Integer matrices obeying generalized incidence equations

Jennifer Wallis

We consider integer matrices obeying certain generalizations of the incidence equations for (v, k, λ) -configurations and show that given certain other constraints, a constant multiple of the incidence matrix of a (v, k, λ) -configuration may be identified as the solution of the equation.

We define (v, k, λ) -configurations as usual (see [3]). If B is the (0, 1) incidence matrix of a (v, k, λ) -configuration and if A = bB where b is a positive integer, then

(1)
$$\begin{cases} AA^{T} = b^{2}(k-\lambda)I + b^{2}\lambda J \\ AJ = bkJ \\ \lambda(v-1) = k(k-1) \end{cases},$$

with J as usual the matrix with every element + 1, and I the identity matrix. Ryser [2] proved a partial converse:

LEMMA 1. If A is a $v \times v$ integer matrix satisfying equations (1) with b = 1, then A is the incidence matrix of a (v, k, λ) -configuration (and consequently has every entry 0 or 1).

One might conjecture, in view of the powerful theorems of Ryser [2] and Bridges and Ryser [1], that an integer matrix satisfying (1) would necessarily be b times the incidence matrix of a (v, k, λ) -configuration. But the matrix

Received 24 August 1970.

 $A = \begin{bmatrix} 0 & 3 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 2 & 1 & 2 & 1 & 1 \\ 2 & 0 & 0 & 0 & 2 & 2 & 0 \\ 2 & 1 & 2 & 0 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 3 \\ 1 & 1 & 0 & 3 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 & -1 & 2 & 0 \end{bmatrix}$

satisfies (1) with b = 2, v = 7, k = 3 and $\lambda = 1$. So we need other conditions on the matrix A before we can ensure that every element is 0 or b. We shall prove:

THEOREM 2. If A is a $v \times v$ matrix of non-negative integers which satisfies (1), and if every entry of A is less than or equal to b, then A is b times the incidence matrix of a (v, k, λ) -configuration.

The corresponding result for non-positive A and negative b also holds.

By similar methods we shall obtain a result about more general equations:

THEOREM 3. Let B be an integer matrix of order v which satisfies

$$BB^{T} = (p-q)I + qJ$$
$$BJ = dJ$$

where p, q and d are constants and d > 0. Write w and z for the greatest and least elements of B respectively, and w = |w|.

If

$$z \leq \frac{d}{v} = \delta$$
 and $z \leq \frac{\omega d + p}{d + \omega v}$,

then δ is an integer, $p = d\delta = v\delta^2$, and $B = \delta J$.

1. Proof of Theorem 2

LEMMA 4. Let $B = (b_{ij})$ of order v be a matrix of non-negative integers such that $\sum_{j=1}^{v} b_{ij}^2 = p$, p a constant, for every i, and let
$$\begin{split} BJ &= dJ , d \text{ a non-zero constant. If } b_{ij} \leq \frac{p}{d} \text{ for every } b_{ij} \text{ , or if} \\ b_{ij} \geq \frac{p}{d} \text{ for every non-zero } b_{ij} \text{ , then every entry of } B \text{ is } 0 \text{ or } \frac{p}{d} \text{ .} \end{split}$$

Proof.
$$\sum_{j=1}^{v} b_{ij}^{2} = p \text{ and } \sum_{j=1}^{v} b_{ij} = d \text{, so}$$
$$d \sum_{j} b_{ij}^{2} - p \sum_{j} b_{ij} = dp - dp = 0$$

that is

$$\sum_{j} b_{ij}(db_{ij}-p) = 0$$

;

From the data every term in this summation has the same sign, so every term is zero. So $b_{ij} = 0$ or $\frac{p}{d}$.

COROLLARY 5. If there is a matrix B satisfying the conditions of Lemma 4, then d|p.

Corresponding results may be obtained for matrices of non-positive integers.

Proof of Theorem 2. The matrix A satisfies the conditions of Lemma 4 with $p = b^2k$ and d = bk. So every entry is 0 or b $\left(b = \frac{p}{d}\right)$.

Consider $B = b^{-1}A$. B is an integer matrix satisfying Lemma 1, so it is the incidence matrix of a (v, k, λ) -configuration, and we have the result.

2. Proof of Theorem 3

Proof of Theorem 3. Clearly $p = \sum_{i} b_{ij}^2$ implies $p \ge 0$; and $d \ge 0$

implies p > 0 . Consider the class of matrices

$$C_{\alpha} = B + \alpha J$$

where α is an integer and $\alpha \geq \omega$. Every element of every member of this class is non-negative and

$$C_{\alpha}C_{\alpha}^{T} = (p-q)I + (\alpha^{2}v+2\alpha d+q)J$$
$$C_{\alpha}J = (d+\alpha v)J .$$

Then using Lemma 4, if every non-zero element of $\ensuremath{\mathcal{C}}_\alpha$ is less than or equal to $\ensuremath{\beta}$,

$$\beta = \alpha + \frac{\alpha d + p}{d + \alpha v} ,$$

then every element is 0 or β .

We show that the conditions on $\,z\,$ imply that every element is $\,\lesssim\,\beta$. For

$$a \leq \frac{\omega d + p}{d + \omega v}$$

implies

 $z(d+\omega v) \leq \omega d + p$;

since $z \leq \frac{d}{v}$ we have

 $zd + zwv + \gamma zv \leq wd + p + \gamma zv \leq wd + p + \gamma d$

for any integer $\gamma \ge 0$, so

$$z \leq \frac{(\omega+\gamma)d+p}{d+(\omega+\gamma)v} .$$

This means (putting $\alpha = \omega + \gamma$) that for any admissable α ,

$$z + \alpha \leq \alpha + \frac{\alpha d + p}{d + \alpha v};$$

but $z + \alpha$ is the greatest element of C_{α} . Therefore, any element of C_{α} is 0 or $\alpha + \frac{\alpha d + p}{d + \alpha v}$, so any element of *B* is $-\alpha$ or $\frac{\alpha d + p}{d + \alpha v}$.

Corollary 5 tells us that

$$A(\gamma) = \frac{(\omega+\gamma)d+p}{d+(\omega+\gamma)v} = \frac{d+p(\omega+\gamma)^{-1}}{d(\omega+\gamma)^{-1}+v}$$

is integral for all integers $\gamma \ge 0$. Therefore $\lim_{\gamma \to \infty} A(\gamma)$ must be an $\gamma \to \infty$ integer, so $v \mid d$. Write $d = v\delta$:

54

$$A(\gamma) = \frac{(\omega+\gamma)\upsilon\delta+p}{\upsilon\delta+(\omega+\gamma)\upsilon}$$

so $v \mid p$. Write $p = \varepsilon v$:

$$A(\gamma) = \frac{(\omega+\gamma)\delta+\varepsilon}{\delta+(\omega+\gamma)} .$$

Choose *n* any integer greater than $\delta + \omega$. Then

$$A(n-\delta-\omega) = \frac{(n-\delta)\delta+\varepsilon}{n}$$

so $n|(\varepsilon-\delta^2)$. But this is true for every large enough n; hence $\varepsilon = \delta^2$. That is

$$d = v\delta$$
$$p = v\delta^2$$

so

$$p = d\delta = v\delta^2$$
.

Then we have

$$\frac{\alpha d + p}{d + \alpha v} = \frac{v \delta(\alpha + \delta)}{v(\delta + \alpha)} = \delta$$

for any γ , so every element of *B* is $-\alpha$ or δ . Now the row sum of *B* is $d = v\delta$ and the sum of the squares of the elements is $p = v\delta^2$; together these imply

$$B = \delta J$$

where $\delta = \frac{d}{v}$.

References

- [1] W.G. Bridges and H.J. Ryser, "Combinatorial designs and related systems", J. Algebra 13 (1969), 432-446.
- [2] H.J. Ryser, "Matrices with integer elements in combinatorial investigations", Amer. J. Math. 74 (1952), 769-773.

[3] Herbert John Ryser, Combinatorial mathematics (The Carus Mathematical Monographs, No. 14. Math. Assoc. Amer., Buffalo, New York; John Wiley, New York, 1963).

University of Newcastle, New South Wales.

56