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EXISTENCE OF LIMIT CYCLES
FOR A CLASS OF AUTONOMOUS SYSTEMS

ANTHONY SOFO

A proof is given for the existence of at least one stable

periodic limit cycle solution for the polynomial non-linear

differential equation of the form

(1) x + p(x, x) + T](x) = 0 ,

in some cases where the Levinson-Smith criteria are hiot directly

applicable.

Introduction

The importance of studying periodic solutions, of differential

equations, is best illustrated by the remark of Poincare [6]:

"D'ailleurs, ce qui nous rend ces solutions periodiques si

precieuses, c'est qu'elles sont, pour ainsi dire, la seule breche

par ou nouspuissions essayer de penetrer dans une place jusqu'ici

reputee inabordable."

The aim of this exposition is to prove the following theorem.

THEOREM 1. The phase-plane system

\x = ax + y ,
(2) {.

[y = -g{x) - h(y) ,
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where

(3) g{x) = £ 3.xi+1

and

/I Y,Z
i=0

at least one stable limit cycle solution for n € J |{o} if

0 3 for | { }

(ii) 8 0 > 0 , Y 0 < 0 ,

(iii) 0 S a < 1 ,

(iv) 0 < y^ < ( l -cOe^ .

The system (2) may be expressed as a second order differential
equation of the form ( l ) , where

p(x, a:) = h(x-ax) - ax , n(x) = g(x) .

A set of conditions for the existence of at least one stable periodic
solution to the system

I * = y ,
(5)

[y = -n(x) - p(y, x)y ,

has been given by Levinson and Smith [ 3 ] , and improved by Dragi lev [2] and

ViI lar i [ 9 ] . Unfortunately some of those conditions for system (5) cannot

be d i r e c t l y applied t o the system (2) . Similarly the conditions for the

exis tence of at l e a s t one s t ab le l imit cycle for the generalized Lienard

equation

'x + xf{x) + g(x) = 0

are not directly applicable to the system (2).

In the case where a = 0 , condition (i) of the theorem will be
replaced with the requirement that

> 0 , for al l x € IB\{o} ,
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and the second order differential equation becomes

x + h(x) + g(x) = 0 .

Various cases of the above equations have been investigated, using

different methods from the ones employed in this exposition, by Reissig

[7], Parker van Zandt [5], Sansone and Conti [8] and Zhifen [10], but none

of their results cover the cases included in the theorem.

Preliminary results

DEFINITION 1. Cycle without contact.

Given the system (2),

Jx = ax + y ,

[y = -g(x) - My) ,

where g(x) and h{y) are given by (3) and (k) respectively, let C be a

simple smooth closed curve in an annular region G c ITT and M any point

on C . The curve C does not have contact with the trajectories of the

system (2) at the point M , if C is not tangent to a trajectory of the

system (2) at M . Hence, a simple smooth closed curve C is called a

cycle without contact to the system (2) if

(1) there are no singular points on C ,

(ii) the curve C does not have contact at any of its points.

DEFINITION 2. A topographic system is defined to be a family of non-

intersecting simple smooth closed curves

W(x, y) = C

lying interior to one another and fi l l ing out some annular region G .

THEOREM 2 . G i v e n t h e s y s t e m { 2 ) 3

x = ctx + y ,

y = -g(x) - h(y) .

Let G c Ifr be a doubly connected annular region bounded by two
cycles without contact C- and C. , G contain no singular points, and a
finite number of closed paths and suppose the trajectories of (2) crossing
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C and C enter G with increasing time t . Then the number of stable

limit cycles in G is greater by one than the number of unstable limit

cycles. In particular, under the above conditions, the system (2) has at

least one stable limit cycle in G .

The proof of t h i s theorem for any general analyt ic two-dimensional

dynamic system can be found in [ I ] or [ 4 ] .

Proof of Theorem 1

The s i n g u l a r i t i e s of the system (2) occur when y = -ax and

2n

i=0

therefore condition (i) is sufficient to ensure a unique singularity at the

origin (0, 0) of the phase plane, the linearized behaviour of the

trajectories of system (2) in the neighbourhood of the origin is classed as

(a) an unstable node, for , or

(b) an unstable focus (source), for & <

since a > 0 , & > 0 and yQ < 0 .

The Poincare index of the singularity at the origin is +1 .

Consider the topographic family of cycles without contact,

2
(6) W(x, y) = y— + G(x) = CQ

where

rx
G(x) =

'0

the time derivative of (6) along trajectories of the system (2) is

(7) ^(x, y) = °&g{x) - yh{y) .

Since g(x) and h{y) are continuous and a > 0 , 3n > 0 and Yn < 0 ,

then t he r e ex i s t s a neighbourhood of ( 0 , 0 ) in which
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W(x, y) > 0 .

Hence for arbitrary small curves, near the origin it follows that

W(x, y) > 0 on the closed curves of the family W(x, y) = C , for C

arbitrarily small.

Now consider

2
(8) V(x, y) = ̂ - + xy + G(x) = C^ ,

G(x) •* °° for x -»• ±°° and therefore (8) will be a family of closed curves

for a large enough C ; that i s ,

y(x) = -x ± V 2C -[2G(x)-x2] .

Now V(x, y) = y(ax+y) - x(l-a)g(x) - iy+x)h(y) . In polar co-ordinates,

(9) V = r2 sin 6(a cos 6 + sin 6)

- I ri+2j(l-a)3. cosi+26 + y. sini+19 cos 6 + y. sini+2e\ ,

i = 0 *• v % v >

r > 0 and 0 € [0, 2ir] .

Let
2n+2a , . 2n+lQ „

cos 9 + y sin 9 cos 9 + Y9

and investigate the sign of # (9) , since this leading term, for r

sufficiently large, will determine the sign of V(x, y) .

Let m = sin 9 ; hence |m| 5 1 . Therefore

(10) *2 n(9

For 0 < a < 1 , in (10) i t will be sufficient to show that

(11) (

For CT > ^ , then m > (l-m ) and hence
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Inequality (11) now follows since the other term on i t s left hand side is

positive.

For 0 2 m2 < h then [m2)n^ < [l-m2]n+^ and hence by condition

(iv) of the theorem

Again inequality (11) follows since the other term on i t s left hand side is

positive. Therefore from (10), H (0) > 0 for a l l 6 € [0, 2rr] and from

(9), V(x, y) < 0 for a family of closed curves V(x, y) = C for

sufficiently large C . By invoking Theorem 2, we see that the system (2)

has at least one stable limit cycle solution.

REMARK. Condition (i) of the theorem s t i l l remains valid if

% = ^ = 0 , i = 1, 2, . . . , 2n-l , .

since conditions (ii) and (iv) determine the other constants. Hence g(x)

can be taken as an add function in x and h(y) can be taken as an odd

function in y .
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