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Abstract. For an Axiom A diffeomorphism of a surface with an ergodic invariant
measure we prove that the entropy is the product of the positive Lyapunov exponent
and the Hausdorff dimension of the set of generic points in an unstable manifold.

Recent work in dynamical systems and ergodic theory shows that a diffeomorphism
satisfying some hyperbolicity conditions, such as those of Anosov, has very many
ergodic invariant measures. These can arise as equilibrium states [21], [3] for
real-valued functions and they are singular with respect to each other. We consider
a diffeomorphism / of a surface and investigate the disjoint sets G^ of future generic
points [6] on which such measures fi are concentrated. The Hausdorff dimension
Su. of the intersection of GM with an unstable manifold is an indication of how thick
(i is. Each measure n determines a positive Lyapunov exponent x* that measures
the exponential rate of growth of ||D/"u|| for almost all vectors v at fi -almost all
points x. Our main result is that the entropy h^ is equal to the product S^x^- Further
ideas on this subject follow the proof.

FIGURE 1
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452 A. Manning

Example. The horseshoe diffeomorphism [22], as shown in figure 1, can be defined
to expand one side of its rectangles by a factor of 3 and contract the other by |
and in this way to leave non-wandering a middle third Cantor set in each local
unstable manifold. The measure fi of maximal entropy has

and /u. is evenly distributed on the Cantor set giving

SM=log2/log3.

Moreover, the Lyapunov exponent is log 3 for any measure. In this simple case
our formula reads

h» = log 2 = (log 2/log 3) log 3 =

THEOREM. Letf: M -* Mbe a C1 Axiom A diffeomorphism of a surface M2 preserving
an ergodic Borel probability measure /A. Define G^ to be the set of future generic
points for fi. Let Hi be the basic set of f for which GM <= Ws(ili). Then the Hausdorff
dimension, denoted by 8^, of GM n W"oc(x) is independent of x efli. If Xn denotes
the positive Lyapunov exponent corresponding to fi then the entropy h^. of f is given
by the formula

As the proof of our theorem will depend on Bowen's definition in [2] of a topological
entropy h(f, Y) for a possibly non-compact subset Y of a compact space X and
a continuous map f:X-*X, we recall his definition now. Let si be a finite open
cover of X and write E <s& if E is contained in some member of si. Write
or simply n (E), for the largest non-negative integer such that

fkE<si lor0^k<

If % = {Ei, E2,... } has union containing Y, set

Define m ,̂A by

% = {Ex, Ei,... }, LJ Ei => Y and exp -nAEt) < e for each /}.
; = i

Then define

hAf, F) = inf{A;m^,A(y) = 0}
and

*(/, Y) = sup M / , Y).
si

Thus h(f, Y) is defined in a way that resembles Hausdorff dimension but with the
diameter of a set replaced by the length of time for which its images remain finer
than a given cover.
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Hausdorff dimension S(Y) is denned, for example in [11], by

8(Y) = inf{\;m,(Y) = 0},

where

I (diam Etf; U Et => Y and diam Et < e for each /}.

i = l .=1 J

Proof of theorem. Note first that, if fti has a splitting r n i M = £ I © £ " with E" or
£js two-dimensional, then /J, is concentrated on a periodic orbit and both h^ and
5M are zero. Thus we need only consider the case of a basic set fii where Es and
Eu are one-dimensional. If one point y is forward generic for fi (i.e. the time
average along the orbit of y of any continuous function i// converges to ft (</0) then
so is any other point in the same stable manifold. Thus GM is a union of stable
manifolds and we cut this set by a special one-dimensional transversal W"oc(x). As
in [3], define a continuous function </>iu): W(ili) -* U by

<t>(u\y) = -log\\Dfy\TyW
u(y)\\.

Then

and, by taking a Riemannian metric adapted to / [15, p. 162], we can assume that
<f>(u) takes only negative values.

In [2] Bowen showed that h^ = h(f, G^). We shall start from this and prove that

h(f, GlL) = S^x^
Denote /iM, 5M, x* simply by h, 8, x- The method is for any e > 0 first to prove that,
since G^ has a cover with DM(-,h + e) small, intersecting with W"oc{x) gives a
cover with small mih+c)/(x~2e) and so

Secondly, we shall prove that, since GM n WTOc(*) has zero Hausdorff measure in
dimension 8 + e, an economical cover in this sense provides an economical cover
for GM with smallDA-,(8 + e)(x + 2B)) SO that

We shall use the restriction of the Riemannian metric to the C1 embedded compact
interval W"oc(x). Since this is Lipschitz equivalent to the metric as a subset of M,
it gives the same value of Hausdorff dimension.

Step 1. Given e >0 choose an open cover si of Hi by rectangles small enough so
that 0<u), which is continuous on the compact set W"' (fli), varies by at most e on
the region enclosed by each rectangle. Here

^•(11!)= U Wu(x,e'\

where W(x, e') = {y e M; d{fy, fx) < e' for / < 0}. Then for any a > 0 there is a
finite open cover °U of G^ with

I exp(-nsi(U)(h+e))<a.
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Let W be any closed interval on any Wu(x), so W is compact. Provided e is
small, si is so fine that W crosses each A e si at most once. Define

u.r = I J I <t>(u\fx) + x
1=0

<E,Vm>r

and note that GM = L C o Gn.n since y, is ergodic and x = -fJ-(<f>M)- In the special
case of an algebraic Anosov diffeomorphism of T2 we have 4>iu) constant and
G^ = GM>0.

Fix r. Provided a is small enough we have «([/) s r for each U in aU.. The mean
value theorem gives

diam (W n G^r n U) = diam f< u ) ( W n GM,r n
 (c/)

l-^y II

for some y in the convex hull in W of W n G ,̂, n U. Here meshu .stf denotes the
longest interval of an unstable manifold in an element of si. Since the orbit of y
from time 0 to n keeps in the same element of si as that of some point of G ,̂, we
have

\\Df;iu)\Eu
y\\>exp[(x-2e)n(U)l

Thus the cover

has

I (diamU')lh+c)/i><-2e)^(meshusi){h+e)/{x~2e) I exp[-(fc+e)n(t/)]

Now %' can be made as fine as required by making % fine. Thus the Hausdorff
dimension of Wr\G^r is at most (h + e)/(* —2e). By taking a countable union
over r and then letting e -> 0 we obtain

as required for step 1, where Sw is the Hausdorff dimension of W n GM.

Step 2. Given e >0, again let j ^ b e a covering of Hi by open rectangles on each
of which </>(u) varies by at most e. Let / be a Lebesgue number for si with the
property that any subset of fli is contained in a set in si if it is small enough for
the diameter of its intersection with any local stable or unstable manifold to be
less than /. Now take any interval W in any unstable manifold and choose m so
large that

fmWnWs(xAl)*0 for every xeil^.

For each r the Hausdorff dimension of fmW nG^r is at most 5 = SW, so we can
take a very fine cover %r of fm\V n G^r by open intervals in fmW satisfying

I (diamt/)s+E<2"r.

For each U e <%r define U* as U ^ u n n ^ ' f e 2')- Then fU* is contained in some
element of si so long as diam f"U <l. The ratio of diam f"U to diam U is \\Df" \E"\\
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for some y e U and, since the orbit of y from time 0 to n(U*) is close to that of
a point in UnG^r and °Ur can be chosen fine enough so that n(U*)>r, we have

Thus n(U*) satisfies

/<diam U • exp[(x + 2e)n(U*)]

and so

. i-(S+e)2~r

Every point of GM n (l\ is in Ws(x, \l) for some x efmWr\ GM>r for all sufficiently
large r. By combining all U* obtained from the covers °Ur for all r > q we obtain
a cover °U* of C7M n Hi with

Thus

For open covers /i^ > /ia when j ^ refines S3, so that ft = sup^ h^ is actually a limit
of fit* as the mesh of si tends to 0. Thus

Now e was arbitrary so

as required for step 2. Hence

h =
for any W and the theorem is proved. •

Remarks. It is interesting to compare our formula

K = s^x*.
with Pesin's formula. Pesin proves in [17], for a smooth measure /J. preserved by
a general C2 diffeomorphism, that h^. is the integral with respect to fi of x+, the
sum of the positive Lyapunov exponents. In our two-dimensional case there is only
one positive exponent so an ergodic invariant smooth measure has h^ = x^- Pesin
needs the C2 (or Cl+a) hypothesis to achieve absolute continuity of the foliations
by stable and unstable manifolds. A C2 Anosov diffeomorphism of a two-
dimensional manifold has foliations that are actually C1, see [10, theorem 6.3]. In
this case a smooth measure has 5M = 1, so that our theorem gives h^ = x* in agreement
with Pesin.

Pesin's C2 hypothesis is only needed to prove that

The opposite inequality
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FIGURE 2

is due to Margulis and only requires / to be C1, see [17, § 1.6]. A proof of this by
Ruelle for a general measure /x is in [19]. Indeed /iM <fj.{x+) holds for Axiom A
systems if P{<f>{u))<0 and hence for C2 basic sets other than attractors [3]. Our
theorem shows for surfaces why the inequality can be strict. (Compare the discussion
of this question in [12, p. 140].) It is because a one-dimensional unstable manifold
can meet a basic set, that is not an attractor, in a set of Hausdorff dimension t0 less
than 1 and 5^ has at most this value. McCluskey and Manning have shown in [14]
that t0 is the unique value of t satisfying

P{t<f>M) = O.

Thus the convex curve P(t<f>(u)) crosses the axis at t0, while the straight line /iM - tx*
crosses at 8^.. The straight line can never be above the pressure curve so

8* =£ t0.

Moreover, 5M = t0 only holds if /u. is an equilibrium state for to<j>(u). By the existence
and uniqueness of equilibrium states, a C2 Axiom A diffeomorphism of a surface
has on each basic set a unique ergodic invariant probability measure /I whose set
of generic points in an unstable manifold has maximal Hausdorff dimension. The
first part of the proof of lemma 10 in [4] now shows that the set of generic points
of jtZ in an unstable manifold has full Hausdorff to -measure in the set of points of
the basic set in this unstable manifold. Thus /I may be considered the Bowen-Ruelle
measure for the basic set generalizing the measure defined by Bowen-Ruelle in
[5] for C2 attractors.

In the C1 case (̂</><u)) = x* depends continuously on the measure (j. in the weak
topology and, since f\Cl is expansive, h^ depends upper semicontinuously on /x by
(16.7) of [6]. It now follows from the theorem that 5M depends upper semicon-
tinuously on fi.

Our calculations do not work for diffeomorphisms of manifolds of dimension
greater than two if the measure /A has more than one positive exponent, * i , . . . , Xr,
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say. We might guess that the set of generic points is aligned with the directions
corresponding to the exponents and has a Hausdorff dimension Si,..., Sr with
0 < 5, =£ 1 in these directions and that

r

K =K
A first step would be to extend our theorem to non-uniformly hyperbolic
diffeomorphisms of surfaces.

However, when working in a shift space, we can take a metric in which all positive
exponents are the same and all expansion seems to take place in the same direction,
even though there is no manifold structure in which directions or exponents can
be denned. Let cr: 1N -»1N denote the full one-sided shift on N symbols. Given
a > 1 we define a metric on 1N by d(x, y) = a~k, where it is the largest non-negative
integer for which x, = y, for all 0 < / < k. Then 1N has diameter 1 and points are
moved apart by a with exponent log a. The calculations in the proof of the theorem
with si the cover by cylinders of a certain length and x = log a independent of fi
now prove the following: any ergodic cr-invariant probability measure fi on 1N

(with support not necessarily all of 2N) has the Hausdorff dimension 8^ of its set
of generic points given by

htL{o-) = SIJL log a .

In the case a =N this reads

K(a) = 5M logN = 8^htop(cr)
so that 5M<1. (This corresponds to the fact that z-*zN on the circle, whose
dimension is 1, is a Lipschitz image of the N-shift by a map that preserves the
diameter of cylinders in this metric. See [9] and [2, p. 127].) Adler and Marcus
have recently used topological entropy to classify subshifts of finite type up to
'almost topological conjugacy', a notion involving factor maps that are one-one
except on some universally null set such as the set of non-doubly transitive points
[1]. This set is, as they say, negligible in a category or measure theoretic sense.
However, it contains the union over arbitrarily long words of the subshifts of finite
type obtained by omitting from the two-sided N-shift sequences that contain the
word anywhere in their length. For /J. the measure of maximal entropy on such a
subshift /iM (cr) can be made as close as is desired to log N by taking the word long
enough. Hence the set of non-doubly transitive points is of full Hausdorff dimension.
Hausdorff dimension is a much more delicate notion of which subsets are negligible.

Of the three quantities we have been considering - positive Lyapunov exponent,
Hausdorff dimension and entropy - the entropy is the most fundamental. A homeo-
morphism f:M-*M of a compact Hausdorff space M determines the Borel a-
algebra, the family of/-invariant regular Borel probability measures, their entropies
h^if) and the topological entropy satisfying Dinaburg's Theorem [7] that

= sup M / ) .

The measure fi determines the set GM of its positive generic points.
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If M is metrizable then a choice of a Lipschitz equivalence class of metrics
determines the Hausdorff dimension of GM. If M has a differential manifold structure
then choice of such a structure determines the n Lyapunov exponents of fi, provided
that / is a diffeomorphism of the structure. Here n is the dimension of M as a
topological space. If / is of class C1+° in the chosen differential structure Pesin
constructs local stable and unstable manifolds [16], [20]. If n = 2 and a structure
is chosen in which / is C1 and satisfies Smale's Axiom A then it has C1 unstable
manifolds which cut G^ in the sets considered in our theorem. Choice of a differential
structure determines the Lipschitz equivalence class of metrics given by the con-
tinuous Riemannian metrics on the manifold and this now determines <5M and x*-
(Incidentally, Ledrappier has recently introduced in [13] a 'dimension' for a measure
fi related to our 8^ but denned without reference to a transformation /.)

A diffeomorphism satisfying the hypotheses of our theorem and strong transver-
sality is structurally stable [18], [22]. Indeed, any Anosov diffeomorphism / of T2

is topologically conjugate to a linear one, g say, [8]. By means of carrying the
differential structure across by the conjugacy ; we can regard / as g with a new
differential structure. The invariant measures /x. and their entropies /iM(g) are
unchanged but the Lyapunov exponent x* of g may have changed and, since the
new differential structure determines a different class of metrics, so too may the
Hausdorff dimension 5M even though the set GM n W" (x, g) is the same. The theorem
applies to show that the new values of x». and 5M for g still satisfy

but this is just the theorem applied to / and j
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