
J. Functional Programming 6(1) : 1-28, January 1996 © 1996 Cambridge University Press

Generic functional programming with types and
relations

RICHARD BIRD, OEGE DE MOOR
Programming Research Group, Oxford University, Wolfson Building, Parks Road, Oxford 0X1 3QD, UK

AND PAUL HOOGENDIJK
Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

A generic functional program is one which is parameterised by datatype. By installing specific
choices, for example lists or trees, different programs are obtained that are, nevertheless,
abstractly the same. The purpose of this paper is to explore the possibility of deriving generic
programs. Part of the theory of lists that deals with segments is recast as a theory about
'segments' in a wide class of datatypes, and then used to pose and solve a generic version of
a well-known problem.

Capsule Review

There are many programming problems that can be specified on a variety of datatypes such
as lists, trees and forests. Examples of such problems are parsing, pretty printing, unification,
etc. This paper investigates how datatype independent programs for problems such as these
can be constructed.

The main problem solved in the paper is a generalisation of the maximum segment sum
problem on the datatype of lists to a large class of datatypes. Bird's paper 'An introduction
to the theory of lists' from 1987 contains an elegant derivation of a linear-time program
for the maximum segment sum problem on lists. In this paper, the authors show that this
derivation can be generalised in a relatively straightforward way to a large class of datatypes.
The main ingredients of the generalisation are functors, describing the structure of datatypes,
and relations, simplifying the derivation. The constituents of the derivation are general
combinators that are not only applicable to the maximum segment sum problem, but also to
problems like deforestation and pattern matching.

1 Introduction

To what extent is it possible to construct useful programs without knowing exactly
what datatypes are involved? At first sight this may seem a strange question, but
take the example of pattern matching. Over lists this problem can be formulated in
terms of two strings, a pattern and a text; the object is to determine if and where the
pattern occurs as a segment of the text. Now, pattern matching can be generalised
to other datatypes, including arrays and trees of various kinds; the essential step is
to be able to define the notion of segment in these types. So the intriguing question

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

2 R. Bird, O. de Moor and P. Hoogendijk

arises: can one construct a useful algorithm, parameterised by a datatype, to solve
the general problem of pattern matching?

The purpose of this paper is to explore the ideas of generic programming through a
second problem, related to but simpler than pattern matching, namely the problem of
computing the maximum segment sum. This problem was chosen because sufficient
list theory already exists (Bird, 1987, 1989a, 1990) for one to calculate an efficient
solution in a few equational steps. It turns out that the theory of segments can be
generalised to a wide class of datatypes, so the calculation leads to a generic solution
to the problem.

To be able to construct a generic theory of segments, we need a reformulation
of the theory of lists with two new ingredients. The first ingredient is a categorical
treatment of datatypes (Malcolm, 1990; Manes and Arbib, 1986; Lehmann and
Smyth, 1981). In the categorical approach, datatypes are characterised in terms
of certain mappings, called functors, and specifications can be parameterised by
functors in a simple and direct manner. Although the categorical approach is
becoming familiar to functional programmers (Barr and Wells, 1990; Bird and
de Moor, 1996; Pierce, 1991), we will give a brief but hopefully adequate account of
the essential ideas.

The second ingredient involves the move from functions to relations (Aarts et al.,
1992; De Moor, 1992). Introducing relations enables us to deal more smoothly with
nondeterministic specifications, but it also turns out that the calculus of relations
leads to substantial simplifications both in the derivation of purely functional
programs and in the study of general datatypes. Again, we will give a light account
of the ideas.

The rest of the paper is structured as follows. In the next section we show -
quite informally - how the notion of segment can be defined in one or two other
data types. After that, in section 3, we examine the structure of the derivation of
the maximum segment sum problem, recalling that it depends on two results in the
theory of lists, namely Horner's rule and the Scan lemma. Section 4 gives an account
of the general theory of datatypes, and in section 5 we review part of the calculus
of relations. Using this theory, we show in section 6 how Horner's rule can be
generalised. To give an account of a general version of the Scan lemma, we need the
fact, explained in section 7, that every datatype found in functional programming
comes equipped with a membership relation. It turns out that the existence of a
membership relation for a datatype is crucial for generic programming. In section 8
we generalise the Scan lemma, and in section 9 present the complete derivation of
the maximum segment sum problem. Finally, Section 10 contains a discussion of the
implications of this research.

2 Towards generality

Let us start by being more precise about what we mean by a segment of a list,
indeed, what we mean by a list. There are two basic views of lists, one of which is

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 3

given by the type declaration

listl A : := nil \ snoc (listl A, A).

Formally, this means that lists are represented as finite terms over nil and snoc. For
instance, the list [1,2,3] is represented by the term

snoc {snoc (snoc (nil, 1), 2), 3).

Thinking of lists as terms, we see that a prefix of x is really the same thing as
a subterm of x. The function subterms takes a list and returns the set of all its
subterms:

subterms nil = {nil}

subterms (snoc (x,a)) = subterms x U {snoc (x,a)}.

In the theory of lists, prefixes are called initial segments, and the function subterms
is called inits. There is the subtle difference that inits returns a list rather than a set,
but we ignore this distinction for now, though we return to it in the next section,
and it will prove to be of crucial importance later on.

Dual to the notion of prefix is that of a suffix. A suffix of x can be obtained by
substituting the empty list for a subterm of x. For instance, snoc (snoc (nil, 2), 3) is
obtained from the term above by replacing the subterm snoc (nil, 1) by the empty
list nil. For the sake of a word we can say that this subterm is the result of pruning
the original term. The function prunings takes a list and returns all ways in which it
can be pruned:

prunings nil = {nil}

prunings (snoc (x,a)) = {nil} U {snoc (y,a) \ y e prunings x}.

In the theory of lists, suffixes are called tail segments and prunings is called tails.
One can now define arbitrary segments by the equation

segments = union • map prunings • subterms.

Here union is the function that takes a collection of sets and returns its union, and
map is the operator that applies a function to all elements of a set.

For comparison, consider now the other - and more familiar - view of lists, given
by the type declaration

listr A : := nil \ cons (A, listr A).

With this datatype the role of inits and tails are reversed: subterms gives the tail
segments of a list, while prunings gives the initial segments. The function segments
is defined in the same way as before and again gives the segments of a list.

As a third example, consider binary trees as defined by

tree A : := nil | fork (A, tree A, tree A).

The elements of this type are finite trees, this time over nil and fork, so it is again
possible to define the functions subterms and prunings. The function subterms takes

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

4 R. Bird, O. de Moor and P. Hoogendijk

a binary tree and returns the set of all its subtrees:

subterms nil = {nil}

subterms (fork (a,x,y)) = subterms x U subterms y U {fork (a,x,y)}.

The function prunings takes a binary tree and substitutes nil for its subtrees in all
possible ways:

prunings nil = {nil}

prunings (fork (a, x,y)) = {nil} U

{fork (a, u, v) | u e prunings x, v 6 prunings y}.

The segments of a tree are defined by the same equation as before. Jeuring (1989)
also considered such a definition, though he spoke of treecuts rather than segments.

3 The maximum segment sum

The problem of the maximum segment sum is to compute the function mss, where

mss = max • map sum • segments.

Over lists this problem is interpreted as follows: given a list of integers, compute the
sum of the elements in each segment of the list and return the maximum such sum.
For example, mss [—1,2, —1,3, —2] = 4 because the segment [2, —1,3] has maximum
sum.

Given the definition of segments in the previous section, we can calculate

mss

= {definition}

max • map sum • segments

= {definition of segments}

max • map sum • union • map prunings • subterms

= {since mapf • union = union • map (mapf)}

max • union • map (map sum) • map prunings • subterms

= {since max • union = max • map max (over sets of non-empty sets)}

max • map max • map (map sum) • map prunings • subterms

= {since mapf • map g = map (f • g)}

max • map (max • map sum • prunings) • subterms.

In the fourth step we have assumed that prunings returns a non-empty set, so that
map prunings • subterms returns a set of non-empty sets; this is necessary since max
is not defined on the empty set. So far, the calculation has been completely general
(and also standard: we have merely copied from Bird (1989) modulo some changes
in names), but now let us revert to the specific datatype listl A. In this datatype the
function sum is defined by

sum = foldl(0,+),

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 5

where foldl (c,f) is defined by

foldl(c,f)nil = c

foldl(c,f)(snoc(x,a)) = f (foldl (c,f)x,a).

In standard functional programming, foldl (c,f) is usually written in the form
foldlfc and is given as a function over the type listr A, since lists in functional
programming are built with nil and cons rather than nil and snoc, but the above is
an equivalent definition.

Now there is a standard result in the theory of lists, called Homer's rule, which
says that if/ is monotonic with respect to <, then

max • map {foldl (c,/)) • tails = foldl (c,g),

where g (a, b) =f (a, b)Uc and a u fc is the greater of a and b. We therefore obtain

max • map sum • tails = foldl (0, ffi),

where a@b = (a + b)uO.

Using this result to continue the calculation of mss, again in the specific context
of lists, we find

mss = max • map (foldl (0, ©)) • inits,

where we have replaced subterms by inits. The final step is to make use of an
important operation on lists called scanl, whose definition we will see in a moment.
Scans are important in functional programming; in particular, Gibbons (1991) has
made a study of scans on a particular species of binary tree. Over lists, the key fact
is the Scan lemma, which says

map (foldl (c,/)) • inits = scanl (c,f).

In this equation inits returns a list rather than a set, and map is a function on lists.
In fact, inits returns the list of initial segments of a list in ascending order of length:

inits [a u a 2 , . . . , a n] = [[], [a{\, [a u a 2] , [a u a 2 , a 3] , . . . , [a \ , a 2 , . . . , a n]] .

As a function returning lists, inits is defined by

inits = foldl ([nil],/)

where f (x,a) = snoc (x,snoc (last x,a)).

The function scanl (c,f) is defined similarly:

scanl (c,f) = foldl ([c],g)
where g (x, a) = snoc (x ,f (last x, a)).

Note that scanl (nil, snoc) = inits, so the definition of inks is a special case of scanl.
The point of the scan lemma is that evaluation of

scanl (c,®)[a\,a2,...,an] = [c,c ffi au(c ffiai) ffi a2, • • ((c © a{) © • •)@an]

can be done with n evaluations of ffi, whereas direct evaluation of map (foldl (c, ©)) •
inits requires O(n2) evaluations of © on a list of length n.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

6 R. Bird, 0. de Moor and P. Hoogendijk

Applying the scan lemma to the problem of computing mss, we end up with the
result that

mss = max • scanl (0, ©)

a®b = (a+b)uO,

where max is now interpreted as a function on lists rather than sets. The above
identity leads at once to a linear time algorithm.

The rest of the paper is about how to generalise this calculation to arbitrary
datatypes of the kind found in functional programming. In effect, we have to state
and prove versions of Horner's rule and the Scan lemma that are valid for any
datatype.

4 Datatypes

In what follows it is important to emphasise that, unless otherwise stated, a function
means a total function whose source and target types are sets, unlike in standard
functional programming where types are complete partial orders. As a departure
from tradition, we reverse the usual order of writing the source and target types
in function type declarations, preferring f : A <— B rather than / : B —» A. This
notation is consistent with adjectival order in English and has the advantage that
the definition of function composition now takes the smooth form: if/ : A*~B and
g :B <-C, t h e n / g :A<^C.

We have already seen three examples of datatype declarations, namely those of
listl A, listr A, and tree A. For example, let us recall

listr A : := nil | cons (A, listr A).

Whenever one declares a datatype a number of functions are brought into play. In
part, declaring a datatype as an equation asserts the existence of an isomorphism
between the types on the left and right. In the case of listr A this isomorphism takes
the form

listr A 2* 1 + (A x listr A).

The type 1 consists of just one member and serves as the source type for constants.
It has the property that for each set A there is precisely one function with type
1 <— A, the usual notation for this function being \A.

The type constructor x is cartesian product, and + is disjoint sum, also called
coproduct. The right-hand side of the isomorphism can be rewritten, giving

listr A = F(A, listr A),

where F(A,B) = I + (A x B) is a mapping from types to types. We can also use F
as a mapping from functions to functions by defining

F(/\g) = idx+tfxg).

The function id\ : 1 <— 1 is the identity function on 1. The cartesian product

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 7

constructor x is defined as a mapping between functions in the following way: if

/ : A <- C and g :B <-D, t h e n / xg: AxB<-CxD satisfies

(fxg){cj) = (fc,gd).

Similarly, the coproduct constructor + can be defined on functions: applied to a left
component c, the function/ + g : A + B <— C + D returns f c as a left component
of the result; dually, applied to a right component d, the value of (f + g)d is the
right component g d.

A function having a dual role both as a mapping between types and a mapping
between functions is, provided certain properties are satisfied, called a functor. The
functor F defined above takes a pair of types or functions as argument and so is
sometimes called a bifunctor. One property we require of a functor F is that if
/ : A*— B, then F/ : FA*— FB. The other properties are the identity and composition
rules:

FidA = idpA

F(/-g) = F / F g .

The function idA is the identity function with type A <— A. From now on we will
usually omit the subscript on id, relying on context to resolve ambiguity.

In the case of bifunctors the above rules give, firstly, that if / : A <— C and
g :B<-D, then F(f,g) : F(A,B) <- F(C,D); and, secondly, that

F{id,id) = id

F(fg,hk) = F(f,h)F{g,k).

In particular, x and + satisfy the identity and composition rules for bifunctors.
The functor F associated with the declaration of a datatype is called the base

functor of the declaration. Thus, F(A,B) = 1 + (A x B) is the base functor associated
with listr A. A functor is called polynomial if it is built up from constants, finite
products and coproducts. More precisely,the class of polynomial functors is defined
inductively by the following clauses:

1. The identity functor id, defined by id A = A and idf = / , and the constant
functors KA, defined by KAB = A and KAf = idA, are polynomial.

2. If F and G are polynomial, then so is their composition F • G, their sum F + G
and their product F x G, where

(F + G)/ = F/ + G/
(F x G)/ = F/ x G/.

We will denote functors by single letters in sans serif font (because we need capital
Roman letters for types and relations, introduced below), or by identifiers in ordinary
italic font. In particular, id denotes both the identity function (on some given type)
and also the identity functor.

The declaration of listr A also introduces two functions

nil : listr A <— 1 and cons : listr A*— Ax listr A

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

8 R. Bird, 0. de Moor and P. Hoogendijk

that serve to construct lists. We can parcel these functions together as one function

[nil, cons] : listr A <— F(A, listr A).

In general, if / : A <- B and g : A *- C, then [f, g] : A «- B + C applies /
to left components and g to right components. The function [nil, cons] has a
special property, which captures the fact that we can define functions on lists by
pattern-matching: given any function [c,f] : B <— F(A,B) there is a unique function
h : B <— listr A such that

h • [nil,cons] = [c,f] • F(id,h).

Unwrapping this compact equation, we get two equations

h • nil = c

h • cons = f • (id x h).

In functional programming h is written in the form h = foldr (c,f), but we will
use the alternative notation h = flc,/]). A function h denned in this way is called
a catamorphism, a term meaning 'according to form'. In functional programming,
catamorphisms are what are known as fold operators. We have already met the fold
operator corresponding to the type listl A, namely foldl.

Before describing the general situation, let us give one more example. The decla-
ration of type tree A in section 2 asserts tree A = F(A, tree A), where this time the
base functor F is given by

F(A,B) = 1+AxBxB.

The functor F is polynomial. The declaration of tree A also introduces two functions

nil : tree A <— 1 and fork : A x tree A x tree A

that serve to construct trees. As before, we have

[nil, fork] : tree A <— F(A, tree A).

The function [nil,fork] has a special property that given any function [c,f] :
B <— F(A, B) there is a unique function h : B <— tree A such that

h- [nil,tree] = [c,f] • F(id,h).

This time h is a catamorphism on trees. Again we write h = flc,/]), so the notation
([—]) is implicitly parameterised by the base functor of the datatype.

Let us now consider the general situation. Think of the declaration of a datatype
term A as providing two pieces of information: a polynomial base functor F(A,B),
and a named function a : term A <— ?(A, term A), which we will call the constructor
of the type. The construtor a has the special property that given any function
/ : B «- F(A,B) there is a unique function h, written h = d/D, satisfying

h-a = fF(id,h). (1)

As a consequence of this property of a we get that ([a]) = id. For example, ([nil, cons]}
(which now we should write more accurately as ([[nil, cons]]} but won't) is the identity

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 9

function on lists. Less obviously, it also follows from its defining property that a is
an isomorphism, meaning

a • a° = id and a° • a = id,

where a° denotes the inverse function to a. The first id is the identity on term A, and
the second is the identity on F(A,termA), so a is the isomorphism that establishes
term A = F(A, term A).

Using the fact that h is uniquely characterised by (1), we obtain the following
useful fusion rule for combining two functions into one:

/ • fej = P J <= fg=hF(id,f).

The proof is:

/ • fej = PD
= {(1) for p j }

/ • flgj • a = h • F(id,f • ffgj)

{(1) for

= {property of functors}

/ • g • Hid, (bJ) = h • F(id,f) • Hid,

<= {}
/ • g = A • F(id,f).

Since a is an isomorphism, we can move it to the other side of the defining equation
for (]/]). Thus, h = ([/"]) is the unique solution of the equation

h = f-F(id,h)oc°.

We will use this fact below when we generalise to relations.
One further function is introduced whenever we declare a datatype term A; this is

a function termf with type term A <— term B when/ : A <— B. The definition is

termf = ([a • F(f,id)]).

In the case term = listr this definition expands to the equations

listrf • nil = nil

listrf • cons = cons • (f x id),

and defines the familiar map operation on lists: listrf x applies/ to every element
of x. We denote the map operation on term A by termf because term is a functor.
It is immediate that term id = id, and the proof that

term(fg) = termf term g

is a simple exercise in the fusion law, which is left to the reader. We will call term

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

10 R. Bird, O. de Moor and P. Hoogendijk

a type functor. Although it is not polynomial, we can allow it in the declarations of
other datatypes without altering the theory given above. For instance, the type

tree A : := node (A, listr (tree A))

introduces a datatype based on the non polynomial functor F(A,B) = A x listr B.
In this case the constructor function a = node.

We will call a datatype inductive if its base functor is polynomial or a type functor.
In what follows we restrict attention to inductive datatypes.

5 Relations

Now, let us extend the foregoing theory to relations. We write R : A <- B to denote
that R is a relation of type 'A from B'; we can think of R as a subset of A x B.
Relational composition, like its functional counterpart, goes backwards: R • S is
pronounced 'R after S'. We reserve single lower-case letters f,g and so on, to denote
functions.

Unlike functions, every relation has a converse. If R : A <— B then the converse
relation is R° : B <— A. Converse preserves identities but reverses composition, so
(RS)° = S° R°.

For each A and B the relations of type A<— B form a complete lattice with union
U and intersection n. Relations with the same type can be compared via a partial
order s , where R ^ S denotes R n S = R. We will sometimes use 2 rather than
c in writing inequations because 2 can be interpreted as refinement: R 2 S if R
refines to S. Thus, a chain of inclusions

S 2 Si 2 • • • 2 Sn 2 /

can be interpreted as a stepwise refinement of a relational specification S into a
function (an executable program) / .

Converse preserves c and composition distributes over (arbitrary) unions, but
only weakly distributes over intersection in that

R(SnT) <= (R- S)D(R-T).

We will suppose in what follows that composition binds more tightly than any other
operation, so the right-hand side could have been written without brackets. Using
the given properties of converse, we get from the above inequation a second one:

(RnS)T s (R • T)n(S -T).

These two inequations say that composition is monotonic in both arguments under
S. One further inequation, called the modular law, is adjoined to the other axioms
to give a weak converse of distributivity over intersection:

(RS)nT s R(Sr\R°T).

There is more to be said about the calculus of relations, which is based on Freyd's
theory of allegories (Freyd and Scedrov, 1990), but we will postpone saying it to
later. For now let us concentrate on the main point, which is that everything we have

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 11

said above about datatypes goes through when functions are extended to relations,
provided only that we restrict attention to monotonic functors; that is, if R £ S
then FR £ FS. In particular, polynomial functors and type functors are monotonic.
It can be shown that every functor on functions can be extended to a monotonic
functor on relations in at most one way. It can also be shown that such functors
preserve relational converse, so (FR)° = F(R°). It follows that the expression FR° is
not ambiguous.

By extending the theory to relations we get relational catamorphisms as well as
functional ones. Moreover, since converse reverses composition we get, for a relation
R : term A <— F(A, term A), not only that X = ([/?]) is the unique solution of

X = RF(id,X)oc°

but also that X = ([RY is the unique solution of

X = oc-F(id,X)R°.

By the Knaster-Tarski theorem the unique solution (if it exists) of X = ([>X is also
the least solution (under relational inclusion) of I 2 (f>X and the greatest solution
o f l c (f)X, so we get all three of the following versions of the characterisation of
catamorphisms:

X = R • FX • a° = X =&R])

X £ R • f=x • <x° => I

X =>RFX a° => X 2

With relations we also get two variants of the fusion rule:

R • ([S]) £ &T]) <= R-S ^TF(id,R)

R • ([S]) 2 P D <= R-S = T-F{id,R).

Finally, writing (/iX : 4>X) for the least fixed point of <j>, we get the following rule:

:RF(id,X)S°). (2)

With S : C *- F{A,C) and R : B <- F(A,B) we have ([SF : term A <- C and
<[R]) : B <— term A, so (2) is a rule for eliminating the intermediate datatype term A
from a computation.

6 Prunings and Horner's rule

Let us now proceed to formalise the notion of pruning introduced in section 2, and
to state and prove a general version of Horner's rule. For simplicity, we will assume
that the base functor F of the datatype term A takes a particular form, namely

F(A,B) = l+G(A,B),

for some binary functor G which is not further specified. We follow Backhouse
(Aarts et al., 1992) in calling such functors pointed. Since F{A, B) is a coproduct, the
constructor function a : term A <— F(A, term A) can be written in the form a = [ao, a j ,

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

12 R. Bird, O. de Moor and P. Hoogendijk

where ao : term A <— 1 and ai : term A <— G(A, term A). One can think of oco as a
constant returning the empty element of term A; in the sequel we will also use oto
as a constant function of type term A <— B. More precisely, this constant function
should be written as ao • !g, where !g is the unique function of type 1 <— B. The same
notational abbreviation will be used for other constants; thus, if c : A <— 1 we will
also write c for the constant function c • \B :A*-B.

Now, to prune a term x means to substitute ao for some (zero or more) subterms
of x. The relation prune : term A <— term A takes a term and prunes it in some
arbitrary way:

prune = tfa0)a0 Uai]).

The first ao has type term A «— 1, while the second has type term A <— G(A, term A).
The function prunings in Section 2 is the set of possible results returned by prune:

prunings x = {y \ y prune x}.

In the relational calculus the mapping that associates with each relation the corre-
sponding set-valued function is denoted by A. Thus, if R : A<—B, then AR :PA*—B,
where PA denotes the powerset of A. In particular, prunings = Aprune. Writing P in
sans serif font suggests that it is a functor; and indeed it is: P/ is the function that
applies / to every element of a set. Thus P/ is the function that we wrote as mapf
in section 3.

So as not to lose the main thread in the mass of detail to come, we will now state
the general version of Horner's rule, ignoring the fact that its formulation contains
some concepts that we have not yet formally defined:

Lemma 6.1
(Horner's rule). Let F be a pointed, monotonic functor and / = [/o,/i] : B <—F(A,B)
be a function. Furthermore, suppose R : B<—B is a preorder such that/ is monotonic
under R. Then

max R • Pfl/J • Aprune 2 imax R • A[/b,/0 U/i]J.

Horner's rule gives conditions under which one computation can be refined by
another; the computation on the left takes the set of all prunings, applies a functional
catamorphism to each pruning, and takes a maximum under a relation R; the
computation on the right is a relational catamorphism that selects a maximum at
each step.

Let us now explain the additional concepts in the statement of Horner's rule.
First, a preorder is a reflexive, transitive relation, so i? : B <— B is a preorder if
id c R and R • R £ R. Next, and for the moment informally, max R : B <- PB
is a relation that, given a set, returns some maximum element under R. Finally, a
function/ : B *— F(A,B) is monotonic under R if

f-F(id,R) £ Rf.

Here are two examples to explain the definition of monotonicity:

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 13

1. Addition. Let R = leq, where leq : Nat <— Nat denotes the relation < on
natural numbers, and let / = plus, where plus : Nat *- Nat x Nat denotes
binary addition. Taking F(A,B) = AxB the monotonicity condition translates
to

plus • (id xleq) c leq • plus

and says that x = y + z and z < z' implies x < y + z'. This is just the (true)
statement that addition is monotonic in its right argument. We can also take
F(A,B) = B x B, in which case the monotonicity condition is

plus • (leq x leq) <= leq • plus

and asserts that addition is monotonic in both arguments.
2. Cons lists. Let R = lex, where lex is the lexicographic ordering on lists, and

/ = [nil,cons]. With F(A, B) = 1+A x B the monotonicity condition translates
to

nil c lex • nil

cons • (id x lex) £ lex • cons.

The first equation follows at once from the reflexivity of lex, and the second as-
serts the true statment that cons is monotonic with respect to the lexicographic
ordering.

To prove Horner's rule we need to define max R formally in the relational calculus,
and also to be more precise about the relationship between P and A. We begin with
the latter.

6.1 Powersets

Formally, the isomorphism between relations and set-valued functions can be de-
scribed in the following suitably abstract form. For every set A there exists a set PA,
called the powerset of A, and a relation G : A <— PA, called the membership relation
on A, which together are characterised by the following property: for every relation
R : A<— B, there exists a function AK : PA <— B such that

(f = AR) = (ef = R) for a l l / :PA^B.

The function AR is said to be the power transpose of R and can be defined in set
theory by (AR)b = {a | aRb}. (In fact, much of set theory can be recovered using just
this universal property of powersets, plus the relational calculus. This observation
lies at the heart of the categorical approach to sets, namely the theory of toposes
(Johnstone, 1977; Barr and Wells, 1985; Goldblatt, 1986).)

It is immediate from the universal property of A that

e-AR = R.

Below we refer to this fact by the hint 'A cancellation'. It also follows from the
universal property that id :PA*-PA satisfies

id = A(e).

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

14 R. Bird, O. de Moor and P. Hoogendijk

Using A we can define the existential image of a relation R : A <— B; this is a
function ER :PA*- PB defined by

ER = A(R • e).

In set theory we have

(ER)x = {a\(3b : a Rb A b e x)}.

It is clear from its definition that Eid = id, and below we will show that E(R • S) =
ER • ES, so E is a functor (taking its action on types to be EA = PA). It is not,
however, a monotonic functor on relations because it returns a function and / £ g
if and only if/ = g.

To show E is a functor we first prove A(R • S) = ER • AS :

A(RS) = ER- AS

= {definition of A.}

R • S = e • ER • AS

= {definition of E}

R • S = G • A(R • €) • AS

= {A cancellation (twice)}

true

Now, taking S = T • e, we get E(K • 71) = ER • ET.
Although E is not monotonic, there does exist a variant of E which is, namely

the powerset functor P. Over functions, this functor has the same action as E, so
P/ = E/. For a relation R the definition of PR in set theory is

x PR y = (Va G x : 3b € y : a#b) A (V& G y : 3a G x : aRb).

For use below, we note the following two identities, in which the function union :
PA<— PPA is defined by union = E(G); this function returns the union of a collection
of sets. The identities are:

A(R • S) = union • PAR • AS (3)

P / • union = union • P P / . (4)

Equation (4) appeared in section 3. Both equations are easy consequences of the
definitions above and we omit details; for a further discussion of P and its relation
to E, see De Moor (1992).

6.2 Division

To define max R we need the operation of relational division. Because relational
composition distributes over arbitrary unions, it has a weak inverse, called division,
which is characterised by the equivalence

T £ R/S = TS £ /? for all T.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 15

The operator / can be defined in set theory by

a (R / S) b = (V c : b S c : a R c) .

A second division operator \ can be introduced by defining R\S = (S°/R°)°, so

T^R\S = R T z S for all T.

As a predicate we have a (R\S)b = (Vc : cRa : c S b).
Above we defined PR in set theoretical terms; using division we can define

PR = e\(R • e) n (s • R)/9,

where B is shorthand for G°. The expression on the right is the translation of the
earlier one into the relational calculus.

Using division we can define the relation max R : A <— PA by

max R = G Pi (R°/3).

This definition corresponds to the usual one in set theory: a(max R)x holds when a
is an element of x (the first term) and x has upper bound a (the second term), that
is, for all b G x, we have bRa. Although the definition of max R does not require R
to be a preorder, it is useful only when R is one, so we will tacitly assume it so.

6.3 Properties of max

There are two properties of max that we will need. First of all,

X^maxRAS = (X £ S) A {X • S° £ R"). (5)

We give the proof of (5) because it is typical of the kind of manipulations found
in the relational calculus. The calculation makes use of the following two rules
in whuch / is a function and R and S arbitrary relations. Firstly, we have the
distributive law

(Rns)-f = (Rf)n(Sf),

and secondly the shunting law

R^Sf = Rf°cS.

The proof of (5) is:

X £ max R • AS

= {definition of max R}

x c(en(R°/B))AS

= {distributive law (above)}

X s(G-AS)n((/?°/3)-AS)

= {A cancellation and universal property of n}

(I S S) A (X £ (K° /9)AS) .

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

16 R. Bird, O. de Moor and P. Hoogendijk

Continuing with the second term:

X £ (R°/3) • AS

= {shunting law (above)}

X -(AS)° £ R°/B

= {universal property of /}

X -(AS)°-B £.R°

= {converse and A cancellation}

X S° £ f l ° .

The second fact is that max R weakly distributes over union:

max R • union => max R • P(max R). (6)

We will sketch the proof since it uses (5). Since union = E(e) = A(e • G), condition
(5) shows it is sufficient to prove:

max R • P(max R) £ e • €

maxR P(maxR)3 3 £ R°.

The first is easy using max R c g and e • PZ £ X • e, and for the second we use
PAT • 3 £ 3 • X and max R • 3 £ R° to write the inclusion in the form R° • R° £ R°,
which follows from the transitivity of R.

We saw a version of (6) in section 3 where it appeared as an equation, but with
the qualification that it applied only to sets of non-empty sets. It is one of the
advantages of a relational approach that we can omit the qualification provided we
replace equality by refinement.

6.4 Proof of Horner's rule

We are now ready for the proof of Horner's rule. Our aim is to apply the universal
property for max R, so we begin

max R • P([/~D • Aprune

= {since P = E on functions}

max R • Ed/J • Aprune

{since EX- AY = A(X • Y)}

max R • A(([/"5 • prune)

= {definition of prune}

max R • A(([/T) • ([ao,

= {fusion (see below)}

max/?A([/o,/oU/iD.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 17

The condition for fusion is that

and is easily verified.
Abbreviating [/o,/oU/i] by S and appealing to (5), we get Horner's rule by showing

dmaxRAS]) £ ([S])

Umax R • AS]) • ([SJ0 £ R°.

The first inequation is easy, since max RAS £ € • AS = S and catamorphisms
are monotonic. For the second inequation we appeal to (2) and show

max R-AS F(id,R°)S° £ R°.

To do this, we need the monotonicity o f / under R. It is easy to show that this
condition implies that S is also monotonic under R in the sense that

SF(id,R) £ R S.

Taking converses, and recalling the assumption that F is a monotonic functor and
so preserves converse, we obtain

F(id,R°)-S° £ S°R°.

Now we can argue:

max R- AS • F(id,R°) • S°

£ {above}

max R- AS • S° • R°

£ {since AX • X ° £ 3 by shunting and A cancellation}

max R • 3 • R°

£ {since max R £ R°/3 and universal property of /}

R° R°

£ {converse and transitivity of R}

R°.

The proof of Horner's rule is complete.
Before we can solve the problem of defining subterms and generalising the Scan

lemma, we need to give some more theory about datatypes.

7 Natural transformations and membership

Datatypes record the presence of elements, so one would expect a type term A to
come equipped with a membership relation 5A '• A*—term A such that a8A x precisely
when a is an element of x. Note that SA is a collection of relations, one for each
type A. We have already seen one membership relation, namely eA '• A «- PA, the
ordinary membership relation for sets. To define the notion of membership for an
arbitrary datatype, we first explain what it means for a collection of relations to be
a natural transformation.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

18 R. Bird, 0. de Moor and P. Hoogendijk

7.1 Natural transformations

A number of functions that we have met already are really collections of functions;
for example

idA :A<-A

a.A '• term A <— F(A, term A)

pruningsA : P(term A) <— term A.

The functions in each collection do not depend in any essential way on the parameter
A, a fact which is captured by a suitable 'type changing' rule. For example, for any
function / : A <— B we have

/ • idB = id A • /

termf • <xB = aA ' ?(f, termf).

The second identity comes from the definition termf = ([a • F(f, id)]}. Formally, a
collection of functions (j>A : FA *- GA is called a natural transformation if for all
/ : A <— B we have

We write <j> : F <— G to indicate that <j> is natural. In particular, we have id : id *— id,
and a : term <— G, where GA = F(A, term A).

The notion of natural transformation extends to relations: a collection of relations
<j> : F <— G is natural if for all relations R : A <— B, we have FR • 4>B = <I>A ' G/?. For
example, we have € : id <— E.

There is a weaker notion of natural transformation, more useful when dealing with
relations: a collection of relations <J>A : FA *— GA is a weai" natural transformation
when for all R : A <— B we have

FK • 4>B 2 4>A- GR.

We write (/> : F H G to indicate that <j) is weakly natural. It is a fact that <p is weakly
natural if and only if Ff • <j>B = <f}A • G/ for all functions / : A «— B. For a proof
see Carboni et al. (1991). Thus, we can show <j> is weakly natural for relations by
showing it is natural for functions.

An important example is e : id <^> P; we have R • € 2 S • PR for all R, but this
inclusion cannot be strengthened to an equality.

7.2 Membership

Now, let us return to membership. Formally, a collection of arrows 5A : A <— FA is
a membership relation for F if for each R : A <— B

FR • (SB\idB) = 5A\R.

Rather than attempt to explain this definition, we will give a number of properties
that justify it. For formal proofs of these properties, see De Moor (1993). First, the

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 19

above equation has at most one solution for 8 because any 8 satisfying it is the
largest weak natural transformation of type id «-> F.

Second, although not every functor has membership, all polynomial functors do.
These membership relations are given inductively by the following clauses:

s\6 = id

*KA = ^

f̂ F+G = [^F'^G]
= <5p • outl U 8Q • outr

In the second clause 0 denotes the empty relation; in the fourth clause the functions
outl : A <— A x B and outr : B <—AxB are the projection functions. These functions
have the property that for every two functions f : A <— C and g : B *— C there is a
unique function if, g) : A x B <— C such that outl • (f,g) =f and outr • (f,g) = g.
Since we can define/ x g = (/" • outl,g • outr) we get that outl and outr satisfy

/ • outl = outl • (f x g)

g • outr = outr • (f x g),

and so are natural transformations over functions. However, these equations are
weakened when we consider relations:

R • outl 3 outl (R xS)

S • outr 2 outr • (R x S).

These inclusions cannot be strengthened because, for instance, R x 0 = 0.
For type functors the question of membership is more complicated. Recall that

termf was defined as a catamorphism, so one might expect that its membership
relation can also be expressed as a catamorphism. However, this is only true for
datatypes that do not contain constants. For example, consider the type

listr+A ::= wrap A \ cons+(A, listr+A),

of non-empty lists, with base functor F(A, B) = A + AxB. The membership relation
5 for these lists is given by

8 — ([id,outlUoutr]).

In words, an arbitrary member is obtained at each stage either by selecting the new
element or by retaining the chosen element from the previous stage.

With the type listr A, in which the constructor wrap is replaced by nil, the
membership relation is not given by

8 = ([0, outl U outr]}

because the right-hand side is the empty relation 0, as one can easily check.
Fortunately, there is another approach to membership of type functors, one that

makes use of two auxiliary relations, which we will call root and spur. To fix

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

20 R. Bird, 0. de Moor and P. Hoogendijk

notation, let a : term A <— F(A, term A) be the constructor of term A and let

left : A +-F(A,B)

right :B *-F{A,B)

be the two membership relations associated with the binary functor F. More precisely,
left is the membership relation for the functor GB(/1) = F(A,B) in which B is fixed;
similarly for right. The relations root : A <— term A and spur : term A <— term A are
defined by

root = left • a°

spur = right • a°.

Let us explain these relations with the help of some examples.

1. Snoc lists. With F(A,B) = 1 + (B x A), we get left = [0,outr] and right =
[0, outl], so

root = left • <x° = [0,outr] • [nil,snoc]° = outr • snoc°.

This uses the law [R,S] • [T, U]° = R • T° U S • U°. Similarly, we get spur =
outl • snoc°. In words, root is last, the partial function that returns the last
element of a (nonempty) list, and spur is init, the partial function that removes
the last element.

2. Cons lists. Dually, with the base functor F(A,B) = 1 + (A x B), we get
root = outl • cons° and spur = outr • cons°, so root is the partial function that
returns the first element of a list and spur removes it.

3. Binary trees. With F{A, B) = 1 + {A x (B x B)), we get the type tree A described
in section 2. Here we have

left = 10, outl]

right = [Q,(outl U outr) outr],

so

root = outl -fork0

spur = (outl U outr) • outr -fork".

The partial function root returns the root of a nonempty tree, and spur returns
one of its immediate subtrees.

Now we can define the membership relation 5 : A <— term A by

3 = wot • spur',

where R* denotes the reflexive transitive closure of R. In the case of snoc-lists, an
arbitrary member of a list is obtained by taking the last element of an arbitrary
prefix; in the case of cons-lists, an arbitrary member is obtained by taking the first
element of an arbirtrary suffix; and in the case of trees, an arbitrary member is
obtained by taking the root of an arbitrary subtree.

The last sentence suggests that we now have a way to define an arbitrary subterm

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 21

of a term: define subterm = spur'. The set of subterms is then obtained as Asubterm.
This is perfectly correct, except that in the next section we will define subterms not
as a set of terms but as a certain datatype containing terms as elements. The reason
for this lies in the formulation of the Scan lemma, which depends critically in the
case of lists on subterms returning a list of lists.

Since we will be using such datatypes to represent sets, we will need a way of
moving from one to the other. The function setify : PA <— term A takes an element of
the datatype term A and returns a set of its elements. The definition is very simple:
setify = A<5, where <5 is the membership relation for term. The function setify is a
weak natural transformation setify : P «-»term, so

Pi? • setify 3 setify • term R. (7)

The proof, which we omit, uses the formal definition of membership for a datatype.
Finally, we will need to know how to implement the relation max R on datatypes

other than sets. With left and right as above we have

max R • setify 2 ([maxR • A(left U right)]}. (8)

Note that in the catamorphism on the right the relations left and right both have
type A <- F(A,A). Note also that the inclusion cannot be strengthened to an equality
because there may be constant terms that have no elements.

8 Subterms and scans

Recall from section 2 that we defined subterms as a set-valued function that returned
all possible subterms of a given struture. In analogy with the definition of prunings
it is therefore tempting to define subterms = Asubterm, where subterm was defined
above. But also recall the Scan lemma in section 3 which depends on inks = subterms
returning a list of subterms.

In an attempt to construct a generic version of the scan lemma, one might think
of generating subterms as a list of structures, but that would still involve lists in
an essential way. We really want to think of a structure of structures: a list of
lists, a tree of trees, and so on. The way to achieve this is to create a new type of
labelled structures in which each 'node' is labelled with the corresponding subterm.
Not every datatype allows the labelling of nodes (think of unlabelled binary trees),
but there is a canonical way of introducing labels into a datatype. We consider this
first, returning to scans at the end of the section.

8.1 Labelled datatypes

Again, let a : term A <— F(A, term A) be the constructor of term A. Define another
bifunctor F+ by

F+(A,B) = F(l,B)xA,

and let this be the base functor of a datatype term+ A of 'labelled terms'. Let
a+ : term+ A <— F+(A,term+ A) be its constructor. Here are some examples to clarify
the idea.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

22 R. Bird, O. de Moor and P. Hoogendijk

1. Cons lists. With F(A, B) = 1 + (A x B) we get

So labelled cons-lists are isomorphic to the type listr+ of non-empty cons lists.
2. Non-empty cons lists. What happens when we try and label non-empty cons

lists? Here F(A,B) = A + (A x B) and so

F+(A, B) = (1 + (1 x B)) x A S A + (A x B),

so labelling does not change non-empty cons lists in any essential way.
3. Binary trees. With F(A,B) = 1 + (A x B x B), we find

Labelled trees are therefore isomorphic to the type

tree+A ::= tip A \fork+(A,tree+A,tree+A)

of non-empty labelled trees.

8.2 Subterms

We can now define subterms : term+ (term A) <— term A as the catamorphism

subterms = ([ace a]), (9)

where for R : B <— F(/l,B) the relation ace/? (short for 'accumulate with i?') has
type

ace R : term+ B <- F(A, term+ B)

and is given by the complicated expression

ace R = a+ • (F(!, id),R • F(id,root+)),

and where root+ : term A •— term+ (term >4) is the (total!) function root = outl • (a+)°.
The definition is somewhat opaque, so we will give some examples.

1. Snoc lists. We have just seen that labelled snoc lists are isomorphic to the type

listl+A ::= wrap A \ snoc+(listl+A, A)

of non-empty snoc-lists. Here, root+ = last, the (total!) function that returns
the last element of a list of type listl+ A. Let a denote the isomorphism

a :A + (B xA)<-{l+(lxB))xA.

Now we have

ace a

= {definitions, and F{A,B) = l + (B x A)}

[wrap,snoc+] • a • (id + (id x !), [nil,snoc] • (id + last x id))

= {coproduct law}

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 23

[wrap,snoc+] • a • (id + (id x !), [nil,snoc • (last x id)])

= {property of <r}

[wrap,snoc+] • (nil + (id,snoc • (last x id)))

= {coproduct law}

[wrap • nil,snoc+ • (id,snoc • (last x id))].

The coproduct law used above is that [R,S] • (T + U) = [R • T,S • U]. Writing
[nil] for the constant returned by wrap • nil and snoc for snoc+ (thereby
embedding the type listl+ A in listl A), we get

subterms = foldl ([nil],/)

f(xs,a) = snoc (xs,snoc (last xs,a)).

This is precisely the definition of the function inits we met in section 3.
2. Binary trees. Here labelled trees are isomorphic to the type

tree+A ::= tip A \ fork+ (A,tree+ A,tree+ A)

of non-empty labelled trees. This time root+ is the total function that returns
the element at the root of the tree. As before, we can calculate

ace a = [tip • nil,fork+ • {id x idjork • (id x root+ x root+))].

As in the case of snoc-lists we can embed tree+ A in tree A by taking tip a =
fork (a, nil, nil). The result is a computation for subterms that a functional
programmer would write in the form

subterms = foldtree (c,f)

c = fork (nil, nil, nil)

f(a,x,y) = fork (fork (a,root x,root y),x,y)

root (fork (a, x,y)) = a

foldtree (c,f) nil = c

foldtree (c,f) (fork (a,x,y)) = f (a,foldtree (c,f)x,foldtree (c,f)y)

8.3 Properties of subterms

Let us now look at two properties of subterms. First, subterms is a function because
only functions appear in its definition (recall that root+ = outl • (a+)° is a total
function).

The second, more important fact is that

setify • subterms = Asubterm, (10)

where subterm = spur'. The proof, which we omit, depends on the fact that spur' is

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

24 R. Bird, O. de Moor and P. Hoogendijk

the unique solution for X of the equation

X = id U (X • spur).

8.4 Scans and the scan lemma

Now let us return to scans and the scan lemma. We saw in section 3 that inks =
scanl (nil,snoc). The same is true of the general scan, which is simply ([ace R]}. The
scan lemma therefore takes the form

Lemma 8.1

(Scan lemma) For any R : B <— F(A, B) we have

term+ ([/?]) • ([ace a]) 2 ([ace R]}.

Proof

The proof is an exercise in fusion. We get the required result by showing

term+ Q_R]) • ace a 2 ace R • F(id, term+ ([R]}).

In the argument that follows we make use of some laws of products that we have
not formally stated:

term+ ([R]) • ace a

= {definition of ace}

term+ ([R]j • a+ • (F(!,id),a • F(id,root+))

= {definition of type functor term+}

a+ • F+«[R]\, term+ ([«])) • <F(!,id),a • F(id,root+))

{since F+(A,B) = F(l,B) x A}

a+ • (F{iduterm+<[IQ) x flKJ) • <F(!,id),a • F(id,root+))

{since (R x S) • (U, V) = (R • U,S • V); bifunctors}

a+ • (F(!, term+ ([/?])), ([/?])• a • F(id, root+))

= {catamorphism ([/?]); bifunctors}

<x+ • {F(\,term+ ([R])),R • F(id,<[RD • root+))

2 {since root+ : id ^ term+}

a+ • (F(Uerm+([KD),K ' F(id,roo(+ • term+([R])))

2 {bifunctors and (X • Z, Y • Z) 2 (X, Y) • Z }

a+ • (F(\,id),R • F(id,root+)) • F(id,term+

= {definition of ace R}

accR F(id,term+dR])).

a

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 25

8.5 Deforestation

The structure built up by an scan is usually not the final result of a computation; in
practice, the labelled term that results is often evaluated by a catamorphism. This
means that the labelled term need never be built up as a whole, for one can merge
the process of its construction and its evaluation. This technique is very common
in functional programming; it has been called deforestation by Wadler (1990), and
Swierstra and De Moor (1992) speak of virtual data structures. Our final lemma
shows how deforestation can be used in the present context:

Lemma 8.2
(Deforestation) Let R : B <- F+(C,B) and S : C <- F(A,C), so flR]) : B <- term+ C
and ([ace SJ : term+ C <— term A. Then

• <[acc S]) 3 outl • ([reduce (R, S)B,

where reduce(R,S) :(B x C) < - F(A,B x C) is given by

reduce{R,S) = (R,outr) • (F(\,outl),S • F{id,outr)).

Again the proof is an exercise in fusion, and we will not go into the details. If the
final program is going to be evaluated in a lazy programming language, this lemma
does not offer a real improvement in efficiency: the intermediate data structure in
([SB • ([ace R\j never exists in its entirety anyway. It is probably for this reason that
the above result was never stated in the theory of lists.

9 Segments and segment decomposition

Having dealt with all the necessary ingredients, we can now give the general version
of the calculation given in section 3. First, we define segment : term A <— term A by

segment = prune • subterm.

Now we have

Theorem 9.1

(Segment Decomposition)
Let F be a pointed bifunctor with membership relations left and right. Suppose

/ = [/o,/i] : B <— F(A,B) is monotonic under the preorder R : B <— B. Then

max R • P([/"B • Asegment 3 outl • ([reduce (S, T)]},

where S = max R • A(left U right) and T = max R • A[/b,/o U/i] .

Proof
We argue:

max R • PQ/T) • Asegment

= {definition of segment}

max R • P([/D • A(prune • subterm)

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

26 R. Bird, O. de Moor and P. Hoogendijk

= {(3)}

max R • P([/"]) • union • PAprune • Asubterm

= {(4) and functors}

max R • union • P(P([/D • Aprune) • Asubterm

2 {(6) and functors}

max R • P(max R • Pfl/5 • Aprune) • Asubterm

2 {Homer's rule with X = [fo,fo U/i]}

max R • P([max R • AX]) • Asubterm

= {(10)}
max R • P([max R • AX]) • setify • subterms

2 {(7)}

max R • setify • term+ ([max R • AX]) • subterms

2 {Scan Lemma}

max R • setify • ([ace (max R • AX)])

= {(8)}

([max R • A(left U right)]) • ([ace (max RAX)])

2 {Deforestation Lemma, definitions of S and T}

outl • ([reduce (S,T)]j.

a
Application of the segment decomposition theorem gives an efficient solution for

the maximum segment sum problem on any type that allows the definition of sum.

10 Concluding remarks

We have demonstrated how much of the original theory of lists can be parame-
terised by an arbitrary data type. The result is, in our opinion, at least a linguistic
improvement; the theory is no longer cluttered by the syntactic idiosyncracies of
lists. It is debatable, however, whether by itself any mere linguistic improvement
would justify the flood of definitions and results given above. What is of greater
interest is the possibility that this style of generic programming can be applied to
more challenging problems. An obvious candidate for further work is the so-called
sliding tails lemma, which underlies all efficient pattern matching algorithms on lists.
If this lemma can be parameterised by an arbitrary data type, the way is open for
a generic theory of pattern matching. Such a generic theory is likely to benefit by
the work of Backhouse (1992), who has shown how many theorems about regular
algebra can be generalised to datatypes.

Finally, another important direction for future research is the design of a pro-
gramming language in which data types are first-class citizens, in the sense that they
can be passed as parameters to generic programs. It seems that research in the design

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

Generic programming 27

of functional programming languages is also heading in this direction; in particular
the work of Jones (1993) on constructor classes is relevant in this connection.

Acknowledgements

Part of this work was done while Oege de Moor visited Roland Backhouse at
Eindhoven University. Oege de Moor also wishes to thank Masato Takeichi for
providing an inspiring working environment at Tokyo University, where this paper
was finished. Many of the ideas and examples presented here are implicit in the
work of Jeuring and Gibbons; the influence of their pioneering efforts can be traced
throughout the paper. Both Jeuring and Jaap Van der Woude scrutinized drafts of
this paper and suggested many improvements. The authors are also grateful to the
anonymous referees for the same reason.

References

Aarts, C. J., Backhouse, R. C , Hoogendijk, P., Voermans, E. and Van der Woude, J. C. S. P.
(1992) A relational theory of datatypes. Available via anonymous ftp from f t p . w i n . t u e . n l
in directory pub/math, prog, const ruct ion.

Barr, M. and Wells, C. (1985) Toposes, triples and theories. Grundlehren der Math. Wis-

senschaften, 278. Springer-Verlag.

Barr, M. and Wells, C. (1990). Category Theory for Computing Science. Prentice-Hall.

Bird, R. S. (1987) An introduction to the theory of lists. In: Broy, M. (ed), Logic of
Programming and Calculi of Discrete Design. NATO ASI Series F, 36, pp. 3-42. Springer-
Verlag.

Bird, R. S. (1989a) Lectures on constructive functional programming. In: Broy, M. (ed),
Constructive Methods in Computing Science. NATO ASI Series F, 55, pp. 151-216. Springer-
Verlag.

Bird, R. S. (1990) A calculus of functions for program derivation. In: Turner, D. A. (ed),
Research Topics in Functional Programming, pp. 287-308. University of Texas at Austin
Year of Programming Series. Addison-Wesley.

Bird, R. and de Moor, O. (1996) The Algebra of Programming. Prentice Hall International.

Bird, R. S. (1989b) Algebraic identities for program calculation. The Computer J., 32: 122-126.

Carboni, A., Kelly, G. M. and Wood, R. J. (1991) A 2-categorical approach to geometric

morphisms I. Cahiers de topologie et geometrie differentielle categoriques, 32(1): 47-95.

De Moor, O. (1992) Categories, relations and dynamic programming. DPhil thesis. Technical
Monograph PRG-98. Computing Laboratory, Oxford University.

De Moor, O. (1993) Working notes on membership of data types. Unpublished manuscript.

Freyd, P. J. and Scedrov, A. (1990) Categories, allegories. Mathematical Library, vol. 39.

North-Holland.

Gibbons, J. (1991) Algebras for tree algorithms. DPhil thesis, Programming Research Group,

Computing Laboratory, Oxford University.

Goldblatt, R. (1986) Topoi - the categorial analysis of logic. Studies in Logic and the

Foundations of Mathematics, vol. 98. North-Holland.

Jeuring, J. (1989) Deriving algorithms on binary labelled trees. In: Apers, P. M. G., Bosman,

D. and Van Leeuwen, J. (eds), Proc. sion Computing Science in the Netherlands, pp. 229-249.

Johnstone, P. T. (1977) Topos Theory. Academic Press.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

28 R. Bird, O. de Moor and P. Hoogendijk

Jones, M. P. (1993) A system of constructor classes: overloading and implicit higher-order
polymorphism. Proc. FPCA. To appear.

Lehmann, D. J. and Smyth, M. B. (1981) Algebraic specification of data types: A synthetic
approach. Math. Systems Theory, 14: 97-139.

Malcolm, G. (1990) Data structures and program transformation. Science of Computer
Programming, 14: 255-279.

Manes, E. G. and Arbib, M. A. (1986) Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag.

Pierce, B. C. (1991) Basic Category Theory for Computer Scientists. MIT Press.
Swierstra, S. D. and De Moor, O. (1992) Virtual data structures. Proc. State-of-the-Art

Seminar on Formal Program Development, Rio de Janeiro, Brazil (to appear).
Wadler, P. (1990) Deforestation. Theoretical Computer Science, 73(2): 231-248.

https://doi.org/10.1017/S0956796800001556 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001556

