

The proof is carried out in section 1 while in section 2 several applications are given concerning set-theoretic relations between certain function spaces in harmonic analysis. The existence of RS-sequences for infinite LCA groups is well-known.

NOTATION. Let G be a compact group. The Banach space of all continuous complex-valued functions on G we denote by C(G), and the Banach space of all complex Radon measures on G by M(G); $L^1(G)$ will be identified in the usual way with the ideal in M(G) of measures that are absolutely continuous with respect to normalized Haar measure λ_G .

The symbol \hat{G} will denote a maximal set of pairwise inequivalent continuous irreducible unitary representations of G. The representation space of $\gamma \in G$ will be denoted by H_{γ} , and its dimension by d_{γ} . By $\mathfrak{E}(\hat{G})$ we mean the linear space of all "sections" over \hat{G} , i.e. of all those functions

 $\Phi: \hat{G} \to \coprod_{\gamma \in \hat{G}} \mathscr{L}(H_{\gamma})$ such that $\Phi(\gamma) \in \mathscr{L}(H_{\gamma})$ for all $\gamma \in \hat{G}$. Here of course $\mathscr{L}(H_{\gamma})$ is the von Neumann algebra of all (bounded) linear operators on H_{γ} . The Banach spaces $\mathfrak{E}^{p}(\hat{G})$ $(1 \leq p \leq \infty)$ and \mathfrak{E}_{0} , are defined as in (28.34) of Hewitt & Ross (1970). The norms on the $\mathfrak{E}^{p}(\hat{G})$ are given by

$$\|\Phi\|_{\infty} = \sup\{\|\Phi(\gamma)\|_{\phi_{\infty}} \colon \gamma \in \hat{G}\} \qquad (\Phi \in \mathfrak{E}^{*}(\hat{G}))$$
$$\|\Phi\|_{p} = \left(\sum_{\gamma \in G} d_{\gamma} \|\Phi(\gamma)\|_{\phi_{p}}^{p}\right)^{1/p} \qquad (\Phi \in \mathfrak{E}^{p}(\hat{G}))$$

where $\| \|_{\phi_p}$ denotes the *p*th von Neumann-Schatten norm on $\mathscr{L}(H_{\gamma})$. In particular $\|A\|_{\phi_2} = [tr(AA^*)]^{\frac{1}{2}}$, and $\|A\|_{\phi_{\infty}}$ is the operator norm of *A*.

The Fourier-Stieltjes transform of $\mu \in M(G)$ we define as an element of $\mathfrak{E}^*(\hat{G})$ by

$$\hat{\mu}(\gamma) = \int_{G} \gamma(x^{-1}) d\mu(x)$$

and its Fourier series is the series (suitably interpreted)

$$\mu \sim \sum_{\gamma \in G} d_{\gamma} tr(\hat{\mu}(\gamma)\gamma(\cdot)).$$

The closure of the *n*th derived subgroup of G we denote by $G^{(n)}$.

1. Proof of the theorem

Before commencing the proof we remark that the existence of RSsequences for infinite LCA groups is well-known; see Gaudry (1970) and (37.19b) of Hewitt & Ross (1970). Also a weaker version is known to exist for infinite compact groups. Specifically, whenever $t \in]2, \infty]$, a sequence $\{f_n\}_{n=1}^{\infty}$ of functions is said to be a *t*-RS-sequence if it satisfies conditions (1) and (3) of the definition of an RS-sequence with (2) replaced by

$$\sup \|f_n\|_{\iota} < \infty.$$

In Figà-Talamanca & Price (1972), random Fourier series are used to show that t-RS-sequences with $t < \infty$ exist for all infinite compact groups. Also the existence of such sequences with other useful properties is demonstrated in Figà-Talamanca & Price (1972, 1973). We have not been able to generalise these extra properties to RS-sequences.

Since the definition of an RS-sequence involves only three norms, it is easily verified that any RS-sequence may be replaced by an RS-sequence consisting of trigonometric polynomials. In this section we therefore prove merely the existence of an RS-sequence for any infinite compact group.

 (α)

Whenever the supports of the members of an RS-sequence are contained in some open set U, then we say that this sequence is a U-RS-sequence.

Our proof begins with two special cases, from which we proceed to deduce the general case.

(1.1) PROPOSITION. (Gaudry (1970), Lemma 2.1). Let G be an infinite compact abelian group and U a nonvoid open subset of G. Then G has a U-RS-sequence.

Now, let us say that a compact group G is *tall* if for every positive integer d there are at most finitely many elements of \hat{G} of degree d.

(1.2) PROPOSITION. Let G be an infinite tall compact group and U a nonvoid open subset of G. Then G has a U-RS-sequence.

PROOF. The following construction depends on repeated applications of the fact that every measurable subset of G of positive measure has a subset of half its measure.

Let $V \subseteq \overline{V} \subseteq U \subseteq G$ be measurable, $\lambda_G(V) = v > 0$. Let P_1, P_2 be disjoint measurable subsets of V such that $P_1 \cup P_2 = V$, $\lambda_G(P_1) = \lambda_G(P_2)$. Let $\pi_1 = \{P_1, P_2\}$. If π_{n-1} has been defined as a partition of U into 2^{n-1} subsets $P_{n-1,i}$ ($1 \le i \le 2^{n-1}$) then form π_n by writing $P_{n-1,i}$ as a disjoint union of two measurable subsets $P_{n,2i-1}, P_{n,2i}$ of equal measure. Thus π_n is a set $\{P_{n,i}: 1 \le i \le 2^n\}$ of pairwise disjoint measurable subsets of V of equal measure such that $V = \bigcup_{i=1}^{2n} P_{n,i}$.

We now define a sequence of Rademacher functions associated with the sequence π_n . Put $r_1 = \chi_{P_{1,1}} - \chi_{P_{1,2}}$, and more generally let $r_n = \sum_{i=1}^{2^n} (-1)^{i+1} \chi_{P_{n,i}}$. Then r_n takes values ± 1 and

$$\int_{P_{n-1,i}} r_n d\lambda_G = \int_{P_{n,2i-1}} r_n d\lambda_G + \int_{P_{n,2i}} r_n d\lambda_G = 0.$$

(This construction is also used in Figà-Talamanca and Gaudry (1970).) Clearly we have $||r_n||_p = v^{1/p}$ $(1 \le p < \infty), ||r_n||_{\infty} = 1$, and $\int_G r_m r_n d\lambda_G = v \delta_{mn}$ for $m, n \in \{1, 2, \dots\}$. Define $f_n = v^{-\frac{1}{2}} r_n$; then we have

(4) $||f_n||_p = v^{1/p-\frac{1}{2}} (1 \le p < \infty),$ $||f_n||_{\infty} = v^{-\frac{1}{2}}, \text{ and}$ $\int_G f_m f_n d\lambda_G = \delta_{mn} \quad (m, n \in \{1, 2, \cdots\}).$

We claim that $\{f_n\}_{n=1}^{\infty}$ is an RS-sequence under the assumption that G is tall.

Indeed, in view of (4) all that is required is to show that $\|\hat{f}_n\|_{\infty} \to 0$ as $n \to \infty$. Now Parseval's formula for G is

$$\|f\|_2^2 = \sum_{\gamma \in G} d_{\gamma} tr(\hat{f}(\gamma)\hat{f}(\gamma)^*) \qquad (f \in L^2(G))$$

Also, by Hewitt and Ross (1963 and 1970), (D. 51) we have, for $A \in \mathcal{L}(H)$, $tr(AA^*) \ge ||A||_{\phi_{w}}^2$, and hence

(5)
$$\sum_{\gamma \in \mathcal{O}} d_{\gamma} \| \hat{f}_n(\gamma) \|_{\phi_{\infty}}^2 \leq \| f_n \|_2^2 = 1$$

This makes it clear for each $n \ge 1$ and each $\varepsilon > 0$, the set $\{\gamma \in \hat{G} : \|\hat{f}_n(\gamma)\|_{\phi_{\infty}} > \varepsilon\}$ is finite (this merely reproves the well known fact that $\mathfrak{E}^2 \subseteq \mathfrak{E}_0$). Hence we may conclude that

$$\|\widehat{f}_n\|_{\infty} = \|\widehat{f}_n(\gamma_n)\|_{\phi_{\infty}}$$

for some $\gamma_n \in \hat{G}$. Let $\Delta = \{\gamma_n : n \ge 1\}$. If Δ is infinite, then $d_{\gamma_n} \to \infty$ as $n \to \infty$, by our assumption about the representations of G. Hence by (5), we have

$$\|\widehat{f}_n\|_{\infty} = \|\widehat{f}_n(\gamma_n)\|_{\phi_{\infty}} \leq d_{\gamma_n}^{-1/2},$$

showing that $\{f_n\}_{n=1}^{\infty}$ is an RS-sequence as asserted.

In any case, since $\{f_n\}_{n=1}^{\infty}$ is orthonormal in $L^2(G)$, it follows that $\|\hat{f}_n(\gamma)\|_{\infty} \to 0$ for each $\gamma \in \hat{G}$. Thus when Δ is finite, we have

$$\|\hat{f}_n\|_{\infty} \leq \sup_{\gamma \in \Delta} \|\hat{f}_n(\gamma)\|_{\phi_{\infty}} \to 0 \quad \text{as} \quad n \to \infty$$

and again $\{\hat{f}_n\}_{n=1}^{\infty}$ is an RS-sequence. This completes the proof.

(1.3) LEMMA. Let Γ be a closed subgroup of the compact group G. Then there is a quasi-invariant normalised measure λ on the coset space G/Γ with the following property: if f is a nonnegative extended real-valued λ_G -integrable function on G, then the set of cosets $x\Gamma$ in G/Γ for which the function $\xi \to f(x\xi)$ $(\xi \in \Gamma)$ is not λ_{Γ} -integrable is λ -null; the function on G/Γ defined λ -a.e. by $x\Gamma \to \int_{\Gamma} f(x\xi) d\lambda_{\Gamma}(\xi)$ is λ -integrable, and we have

(6)
$$\int_{G} f(x) d\lambda_{G}(x) = \int_{G/\Gamma} \int_{\Gamma} f(x\xi) d\lambda_{\Gamma}(\xi) d\lambda(x\Gamma).$$

The reader is referred to Bourbaki (1963), Chapter VII, section 2, discussion following Théorème 2.

(1.4) LEMMA. Let $\phi : G \to G_1$ be a continuous surjective homomorphism, where G and G_1 are compact groups and G_1 has an RS-sequence. Then G has an RS-sequence.

424

This is proved in Edwards & Price (1970), A.3.3.

(1.5) LEMMA. Let Γ be a closed subgroup of a separable compact group G, and suppose that Γ admits an RS-sequence. Then G does also.

PROOF. Since G is separable, there is a Borel section B for Γ in G (Mackey (1951)), i.e., a Borel set B in G which meets each coset $x\Gamma$ in exactly one point (we may assume $B \cap \Gamma = \{e\}$). Define a map $b: G/\Gamma \to B$ by setting $b(x\Gamma)$ as the unique member of $B \cap x\Gamma$. Let $h \in C(\Gamma)$. Put

$$h^{0}(x\xi) = h(\xi)$$
 $(x \in B, \xi \in \Gamma).$

The properties of B ensure that h^0 is well-defined as an element of $L^{\infty}(G)$. Application of Lemma (1.3) shows immediately that

(7)
$$\|h^0\|_2^2 = \int_{G/\Gamma} \|h\|_2^2 d\lambda(x) = \|h\|_2^2.$$

It is also easy to see that

(8)
$$\|h^{0}\|_{\infty} = \|h\|_{\infty}$$

Now, let $\sigma \in \hat{G}$ be fixed. Then the restriction $\sigma|_{\Gamma}$ of σ to Γ admits a decomposition

$$\sigma|_{\Gamma} = \bigoplus_{\tau \in \Gamma} n_{\sigma}(\tau) \, . \, \tau$$

 $(n_{\sigma}(\tau))$ is the multiplicity of τ in $\sigma|_{\Gamma}$ and $n_{\sigma}(\tau) = 0$ for all save finitely many τ). This decomposition is given via some unitary intertwining transformation from $\bigoplus_{\tau \in \Gamma} n_{\sigma}(\tau) H_{\tau}$ to H_{σ} which by transport of structure gives rise to a (von Neumann) algebra isomorphism

$$\alpha_{\sigma} \colon \bigoplus_{\tau \in \mathcal{G}} n_{\sigma}(\tau) \mathscr{L}(H_{\tau}) \to \mathscr{L}(H_{\sigma}).$$

Then we have by (1.3)

$$(h^{0})^{\wedge}(\sigma) = \int_{G} h^{0}(x)\sigma(x^{-1})d\mu(x) = \int_{G/\Gamma} \left(\int_{\Gamma} h^{0}(x\xi)\sigma((x\xi)^{-1})d\lambda_{\Gamma}(\xi) \right) d\lambda(x\Gamma)$$
$$= \int_{G/\Gamma} \left(\int_{\Gamma} h(\xi)\sigma(\xi^{-1})d\lambda_{\Gamma}(\xi) \right) \sigma[(b(x\Gamma))^{-1}]d\lambda(x\Gamma)$$
$$= \int_{G/\Gamma} \left(\int_{\Gamma} h(\xi)\alpha_{\sigma} \left[\bigoplus_{\tau} n_{\sigma}(\tau) \cdot \tau(\xi^{-1}) \right] d\lambda_{\Gamma}(\xi) \right) \sigma[(b(x\Gamma))^{-1}] d\lambda(x\Gamma)$$
$$= \alpha_{\sigma} \left(\bigoplus_{\tau} n_{\sigma}(\tau)\hat{h}(\tau) \right) \int_{G/\Gamma} \sigma(b(x\Gamma)^{-1}) d\lambda(x\Gamma).$$

It follows that we have

$$\|(h^{0})^{\wedge}(\sigma)\|_{\phi_{\infty}} \leq \left\|\alpha_{\sigma}\left(\bigoplus_{\tau} n_{\sigma}(\tau)\hat{h}(\tau)\right)\right\|_{\phi_{\infty}} = \left\|\bigoplus_{\tau} n_{\sigma}(\tau)\hat{h}(\tau)\right\|_{\phi_{\infty}}$$
$$\|(h^{0})^{\wedge}(\sigma)\|_{\phi_{\infty}} \leq \left\|\alpha_{\sigma}\left(\bigoplus_{\tau} n_{\sigma}(\tau)\hat{h}(\tau)\right)\right\|_{\phi_{\infty}}$$
$$= \max\left\{\|\hat{h}(\tau)\|_{\phi_{\infty}}: n_{\sigma}(\tau) \neq 0\right\} \leq \|\hat{h}\|_{\infty}$$

and hence that $\|(h^0)^{\wedge}\|_{\infty} \leq \|\hat{h}\|_{\infty}$. This combined with equalities (7) and (8) shows that if $\{h_n\}$ is an RS-sequence on Γ (with the h_n restricted to be continuous—see the opening remarks of this section) then $\{h_n^0\}$ is an RS-sequence on G.

(1.6) LEMMA. [M. F. Hutchinson, private communication]. Let G be a prosolvable group (i.e. a projective limit of finite solvable groups) in which each derived factor $G/G^{(n)}$ is finite. Then G is tall.

PROOF. Since G is profinite it is totally disconnected. Let $\gamma \in \hat{G}$. Then $\gamma(G)$ must be finite since it is a totally disconnected compact Lie group. Furthermore, since $\gamma(G)$ is also prosolvable, it must be solvable. Let d be the degree of γ .

By Zassenhaus (1938) there is a number l > 0 depending on d only such that the solvable length of $\gamma(G)$ is at most l. Hence, using the fact that $G/\ker \gamma$ and $\gamma(G)$ are isomorphic, $G^{(l)} \leq \ker \gamma$.

Now let d be a fixed positive integer. The members of $\{\gamma \in \hat{G} : d_{\gamma} = d\}$ must all satisfy $G^{(l)} \subseteq \ker \gamma$ where l = l(d) and hence this set corresponds under an obvious injective map to a subset of $(G/G^{(l)})^{\wedge}$. But the latter set is finite by the hypothesis, and the lemma is proved.

(1.7) CONCLUSION OF THE PROOF. Let G be an infinite compact group. Then G has an infinite separable compact quotient group [Hewitt & Ross (1963), Theorem (8.7)]. Lemma (1.4) indicates that it is enough then to prove the theorem under the assumption that G is separable.

According to McMullen (1974), G either has an infinite abelian subgroup or an infinite closed topologically-2-generator pro-p torsion subgroup (p an odd prime). In either case, let us call the subgroup in question Γ . In the first case, Γ has an RS-sequence by proposition (1.1). In the second, the same conclusion follows from lemma (1.6) and proposition (1.2).

Since G is separable, the theorem now follows from Lemma (1.5).

2. Applications

Techniques for applying RS-sequences to problems in harmonic analysis are well-known. For example, see Hewitt & Ross (1970), (37.19), Gaudry (1970), Edwards & Price (1970) and Figà-Talamanca & Price (1972).

Here we sketch the details of three applications.

APPLICATION A. (2.1) In the case of compact groups, the Hausdorff-Young theorem states that $\hat{f} \in \mathfrak{G}^p$ whenever $f \in L^p$, $1 \leq p \leq 2$, and 1/p + 1/p' = 1. Thus if $f \in C(G)$, then $\hat{f} \in \mathfrak{G}^q$ for all $q \in [2, \infty]$. When G is infinite and abelian this is known to be best possible in the sense that there exists $f \in C(G)$ such that \hat{f} belongs to no \mathfrak{G}^q for $q \in [1, 2[$ (see Hewitt & Ross (1973), (37.19(c)) where an extension of this result is given for all locally compact abelian groups).

(2.2) PROPOSITION. Whenever G is an infinite compact group there exists $f \in C(G)$ such that \hat{f} belongs to no $\mathfrak{E}^{\mathfrak{q}}$ for $q \in [1, 2[$.

The proof will use the following lemma, the proof of which follows directly from the definitions of the \mathfrak{E}^p and their respective norms.

LEMMA. If $\phi \in \mathfrak{E}^p$, where $1 \leq p < \infty$, then $\phi \in \mathfrak{E}^q$ for all $p \leq q \leq \infty$ and moreover

$$\|\phi\|_{q}^{q} \leq \|\phi\|_{p}^{p} \|\phi\|_{x}^{q-p}$$

holds for $p \leq q < \infty$.

PROOF OF (2.2). Suppose that the statement of the proposition is not valid, that is, that $f \to \hat{f}$ defines a map from C(G) into $\cup \{E^q: 1 \le q < 2\}$. Let $\{q_n\}$ be a sequence in [1,2[which approaches 2 monotonically; then $\cup \{\mathfrak{G}^q: 1 \le q < 2\} = \cup \{\mathfrak{G}^{q_n}: n \ge 1\}$. A direct application of Edwards (1965), Theorem 6.5.5, with $E = \mathfrak{G}^2$, F = C(G), u = Fourier transform, $F_n = \mathfrak{G}^{q_n}$ and u_n the identity map on F_n shows that there exists an integer k such that $C(G)^{\wedge} \subseteq \mathfrak{G}^{q_k}$. It now follows from the closed graph theorem that for some K > 0 we have

(9)
$$\|\widehat{f}\|_{q_k} \leq K \|f\|_{\alpha}$$

for all $f \in C(G)$. Let f_n be an RS-sequence consisting of continuous functions. Then there exist m, M > 0 such that

$$m \leq \|f_n\|_2 \leq \|f_n\|_{\infty} \leq M$$

for all $n \ge 1$. From the preceding lemma, we have

$$\|f_n\|_2^2 = \|\hat{f}_n\|_2^2 \leq \|\hat{f}_n\|_{q_k}^q \|\hat{f}_n\|_{\infty}^{2-q_k}$$

and so we have

$$\begin{aligned} \|\hat{f}_n\|_{q_k} &\geq \|f_n\|_2^{2/q_k} / \|\hat{f}_n\|_{\infty}^{(2-q_k)/q_k} \\ &\geq m^{2/q_k} / \|\hat{f}_n\|_{\infty}^{(2-q_k)/q_k} \to \infty \quad \text{as} \quad n \to \infty \end{aligned}$$

since $1 \le q_k < 2$. But this contradicts (9), in view of the fact that $||f_n||_{\infty} \le M$, for $n \ge 1$.

APPLICATION B. (2.3) The Fourier transform $f \rightarrow \hat{f}$ carries M into \mathfrak{E}^{\ast} , L^1 into \mathfrak{E}_0 and L^p into $\mathfrak{E}^{p'}$ when 1 . It is known that these maps aresurjective if and only if <math>G is finite [Hewitt & Ross (1970), (37.4) and (37.19 (a))]; a direct proof of these facts follows from the existence of an RSsequence. The surjectivity of the maps is trivial when G is finite.

(2.4) PROPOSITION. Let G be an infinite compact group. The images of M(G), $L^{1}(G)$ and $L^{p}(G)$ ($1 \le p \le 2$) under the Fourier transform are properly contained in \mathfrak{E}^{*} , \mathfrak{E}_{0} , and $\mathfrak{E}^{p'}$ respectively.

PROOF. The proofs are similar in detail to the second part of the proof of the proposition (2.2): one assumes the contrary, establishes an inequality analogous to (9), and obtains a contradiction by substituting therein the members of an RS-sequence.

APPLICATION C. (2.5) Given $p, q \in [1,\infty]$, then $\phi \in \mathfrak{E}$ is said to be a (p,q)-multiplier if

$$\sum_{\gamma \in \hat{G}} d_{\gamma} tr[\phi(\gamma)\hat{f}(\gamma)\gamma(\,\cdot\,)]$$

is the Fourier series of a function in L^q whenever $f \in L^p$ (an equivalent definition is available which makes sense for arbitrary locally compact groups). For example, it is well-known that $\hat{\mu}$ is a (p, p)-multiplier for all $p \in [1, \infty]$ whenever $\mu \in M(G)$. On the other hand, when G is an infinite compact abelian group there exist functions in \mathfrak{E} which are (p, q)-multipliers for all $p \in [1, \infty]$ and all $q \in [1, \infty[$, which are not Fourier-Stieltjes transforms; see Brainerd & Edwards (1966), Theorem (4.15). The proof is based upon the existence of an infinite Sidon set. In fact, given the existence of certain lacunary subsets of \hat{G} , examples of functions in \mathfrak{E} with the preceding properties can easily be produced; c.f. (37.22) of Hewitt & Ross (1970). However, there exist compact groups whose duals possess no reasonable lacunary sets. Suppose that a locally compact group has the property of possessing an RS-sequence of functions whose supports are contained in a fixed compact set. Then Theorem 5.7 of Edwards & Price (1970) shows that for such groups there exists a (p, q)-multiplier for all pairs (p, q) such that

428

1 , but which is not a Fourier-Stieltjes transform. Since we have seen that every infinite compact group has an RS-sequence we have:

(2.6) PROPOSITION. Let G be an infinite compact group. There exists a function in \mathfrak{E} which is a (p,q)-multiplier for all pairs (p,q) such that 1 , but is not the Fourier-Stieltjes transform of any measure.

(2.7) REMARKS (i). Proposition (2.6) improves Theorem 4.3 of Figà-Talamanca & Price (1972), the proof of which was based on the existence of *t*-RS-sequences, $t > \infty$, as defined above. As a consequence of the existence of these restricted RS-sequences, roughly all that could be shown was that there exist multipliers of the type under question which are not Fourier transforms of any element in $\bigcup \{L': 1 < r \leq \infty\}$.

(ii) Further cases of proposition (2.6) for infinite compact groups are accounted for by noting that all functions in \mathfrak{E}^* are (p,q)-multipliers when $1 \leq q \leq 2 \leq p \leq \infty$ (Table (36.20) of Hewitt & Ross (1970)), whereas by proposition (2.4) there exist elements in \mathfrak{E}^* which are not Fourier-Stieltjes transforms.

(iii) In the event of the existence of a U-RS-sequence where U is some open subset of G (see propositions (1.1) and (1.2)), application A can be strengthened to show that there exists $f \in C(G)$ with support in \overline{U} such that \hat{f} belong to no \mathfrak{E}^q with $q \in [1, 2[$. Applications B and C can be improved in a like manner.

References

- B. Brainerd and R. E. Edwards (1966), 'Linear operators which commute with translations, Part 1: representation theorems', J. Austral. Math. Soc. 6, 289-327.
- R. E. Edwards (1965), Functional Analysis: Theory and Applications (Holt, Rinehart and Winston, New York, 1965).
- R. E. Edwards and J. F. Price (1970), 'A naively constructive approach to boundedness principles, with applications to harmonic analysis', *Enseignement Math.* 16, 255–296.
- A. Figà-Talamanca and G. I. Gaudry (1970), 'Multipliers and sets of uniqueness of L^p', Michigan Math. J. 17, 179-191.
- A. Figà-Talamanca and J. F. Price, (1972) 'Applications of random Fourier series over compact groups to Fourier multipliers', *Pacific J. Math.* 43, 531-541.
- A. Figà-Talamanca and J. F. Price (1973), 'Rudin-Shapiro sequences on compact groups', Bull. Austral. Math. Soc. 8, 241-245.
- G. I. Gaudry (1970), 'Bad behaviour and inclusion results for multipliers of type (p, q)', Pacific J. Math. 35, 83-94.
- E. Hewitt and K. A. Ross (1963 and 1970), Abstract Harmonic Analysis (Vols I and II, Springer-Verlag, Berlin, 1963 and 1970).
- G. W. Mackey (1951), 'On induced representations of groups', Amer. J. Math. 73, 576-592.

N. Bourbaki (1963), Éléments de Mathématique : Intégration, Chap. 7-8 (Hermann, Paris, 1963).

[10]

- J. R. McMullen (1974), 'Compact torsion groups' (Proceedings of the Second International Conference on the Theory of Groups, Lecture Notes in Mathematics No. 372, Springer-Verlag, Berlin, 1974).
- H. Zassenhaus (1938), 'Beweis eines Satzes über diskrete Gruppen', Abh. Math. Sem. Univ. Hamburg 12, 289-312.

University of Sydney, Sydney, N.S.W. 2006, Australia

and

University of New South Wales, Kensington, N.S.W. 2033, Australia

430