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Abstract

In this paper we prove that a smooth family of canonically polarized manifolds
parametrized by a special (in the sense of Campana) quasi-projective variety is isotrivial.

1. Introduction

In 1962 Shafarevich conjectured that any smooth family of curves of genus g > 2 over non-
hyperbolic algebraic curves, namely C, C∗, P1 and elliptic curve E, is isotrivial. More generally,
it was conjectured that any smooth family of canonically polarized manifolds over these curves
has no (algebraic) variation. This gives rise to a natural question: is there a large class of higher-
dimensional bases over which every such family is isotrivial? Campana has introduced special
varieties as higher-dimensional analogues of non-quasi-hyperbolic curves (the curves listed above)
and conjectured that they serve as natural candidates for such bases.

Conjecture 1.1 (The isotriviality conjecture of Campana). Let Y ◦ be a smooth quasi-
projective variety parametrizing a smooth family of canonically polarized manifolds. If Y ◦

is special (see the definition below), then the family is isotrivial.

Definition 1.2 (Special logarithmic pairs). Let (Y,D) be a pair consisting of a smooth
projective variety Y and a simple normal-crossing reduced boundary divisor D. We call (Y,D)
special if, for every invertible subsheaf L ⊆ Ωp

Y log(D) and p > 0, we have κ(L ) < p. Moreover,
we shall call a smooth quasi-projective variety Y ◦ special if (Y,D) is special as a logarithmic pair,
where Y is a smooth compactification with a simple normal-crossing (snc) boundary divisor D.

So, by definition, C, C∗, P1 and E is the list of all special quasi-projective curves. Other
important examples of special varieties include rationally-connected varieties, varieties with
zero Kodaira dimension [Cam04, Theorem 5.1] and those with nef anti-canonical divisor [Lu02,
Theorem 11.1]. These examples, however, are very particular instances of special varieties and
it is important to recall that in every dimension n, there are special quasi-projective manifolds
of all possible log-Kodaira dimensions (<n).

Conjecture 1.1 is generalization of the following celebrated conjecture of Viehweg.

Conjecture 1.3 (Viehweg’s hyperbolicity conjecture). Let f◦ : X◦ → Y ◦ be a smooth family
of canonically polarized varieties over a quasi-projective variety Y ◦. Assume that Y is a smooth
compactification of Y ◦ with snc boundary divisor D ∼= Y \Y ◦. If Var(f◦) is maximal, then (Y,D)
is of log-general type (see [Vie83, Introduction] for the definition of Var(f◦)).
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Conjecture 1.3 has recently been established in [CP15] by using, among many other things,
an important generalization of Miyaoka’s generic semi-positivity (see Theorem 3.1) and the
following remarkable result of Viehweg and Zuo.

Theorem 1.4 (Existence of pluri-logarithmic forms in the base; cf. [VZ02, Theorem 1.4]). In
the same notation as in Conjecture 1.3, if f◦ is not isotrivial, then for a positive integer N ∈ N+,
there exists an invertible subsheaf L ⊆ SymN (ΩY log(D)) such that κ(L ) > Var(f◦).

Clearly, Conjecture 1.3 in the case of dimY ◦ = 1 is an immediate corollary of Theorem 1.4.
Conjecture 1.3 was already known in dim(Y ◦) 6 3 by Kebekus and Kovács [KK10, Theorem 1.1].
The stronger conjecture of Campana (Conjecture 1.1) has also been established when dim(Y ◦) 6
3, thanks to Kebekus and Jabbusch [JK11b, Theorem 1.5]. In § 5, and after following Campana
and Păun’s proof of Viehweg’s conjecture very closely, we give a proof of Conjecture 1.1. The
proof heavily depends on a recent generic semi-positivity result of Campana and Păun, existence
of log-minimal models for Kawamata log terminal pairs with big boundary divisors established
by [BCHM10, Theorem 1.1], and an important refinement of Theorem 1.4 given by [JK11a,
Theorem 1.4].

Theorem 1.5 (Isotriviality of smooth families of canonically polarized manifolds). Conjecture 1.1
holds in all dimensions.

Let M be the quasi-projective scheme [Vie95] equipped with transformations

Ψ :M→ Hom(·,M),

such that M is the coarse moduli scheme of the moduli functor M of smooth families of
canonically polarized manifolds. According to Campana’s reduction theory, for every projective
variety Y there exists an almost holomorphic map CY : Y 99K Z, called the core, whose general
fibre is special and contracts almost all special subvarieties of Y . As a result of Theorem 1.5 it
follows that the moduli maps associated to smooth families of canonically polarized manifolds
factors through the (logarithmic) core.

Corollary 1.6 (Factorization of the moduli map through the core). Let Y ◦ be a smooth
quasi-projective variety admitting a morphism µ : Y ◦ → M, where µ = Ψ(M(Y ◦)). Let µ̃
be the induced morphism between smooth compactifications Y , M of Y and M, respectively.
Then µ̃ factors through the core C(Y,D) : (Y,D) 99K Z associated to a smooth compactification
(Y,D) of Y ◦.

Notice that Corollary 1.6 immediately implies that Viehweg’s hyperbolicity conjecture
(already settled in [CP15]) holds: let f◦ : X◦ → Y ◦ and (Y,D) be as in the set-up of
Conjecture 1.3. If (Y,D) is not of log-general type, then CY : Y 99K Z has positive-dimensional
general fibres. On the other hand, by Corollary 1.6, the moduli map µ : Y → M factors through
CY . But by the assumption µ is generically finite, a contradiction.

The proof of Theorem 1.5 essentially consists of the following two steps. First we use Viehweg
and Zuo’s factorization result (Theorem 1.4), together with its refinement by [JK11a], to reduce
the problem to the following (see Theorem 4.3 for details): given a smooth pair (X,D), existence
of an invertible subsheaf L ⊆ (ΩX log(D))⊗CN (see Definition 2.11), for some N ∈ N+, with
maximal C-Kodaira dimension (this is defined in Definition 2.12) implies that (X,D) is of log-
general type. The second step (§ 5) is to prove this statement using the positivity result of [CP15]
and results of [BCHM10] (Theorem 5.2).
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2. Preliminaries

To approach the isotriviality conjecture (Conjecture 1.1), it is essential to work with pairs (or
the orbifold pairs in the sense of Campana) instead of just logarithmic ones. We refer the reader
to [Cam11, JK11b] for an in-depth discussion of the definitions and background. In the present
section we give a brief overview of the key ingredients of this theory to the extent that is necessary
for our arguments in the rest of the paper.

Definition 2.1 (Smooth pairs). Let X be an n-dimensional normal (quasi-)projective variety
and D =

∑
diDi, where di ∈ Q ∩ [0, 1], a Q-Weil divisor in X. We shall call the pair (X,D) a

smooth pair if X is smooth and supp(D) is snc.

Definition 2.2 (C-multiplicity). Let (X,D) be a smooth pair as in Definition 2.1. When di 6= 1,
let ai and bi be the positive integers for which the equality 1− bi/ai = di holds. For every i, we
define the C-multiplicity of the irreducible component Di of D by

mD(Di) :=


1

1− di
=
ai
bi

if di 6= 1,

∞ if di = 1.

A classical result of Kawamata (see [Laz04, Proposition 4.1.12]) proves that, given a collection
of smooth prime divisors {D1, . . . , Dl} and positive integers {c1, . . . , cl}, one can always construct
a smooth variety Y together with a finite, flat morphism γ : Y → X such that

γ∗(Di) = ci
∑

Dij ,

where
∑
Dij is an snc divisor in Y . In particular, given a smooth pair (X,D), we may take the

coefficients ci to be equal to ai (ai being the numerator of mD(Di), as in Definition 2.2), so that
the resulting Kawamata cover γ : Y → X is, in a sense, adapted to the structure of the pair
(X,D).

Definition 2.3 (Adapted covers). Let (X,D) be a smooth pair, Y a smooth variety, and γ :
Y → X a finite, flat, Galois cover with Galois group G such that if mD(Di) = ai/bi <∞, then
every prime divisor in Y that appears in γ∗(Di) has multiplicity exactly equal to ai. We call γ
an adapted cover for the pair (X,D) if it additionally satisfies the following properties.

(2.3.1) The branch locus is given by

supp

(
H +

⋃
mD(Di) 6=∞

Di

)
,

where H is a general member of a linear system |L| of a very ample divisor L in X.

(2.3.2) γ is totally branched over H.

(2.3.3) γ is not branched at the general point of supp(bDc).

Notation 2.4. Let γ : Y → X be an adapted cover of a smooth pair (X,D), where D =
∑
diDi,

di = 1 − bi/ai as in Definition 2.2. For every prime component Di of D with mD(Di) 6= ∞, let
{Dij}j(i) be the collection of prime divisors that appear in γ−1(Di). We define new divisors in
Y by:
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(2.4.1) Di,j
Y := biDij , mD(Di) 6=∞;

(2.4.2) Dγ := γ∗(bDc).

Definition 2.5 (C-cotangent sheaf). Given a smooth pair (X,D) with an adapted cover γ :
Y → X, define the C-cotangent sheaf ΩY ∂ to be the unique maximal locally free subsheaf of
ΩY log(Dγ) for which the sequence

0 // ΩY ∂ |(Y \Dγ)
// γ∗(ΩX log(pDq))|(Y \Dγ)

ρ //
⊕
i,j(i)

O
Di,jY

// 0,

induced by the natural residue map, is exact.

Remark 2.6. The C-cotangent sheaf of Definition 2.5 coincides with Campana and Păun’s
notion [CP15, § 1.1] of the coherent sheaf on Y which they denote by γ∗Ω1(X,D). It is also
identical to the sheaf defined in [Lu02, Lemma 4.2]. See also [JK11b, Definition 2.13] for an
equivalent definition in the classical setting, when the C-multiplicities are all integral.

Remark 2.7 (Determinant of C-cotangent sheaf). Given a smooth pair (X,D), let γ : Y → X
be an adapted cover of degree d. There exists a natural isomorphism between the two invertible
sheaves det(ΩY ∂ ) and OY (γ∗(KX +D)),

det(ΩY ∂ ) ∼= OY (γ∗(KX +D)). (2.7.1)

This follows from the ramification formula for the adapted cover γ.

Definition 2.8 (Symmetric C-differential forms, cf. [Cam11, §§ 2.6–7]). Let (X,D) be a smooth
pair, D =

∑
diDi, and Vx an open neighbourhood of a given point x ∈ X equipped with a

coordinate system z1, . . . , zn such that supp(D) ∩ Vx = {z1 · · · · · zl = 0}, for a positive integer
1 6 l 6 n. For every N ∈ N+, define the sheaf of symmetric C-differential forms SymN

C (ΩX log(D))
by the locally free subsheaf of SymN (ΩX log(pDq)) that is locally generated, as an OVx-module,
by the elements

dzk11

z
bd1·k1c
1

· · · · ·
dzkll

z
bdl·klc
l

· dzkl+1

l+1 · · · · · dz
kn
n ,

where
∑
ki = N .

Remark 2.9 (An equivalent definition). There is an alternative definition for the sheaf of C-
differential forms. Let Vx be an open neighbourhood of x ∈ X as in Definition 2.8 and take
γ : W → Vx to be an adapted cover for (Vx, D|Vx). Let σ ∈ Γ(Vx, SymN (ΩX(∗pDq))), that is, σ
is a local rational section of SymN (ΩX) with poles along pDq. Then

σ ∈ Γ(Vx, SymN
C (ΩX log(D))) ⇐⇒ γ∗(σ) ∈ Γ(W, SymN (ΩW∂ )), (2.9.1)

so that, in particular, γ∗(σ) has at worst logarithmic poles only along those prime divisors in W
that dominate (bDc ∩ Vx), and is regular otherwise.

Explanation 2.10. Assume that σ ∈ Γ(Vx, SymN
C (ΩX log(D))) is a local C-differential form in

the sense of (2.9.1). By the classical result of Iitaka [Iit82, ch. 11], it follows that σ ∈ Γ(Vx,
SymN (ΩX log(pDq))). In particular, we find that along the reduced component of D the
equivalence between the two definitions trivially holds. So assume, without loss of generality,
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that mD(Di) 6= ∞, for all irreducible components Di of D. Furthermore, let us assume, for
simplicity, that

σ = f · dz
k1
1

ze11

· · · · ·
dzkll
zell
· dzkl+1

l+1 · · · · · dz
kn
n ∈ Γ(Vx,SymN (ΩX log(pDq))),

where f ∈ OV (x), with no zeros along the Di, is the local explicit description of σ. Since γ∗(σ) ∈
SymN (ΩW∂ ), the inequality

ki · (ai − 1)− ai · ei > ki(bi − 1)

holds for 1 6 i 6 l, where di = 1− (bi/ai), that is,

ei 6 ki.di, for all 1 6 i 6 l.

In particular, σ is a symmetric C-differential form on Vx in the sense of Definition 2.8.

Remark 2.11 (Tensorial C-differential forms). Similarly to Definition 2.8 and (2.9.1), we can
define the sheaf of tensorial C-differential forms (ΩX log(D))⊗CN as the maximal subsheaf of
(ΩX log(pDq))⊗N such that

γ∗((ΩX log(D))⊗CN ) ⊆ (ΩY ∂ )⊗N .

Using the notation in Remark 2.9, pluri-C-differential forms are locally defined as follows:

σ ∈ Γ(Vx, (ΩX log(D))⊗CN ) ⇐⇒ γ∗(σ) ∈ Γ(W, (Ω⊗N
W∂ )), (2.11.1)

As we shall see in § 4, the Viehweg–Zuo subsheaves generically come from the coarse moduli
space, as long as we extend the sheaf of symmetric differential forms to that of C-differential
forms associated to the naturally imposed C-structures or orbifold structures (see Definition 2.14
below or [Cam11, § 3]) that appear over the moduli variety. But, as the usual Kodaira dimension
of subsheaves of symmetric C-differential forms is not sensitive to the fractional positivity of
the non-reduced components of the boundary divisor (see Remark 2.13 below), a new birational
notion is needed to measure the positivity of the Viehweg–Zuo subsheaves in the moduli.

Definition 2.12 (C-Kodaira dimension; cf. [Cam11, § 2.7]). Let (X,D) be a smooth pair and
L ⊆ (ΩX log(D))⊗Cr a saturated coherent subsheaf of rank one. Define the C-product L ⊗Cm of
L , to the order of m, to be the saturation of the image of L ⊗m inside (ΩX log(D))⊗C(m.r) and
define the C-Kodaira dimension of L by

κC(X,L ) := max

{
k

∣∣∣∣ lim sup
m→∞

h0(X,L ⊗Cm)

mk
6= 0

}
.

If h0(X,L ⊗Cm) = 0 for all m ∈ N+, then, by convention, we define κC(X,L ) = −∞.

Remark 2.13 (Comparing Kodaira dimensions). When D = 0 or when D is reduced the sheaf of
pluri-C-differential forms (ΩX log(D))⊗Cr is equal to (ΩX)⊗r and (ΩX log(D))⊗r, respectively, so
that the C-Kodaira dimension κC(X,L ) of a rank-one coherent subsheaf L of (ΩX log(D))⊗Cr

coincides with the usual Kodaira dimension κ(X,L ) of L .
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Table 1. Notation.

ΩY ∂ C-cotangent sheaf (Definition 2.5)

SymN
C (ΩX log(D)) Symmetric C-differential forms (Definition 2.8)

(ΩX log(D))⊗CN Tensorial C-differential forms (Remark 2.11)

L ⊗CN C-product (Definition 2.12)

κC(X,L ) C-Kodaira dimension (Definition 2.12)

Let (Y,D) be a smooth pair, Z a smooth variety, and f : Y → Z a fibration with connected
fibres. Assume that every f -exceptional prime divisor F , that is, codimZ

(
f(F )

)
> 2, is a reduced

component of D. Then simple local calculations show that there exists a maximal (in the sense of
multiplicities of the irreducible components) divisorial structure ∆ on Z, whose support coincides
with the codimension-one closed subset of the log-discriminant locus B of f : (Y,D) → Z and
that the natural pull-back map

(df)m : f∗(Symm
C (ΩZ log(∆))) → Symm

C (ΩY log(D))

is well defined. Recall that the log-discriminant locus B is the smallest closed subset of Z such
that f is smooth over its complement, and that for every point z ∈ Z\∆, the set-theoretic fibre
f−1(z) is not contained in D, and that the scheme-theoretic intersection of the fibre Yz with D is
an snc divisor in Yz. We call ∆ the C-base (or the orbifold base) of the fibration f : (Y,D) → Z.

Definition 2.14 (C-base of a fibration). Given a smooth pair (Y,D), let f : Y → Z be a
fibration with connected fibres onto a smooth variety Z. Let {∆i}i be the set of the irreducible
components of the divisorial part of the log-discriminant locus of f . For every i, define {∆ij}j
to be the collection of prime divisors in f−1(∆i) that are not f -exceptional. To each divisor ∆i,
assign a positive rational number m∆(∆i) defined by

m∆(∆i) := min
j
{dj ·m∆(∆ij)},

dj being the positive integer satisfying the equality

f∗(∆i) =
∑
j

dj∆ij + E.

We define the C-base of the fibration f : (Y,D) → Z by the divisor

∆ :=
∑
i

(
1− 1

m∆(∆i)

)
∆i.

Table 1 gathers together the notation we have introduced in this section.

3. The orbifold generic semi-positivity

Miyaoka’s generic semi-positivity result (see [Miy87a, Miy87b]) establishes a correspondence
between abundance of rational curves (uniruledness) on a smooth projective variety and generic
(semi-)positivity of the cotangent sheaf ΩX . On the other hand, the results of [BDPP13] prove
that uniruledness of X is characterized by the pseudo-effectivity of KX . This suggests (as was
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originally formulated by Campana) that a generalization of Miyaoka’s result in the logarithmic

context should read as follows: pseudo-effectivity of KX +D implies the generic semi-positivity

of ΩX log(D). But the positivity result of Miyaoka was achieved via certain characteristic p-

arguments which cannot be adapted to the context of pairs. Nevertheless, in [CP15], Campana

and Păun overcome this obstacle by using the Bogomolov–McQuillan criterion for the algebraicity

of foliations induced by positive subsheaves of the tangent sheaf.

Theorem 3.1 (Generic semi-positivity of C-cotangent sheaf [CP15, Theorem 2.1]). Let (X,D)

be a smooth pair with an adapted cover γ : Y → X, whose Galois group we denote by G. If

KX+D is pseudo-effective, then every torsion-free, coherent, OY -module quotient F of (ΩY ∂ )⊗N

satisfies the inequality

c1(F ) · γ∗(H1) · · · · · γ∗(Hn−1) > 0, (3.1.1)

for all (n− 1)-tuples of ample divisors (H1, . . . ,Hn−1) in X.

As an immediate corollary we get an inequality involving the intersection of KX + D and

any invertible subsheaf L ⊆ (Ω1
X log(D))⊗CN with nef divisors.

Corollary 3.2. Let (X,D) be a smooth pair of dimension n. Let L ⊆ (Ω1
X log(D))⊗CN be an

invertible subsheaf and L a divisor in X such that OX(L) ∼= L . If KX + D is pseudo-effective,

then for every collection of (n − 1) Q-Cartier nef divisors P1, . . . , Pn−1 the following inequality

holds:

(N · (nN )N−1 · (KX +D)− L) · P1 · · · · · Pn−1 > 0.

4. Viehweg–Zuo subsheaves in the parametrizing space

The result of Jabbusch and Kebekus [JK11b] shows that the C-differential forms are the correct

framework to study the positivity of subsheaves of forms in the coarse moduli space of canonically

polarized manifolds. In this section we give a brief explanation of how one can then reduce the

isotriviality conjecture (Conjecture 1.1) to the problem of showing that existence of rank-one

subsheaves of the sheaf pluri-C-differential forms, attached to a smooth pair, with maximal

C-Kodaira dimension implies that the given pair is of log-general type (see Theorem 4.3 below).

To prepare the correct setting for this reduction, we introduce a notion that, as far as the author

is aware, is originally due to Campana (see [Cam11, § 1.1]).

Definition 4.1 (Neat model of a pair). Let (Y,D) be a normal logarithmic pair (Y is normal

and the Weil divisor D is reduced) and h : Y → Z a fibration with connected fibres onto an

algebraic base Z. We call a smooth pair (Yh, Dh) a neat model for (Y,D) and h if there exists a

fibration h̃ : Yh → Zh that is birationally equivalent to h, that is, there are birational morphisms

µ : Yh → Y and α : Zh → Z such that the diagram

Y

h
��

Yh
µoo

h̃
��

Z Zh
αoo

commutes, for which the following conditions are satisfied.
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(4.1.1) Dh is the extension of the µ-birational transform D̃ of D by some reduced µ-exceptional

divisor, i.e. Dh = D̃ + E′, where E′ is µ-exceptional.

(4.1.2) (Zh,∆h) is a smooth pair, ∆h being the C-base (see Definition 2.14) of the fibration

h̃ : (Yh, Dh) → Zh.

(4.1.3) Every h̃-exceptional prime divisor P in Yh (P satisfies the inequality codimZh(h̃(P )) > 2)

is contained in supp(Dh).

The interest in the neat models of pairs (that are equipped with fibrations), is twofold.

First, conditions (4.1.2) and (4.1.3) ensure that (h̃)∗ defines a well-defined pull-back map from

symmetric C-differential forms (ΩZh log(∆h))⊗CN attached to (Zh,∆h) to the sheaf of tensorial

logarithmic forms (ΩYh log(Dh))⊗N (see the discussion before the Definition 2.14). Secondly,

according to property (4.1.1), the neat model (Yh, Dh) inherits the birational properties of the

original pair (Y,D). For example if (Y,D) special, then so is (Yh, Dh). These attributes will be

crucial to the proof of the main result (Theorem 4.3) of this section.

Proposition 4.2 (Construction of neat models; cf. [JK11b, § 10]). Every normal logarithmic

pair (Y,D) and a surjective morphism with connected fibres h : Y → Z, where Z is a projective

variety, admits a neat model.

Proof. Let α1 : Z1 → Z be a suitable modification of the base of the fibration h such that

the normalization of the induced fibre product Y ×Z Z1, which we denote by Y1, gives rise to

an equidimensional fibration h1 : Y1 → Z1, that is, a flattening of h, and a birational map

µ1 : Y1 → Y (see the diagram below). Define D1 to be the maximal reduced divisor contained

in the supp(µ−1
1 D) and let

D1 = Dver
1 +Dhor

1

be the decomposition of D1 into sum of its vertical Dver
1 and horizontal Dhor

1 components.

Introduce a closed subset in Z1 by DZ1 := h1(Dver
1 ). Let ∆1 ⊂ Z1 denote the log-discriminant

locus defined by the fibration h1 and the divisor D1. Now, let α2 : Zh → Z1 be a desingularization

of Z1 such that the maximal reduced divisor in the supp(α−1
2 ∆1∪α−1

2 DZ1) is snc. Set Y2 to be the

normalization of the fibre product Y1×Z1 Z2, and µ2 the naturally induced birational morphism.

Define D2 in Y2 by the maximal reduced divisor contained in the supp(µ−1
2 D1). Finally, let

µ3 : Yh → Y2 be a log-resolution of (Y2, D2) and take h̃ : Yh → Zh to be the induced fibration.

Y

h
��

Y1
µ1oo

h1
��

Y2
µ2oo

h2
��

Yh
µ3oo

h̃xx
Z Z1

α1oo Zh
α2oo

Now set D̃2 to be the maximal reduced divisor in supp(µ−1
3 ). Note that h1 remains

equidimensional under the base change of α2, that is, h2 is also equidimensional. This implies

that when we desingularize Y2 by µ3, every h̃-exceptional divisor is µ3-exceptional. Let E3 be the

sum of all h̃-exceptional prime divisors in Yh and define Dh := D̃2 +E3 to be the extension of D̃2

by E3. We finish by defining the birational morphisms µ and α in Definition 4.1 by µ3 ◦ µ2 ◦ µ1

and α2 ◦ α1, respectively. Now, by construction, the C-structure ∆h on Zh induced by Dh and h̃

defines a smooth pair (Zh,∆h), as required. 2
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Theorem 4.3 (Reduction of the isotriviality conjecture). Conjecture 1.1 holds if the following
assertion is true.

(4.3.1) Let (T,B) be a smooth pair. If (ΩT log(B))⊗CN admits an invertible subsheaf L with
κC(T,L ) = dimT , then (T,B) is of log-general type.

Proof. Let f◦ : X◦ → Y ◦ be a smooth family of canonically polarized manifolds, where Y ◦ is
a special quasi-projective variety. We assume that dim(Y ◦) > 0 (otherwise there is nothing to
prove). Let Y be a smooth compactification with boundary divisor D such that D ∼= Y \Y ◦
and that the induced map µ̃ : Y → M to a compactification of M is a morphism. Aiming for a
contradiction, assume that the family f◦ :X◦→ Y ◦ is not isotrivial, that is, dim(Im(µ̃))> 0. Now
if µ̃ is generically finite, then, thanks to Campana and Păun’s solution to Viehweg’s conjecture
(Conjecture 1.3), we find that KY +D is big, contradicting the assumption that (Y,D) is special.
Therefore to prove the theorem, we only need to treat the case where µ̃ : Y → M is not generically
finite (so that µ̃ has positive-dimensional general fibres). In this case, by the Stein factorization,
we can find a projective variety Z such that the morphism µ̃ factors through a fibration with
connected fibres h : Y → Z and a finite morphism Z → M. According to Proposition 4.2, we
can find a neat model (Yh, Dh) of the pair (Y,D) and the fibration h : Y → Z.

Y
µ̃

xx
h
��

Yh
µoo

h̃
��

M Z
finiteoo Zh

αoo

We observe that since Yh\Dh is isomorphic to an open subset of Y ◦, it also parametrizes a smooth
family of canonically polarized manifolds. Thus by [VZ02, Theorem 1.4], for some positive integer
N , we can find a line subbundle L ⊆ (ΩYh log(Dh))⊗N such that κ(Yh,L ) > dimZh. Moreover,
by [JK11a, Theorem 1.4], we know that the Viehweg–Zuo subsheaf L generically comes from
the coarse moduli space. More precisely, there exists an inclusion L ⊆ B⊗N , where B is the
saturation of the image of

dh̃ : (h̃)∗(ΩZh) → ΩYh log(Dh).

Let us now collect the various properties of the pairs (Yh, Dh) and (Zh,∆h), and the fibration

h̃ : Yh → Zh (recall that, by definition, the divisor ∆h is the C-base of the fibration h̃ : (Yh,
Dh) → Zh), that we have found so far.

• (Yh, Dh) and (Zh,∆h) are both smooth pairs (property (4.1.2)).

• Dh contains all h̃-exceptional prime divisors (property (4.1.3)).
• There exists a saturated rank-one subsheaf L ⊆ B⊗N , for some positive integer N , such

that κ(Yh,L ) > dimZh.

With these conditions, we can apply [JK11a, Corollary 5.8] to find a saturated rank-one
subsheaf LZh ⊆ (ΩZh log(∆h))⊗CN such that

κC(Zh,LZh) = κ(Yh,L ) > dim(Zh). (4.3.2)

Finally, if the statement (4.3.1) holds, then (Zh,∆h) is of log-general type. On the other
hand, by property (4.1.1), for every 1 6 p 6 n, we can push forward invertible subsheaves of
Ωp
Yh

log(Dh) to those of Ωp
Y log(D). In particular, since (Y,D) is special, then so is (Yh, Dh). But
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this is a contradiction to our previous finding that KZh + ∆h is big (recall that for a neat model

h̃ : Yh → Zh, and for sufficiently divisible positive integer m, we always have

h0(Yh,G
⊗m) = h0(Zh,OZh(KZh + ∆h)⊗m), (4.3.3)

where G denotes the saturation of the pull-back bundle (h̃)∗(OZh(KZh)) inside Ω
dim(Zh)
Yh

log(Dh)).
2

5. The isotriviality conjecture: the approach of Campana and Păun

In this section we prove statement (4.3.1) from the previous section. The isotriviality conjecture
will then follow from Theorem 4.3. The proof is completely based on the solution of [CP15, § 4] to
Viehweg’s hyperbolicity conjecture (Conjecture 1.3). In particular, Theorem 5.2 should be taken
as the generalization of [CP15, Theorem 4.1] from the category of purely logarithmic smooth
pairs (the boundary divisor is reduced) to that of smooth pairs in general.

For ease of notation we have replaced the pair (T,B) in the reduction statement (4.3.1)
by (X,D), with the warning that D should not be confused with the boundary divisor of the
compactification of Y ◦ that was introduced in the previous sections.

Proposition 5.1. Let (X,D) be a smooth pair of dimension n and L ⊆ (ΩX log(D))⊗CN a
saturated rank-one subsheaf with κC(X,L ) = dimX. For every ample divisor A in X, there
exists a rational number c = c(A,L ) ∈ Q+, depending on A and L , such that the inequality

vol(KX +D +G) > c · vol(A) (5.1.1)

holds for every Q-Cartier divisor G satisfying the following properties.

(5.1.2) (D +G) ∼Q P , for some big Q-Cartier divisor P such that bP c = 0.

(5.1.3) (X,D +G) and (X,P ) are both smooth pairs.

(5.1.4) The Q-Cartier divisor (KX +D +G) is pseudo-effective.

Proof. First, let us fix an ample divisor A. We notice that, by an argument similar to that of
Kodaira’s lemma [Laz04, Proposition 2.2.6], we can always find a (sufficiently large) positive
integer m such that

H0(X, (L )⊗CN ⊗ OX(−A)) 6= 0.

Let the invertible subsheaf L ′ ⊆ (ΩX log(D))⊗C(m.N) denote the line bundle L ⊗Cm, so that the
inequality

A 6 L′ (5.1.5)

holds between Cartier divisors L′ and A, L′ being the divisor satisfying the isomorphism
OX(L′) ∼= L ′. We shall prove the proposition in two steps. First, we run the log-minimal model
program (LMMP) for the smooth pair (X,P ). We notice that since P is big and has no reduced
components (assumption (5.1.2)), according to [BCHM10, Theorem 1.1], after a finite number
of divisorial contractions and log-flips, the program terminates in a log-minimal model (X ′, P ′),
that is, KX′ +P ′ is nef. Here, at the minimal level, we shall find a lower-bound for vol(KX′ +P ′)
in terms of vol(A) and independent of G. The second step of the proof is standard; we will just
use the negativity lemma in the minimal model theory and replace vol(KX′ +P ′) by vol(KX+P )
to establish the required inequality (5.1.1).
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Step 1: log-minimal model of (X,P ) and the volume of its log-canonical divisor. Let π : (X,
P ) 99K (X ′, P ′) be the birational map defined by the LMMP. Take µ : X̃ →X to be a modification
of X resolving the indeterminacy of π, with resulting morphism π̃ : X̃ → X ′, and such that
supp(Exc(µ) ∪ D̃ ∪ G̃), where D̃, G̃ are the µ-birational transforms of D and G, respectively, is
snc in X̃:

Ỹ
γ

adapted cover
// X̃

µ

��

π̃, birational

((
(X,P )

π

LMMP
// (X ′, P ′)

Let γ : Ỹ → X̃ be an adapted cover for the pair (X̃, D̃ + G̃ + E), where E is the maximal
reduced divisor contained in Exc(µ). We notice that, as L ′ is a subsheaf of (ΩX log(D))⊗C(m.N)

(⊆ (ΩX log(pDq))⊗(m.N)), the inclusion

µ∗(L ′) ⊆ (Ω
X̃

log(D̃ + G̃+ E))⊗C(m.N)

follows from the definition. Now, in order for us to use the generic semi-positivity result
(Corollary 3.2), we need K

X̃
+ D̃ + G̃ + E to be pseudo-effective. This is indeed the case:

from the ramification formula for µ we have K
X̃

+ D̃ + G̃ = µ∗(KX + D + G) + Ẽ, Ẽ being
an effective exceptional divisor (the effectivity follows from our assumption that (X,D + G) is
a smooth pair (5.1.2)). So, from the pseudo-effectivity of (KX + D + G) (assumption (5.1.4))
it follows that K

X̃
+ D̃ + G̃ is pseudo-effective, and thus so is K

X̃
+ D̃ + G̃ + E, as required.

Therefore Corollary 3.2 applies and the inequality

µ∗(L′) · Pn−1 6 u(K
X̃

+ D̃ + G̃+ E) · Pn−1

holds, where u := (mN)(nmN )(mN−1), for any nef divisor P in X̃. In particular, for any fixed
ample divisor H ′ in X ′ and positive integer r, we have

µ∗(L′) · π̃∗
(
KX′ + P ′ +

1

r
H ′
)n−1

6 u.(K
X̃

+ D̃ + G̃+ E) · π̃∗
(
KX′ + P ′ +

1

r
H ′
)n−1

.

(5.1.6)

Now let U be a Zariski open subset of X ′ such that codimX′(X ′\U) > 2 where π−1|U and
π̃−1|U are both isomorphisms. For every r ∈ N+, define dr to be a sufficiently large positive integer
such that the linear system |dr(KX′ + P ′ + (1/r)H ′)| is basepoint-free and that the irreducible
curve Cr := B1

r ∩ · · · ∩ Bn−1
r , cut out by general members Bi

r ∈ |dr(KX′ + P ′ + (1/r)H ′)|, is a
subset of U . We notice that as Cr ⊂ U , and because of our assumption (5.1.2), the right-hand
side of inequality (5.1.6) is equal to (1/dr)

n−1u.(KX′ + P ′) · (KX′ + P ′ + (1/r))n−1. Therefore,
we may write inequality (5.1.6) as

(dr)
n−1µ∗(L′) · π̃∗

(
KX′ + P ′ +

1

r
H ′
)n−1

6 u.

(
KX′ + P ′ +

1

r
H ′
)n

,

so that

µ∗(L′) · π̃∗
(
KX′ + P ′ +

1

r
H ′
)n−1

6 u. vol

(
KX′ + P ′ +

1

r
H ′
)
. (5.1.7)

Next, we notice that, as L′ − A > 0 (inequality (5.1.5)), the pull-back µ∗(L′ − A) is
also effective. Therefore, and again by using the fact that the nef cone in the Néron–Severi
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space N1(X̃)R is equal to the closure of the ample one, we have µ∗(L′ − A) · π̃∗(KX′ + P ′ +
(1/r)H ′)n−1 > 0. Hence, we can rewrite inequality (5.1.7) as

µ∗(A) · π̃∗
(
KX′ + P ′ +

1

r
H ′
)n−1

6 u. vol

(
KX′ + P ′ +

1

r
H ′
)
. (5.1.8)

Now, by applying Teissier’s inequality [Laz04, Theorem 1.6.1] (to the left-hand side of inequality
(5.1.8)), we have

vol(A)1/n · vol

(
KX′ + P ′ +

1

r
H ′
)(n−1)/n

6 u. vol

(
KX′ + P ′ +

1

r
H ′
)
,

that is,

vol(A)1/n 6 u. vol

(
KX′ + P ′ +

1

r
H ′
)1/n

. (5.1.9)

Finally, thanks to the continuity of vol(.), by taking r →∞ in inequality (5.1.9) we have

1

un
· vol(A) 6 vol(KX′ + P ′), (5.1.10)

that is, inequality (5.1.1) holds for the log-minimal model (X ′, P ′) if we take c := 1/un.

Step 2: lower bound for the volume of KX + P . By the negativity lemma in the minimal model
theory, we know that H0(X,m(KX +P )) ∼= H0(X ′,m(KX′ +P ′)), for all m ∈ N+. In particular,
the equality vol(X,KX + P ) = vol(X ′,KX′ + P ′) holds. The required inequality (5.1.1) now
follows from inequality (5.1.10) in the previous step and assumption (5.1.2). 2

Theorem 5.2. Let (X,D) be a smooth pair and L ⊆ (ΩX log(D))⊗CN an invertible subsheaf.
If κC(X,L ) = dimX, then KX +D is big.

Proof. Let H be a very ample divisor such that H−D is ample, and let r be a (fixed) sufficiently
large positive integer for which the divisor r(H−D) is very ample. Define the hyperplane section
BD to be a general member of the linear system |r(H − D)|. By construction it follows that,
for every integer M > r, the Q-divisor D + (1/M)BD is Q-linearly equivalent to an snc divisor,
which we denote by PM , with no reduced components:

D +
1

M
BD ∼Q D +

1

M
(r(H −D))

=

(
1− r

M

)
D +

r

M
H =: PM .

Claim 5.2.1. The divisor KX+PM is pseudo-effective, for all integers M satisfying the inequality
M > r.

Let us for the moment assume that the claim holds. Define the Q-Cartier divisor G in
Proposition 5.1 by G := (1/M)BD. As conditions (5.1.2), (5.1.3) and (5.1.4) in Proposition 5.1
are all satisfied, it follows from inequality (5.1.1) that for any fixed ample divisor A, there exists
a constant c such that

vol

(
KX +D +

1

M
BD

)
> c · vol(A), ∀M ∈ N such that M > r. (5.2.2)

Therefore, by taking M →∞, the continuity property of vol(.) and the fact that the constant
c in Proposition 5.1 is independent of M , it follows that the divisor KX +D is big.

It now remains to prove Claim 5.2.1.
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Proof of Claim 5.2.1. Aiming to extract a contradiction, suppose that KX + PM is not pseudo-
effective for some positive integer M > r. Let H ′ be a suitably-chosen very ample divisor such
that the effective log-threshold given by

ε := min{t ∈ R+ : KX + PM + tH ′ is pseudo-effective}

is smaller than 1. According to [BCHM10, Corollary 1.1.7], ε is rational. Now by applying
Proposition 5.1 to the pair (X,D) with G := (1/M)BD + εH ′, we find that KX + PM + εH ′ is
big. But as the big cone forms the interior of the cone of pseudo-effective Q-Cartier classes, for
sufficiently small δ, KX +DM + (ε− δ)H ′ is also pseudo-effective, contradicting the minimality
assumption on ε. 2

The isotriviality conjecture (Conjecture 1.1) now follows from Theorem 5.2 together with
Theorem 4.3 in the previous section.
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BDPP13 S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell, The pseudo-effective cone of a compact
Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013),
201–248, doi:10.1090/S1056-3911-2012-00574-8.

Cam04 F. Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble)
54 (2004), 499–630.
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