A MAXIMAL GROSS-STADJE NUMBER IN THE EUCLIDEAN PLANE

F. PILLICHSHAMMER

Let X be a compact, connected Hausdorff space and f a real valued, symmetric, continuous function on $X \times X$. Then the Gross-Stadje number r(X, f) is the unique real number with the property that for each positive integer n and for all (not necessarily distinct) x_1, \ldots, x_n in X, there exists some x in X such that $\sum_{i=1}^n f(x_i, x) = nr(X, f)$. This paper solves the following open question in distance geometry: What is the least upper bound $g_2(\mathbb{R}^2)$ of $r(X, d^2)$, where X ranges over all compact, connected subsets of the Euclidean plane with diameter one and where d^2 denotes the squared, Euclidean distance. We show: $g_2(\mathbb{R}^2) = 3 - \sqrt{6}$.

1. INTRODUCTION

Let X be a compact, connected Hausdorff space and f a real valued, symmetric, continuous function on $X \times X$. Then there is a unique real number r(X, f) with the property that for each positive integer n and for all (not necessarily distinct) x_1, \ldots, x_n in X, there exists some x in X such that

$$\frac{1}{n}\sum_{i=1}^n f(x_i,x) = r(X,f).$$

For the case when f is a metric on $X \times X$ this result was proved by O. Gross [2] in 1964. The more general result stated above was proved by W. Stadje [3] (independendly from Gross) in 1981. The number r(X, f) is called Gross-Stadje number and is associated with X and the function f. If f is a metric d, then r(X, d) is also often called the rendezvous number of the metric space (X, d). An excellent survey on this topic is given in [1].

In this paper we consider the case that X is a subset of the Euclidean plane and f is the squared, Euclidean distance d^2 (by $\|.\|$ we denote the Euclidean norm). In general the explicit calculation of the number r(X, f) for a given compact, connected Hausdorff space X and a real valued, symmetric, continuous function f on $X \times X$ is rather difficult. It turns out that the calculation of $r(X, d^2)$ is much easier.

Received 13th May, 1999

This work was supported by the FWF Project P-12441 MAT. I would like to thank my doctoral thesis advisor Reinhard Wolf for valuable discussions and suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

F Pillichshammer

THEOREM 1. (Wilson) Let X be a compact, connected subset of \mathbb{R}^n . Let B_1 be a closed ball and B_2 an open ball such that X is contained in $B_1 \setminus B_2$ and the centre of each ball lies in the closed convex hull of the intersection of X with the boundary of the other. Further, let B_1 have centre u and radius R and let B_2 have centre v and radius r. Then

$$r(X, d^2) = R^2 + r^2 - ||u - v||^2.$$

For a proof see [4]. The existence of the balls in Theorem 1 is also shown in Wilson's paper.

For example let X be the Reuleaux triangle with diameter 1. Choose B_1 as the convex hull of the circumscribed circle und B_2 as the interior of the convex hull of the inscribed circle. Then we get with the help of Wilson's Theorem $r(X, d^2) = (5-2\sqrt{3})/3$. (Remember that r(X, d) of the Reuleaux triangle is still unknown.) For more examples see [1, 4].

Define the number $m(X, d^2)$ as $r(X, d^2)/D(X, d^2)$, where $D(X, d^2) = \sup\{||x - y||^2 | x, y \in X\}$ and $g_2(\mathbb{R}^2)$ as the supremum of the numbers $m(X, d^2)$ as X ranges over all compact, connected subsets of \mathbb{R}^2 . In [1] the authors ask for the value of $g_2(\mathbb{R}^n)$, which is defined analogously. All values $g_2(\mathbb{R}^n)$, $n \ge 2$, are still unknown. The first information about the magnitude of $g_2(\mathbb{R}^2)$ is given in the following inequality: For all compact, connected metric spaces (X, d) we have

$$\frac{1}{4}\leqslant m(X,d^2)<1.$$

For a proof of this inequality see for example [1]. Wilson conjectured in [4] that $g_2(\mathbb{R}^2) = (3 - \sqrt{11/3})/2$, which is the number $m(X, d^2)$ for two sides of a Reuleaux triangle. But we shall show that this value is a little bit too small.

2. RESULTS

The following Proposition leads to the calculation of $g_2(\mathbb{R}^2)$.

PROPOSITION 1. Let S_1 be a circle with centre u and radius R and let S_2 be a circle with centre v and radius $r, R \ge r \ge 0, R > 0$ and $0 \le ||u - v|| \le R$. Let X be a compact, connected subset of conv $S_1 \setminus (\operatorname{conv} S_2)^\circ$ where v is in $\operatorname{conv}(S_1 \cap X)$ and u is in $\operatorname{conv}(S_2 \cap X)$. Then we have

$$m(X, d^2) \leqslant 3 - \sqrt{6} \approx 0.5505102.$$

Now we get

THEOREM 2. Define $g_2(\mathbb{R}^2)$ as in Section 1. Then we have

$$g_2(\mathbb{R}^2)=3-\sqrt{6}.$$

REMARK 1. The value $3 - \sqrt{6}$ is attained, for example for the following set: Let S_1 be a circle with centre u and radius R = 1, S_2 be a circle with centre v and radius $r = \sqrt{3/(4\sqrt{6}-6)}$ and let $||u - v|| = \sqrt{3/2} - 1$. Let $\{x_1, x_2\}$ be the intersection of S_1 and S_2 . Further let x_3 be the intersection point of $S_1 \setminus \operatorname{conv} S_2$ and the line which is determined by u and v and let x_4 be the intersection point of $S_2 \cap \operatorname{conv} S_1$ and the line which is determined by u and v. Then define the set A as follows: A consists of the arc joining x_1 and x_2 in $S_2 \cap \operatorname{conv} S_1$ and the line segment x_3x_4 (see Figure 1). Observe that $D(A, d^2) = ||x_1 - x_3||^2 = (2r)^2$.

Figure 1: The set A.

3. PROOFS

For the proof of Proposition 1 we need the following Lemmas:

LEMMA 1. Let S be a circle with centre u and radius R. Let v be a point in conv S and g be the line with v in g and g perpendicular to the line segment uv. Further let h be an arbitrary line with v in h. Then we have with $\{x_1, x_2\} = S \cap g$ and $\{y_1, y_2\} = S \cap h$

$$||x_1 - x_2|| \leq ||y_1 - y_2||.$$

The proof is straight forward.

LEMMA 2. Let S be a circle with centre u and radius R. Let x_1, x_2, x_3 be points in S with u in conv $\{x_1, x_2, x_3\}$. Then we have

$$\max_{1\leqslant i,j\leqslant 3} \|x_i - x_j\| \geqslant \sqrt{3}R.$$

The proof is straight forward.

LEMMA 3. Let S be a circle and let X be a subset of conv S with $S \cap X$ is not empty. Let v be a point in conv $(S \cap X)$. Then there are points x_1, x_2, x_3 in $X \cap S$ with v in conv $\{x_1, x_2, x_3\}$.

F Pillichshammer

The Lemma follows from Caratheodory's Theorem.

LEMMA 4. Let S_1 be a circle with centre u and radius R and let S_2 be a circle with centre v and radius r, $R \ge r \ge 0$, R > 0 and $0 \le ||u - v|| \le R$. Assume v is in $\operatorname{conv}(\operatorname{conv} S_1 \setminus (\operatorname{conv} S_2)^\circ)$. Then we have

$$\|u-v\|^2+r^2\leqslant R^2.$$

PROOF: If $S_1 \cap S_2$ is empty, the assertion is trivial. Let $S_1 \cap S_2$ be not empty. Assume that $||u - v||^2 + r^2 > R^2$. Let $L := \operatorname{conv}(S_1 \cap S_2)$, l := D(L,d) and a := l/2. Define $d := \min\{||x - u|| : x \in L\}$. Then we have $a^2 + d^2 = R^2$ and $a^2 + (||u - v|| - d)^2 = r^2$. From this we get

$$R^{2} - d^{2} = r^{2} - (||u - v|| - d)^{2}$$

and hence

$$d = \frac{R^2 - r^2 + ||u - v||^2}{2||u - v||} < \frac{||u - v||^2 + ||u - v||^2}{2||u - v||} = ||u - v||.$$

So the line which is determinated by L separates $conv(conv S_1 \setminus (conv S_2)^\circ)$ and v, which is a contradiction.

LEMMA 5. Define the following functions:

1.
$$f_1: [0, 1/2] \longrightarrow \mathbb{R}, x \longmapsto 5/3 - \left(2\sqrt{3}\sqrt{1-x+x^2}+x\right)/3$$

2. For
$$0 \leq w \leq 1/2$$
: $f_2 : [0,1] \longrightarrow \mathbb{R}$,

$$x \longmapsto rac{(1+x^2-w^2)(1+w)^2}{\left(x+\sqrt{(1+w)^3-wx^2}
ight)^2}$$

3. For
$$w > 0$$
: $f_3: (0,1] \longrightarrow \mathbb{R}, x \longmapsto (1+x^2-w^2)/(4x^2)$.
4. $f_4: [0,1/2] \longrightarrow \mathbb{R}, x \longmapsto 1/4 + (1+3x-4x^2)/(4(1+x))$

Then we have:

1.
$$\max_{0 \le x \le 1/2} f_1(x) = f_1\left(\left(1 - \sqrt{3/11}\right)/2\right) = \left(3 - \sqrt{11/3}\right)/2.$$

2.
$$f'_2(x) \begin{cases} < 0 \quad \text{for } x < (1 - w^2)/\left(\sqrt{1 + 6w + w^2}\right) \\ = 0 \quad \text{for } x = (1 - w^2)/\left(\sqrt{1 + 6w + w^2}\right) \\ > 0 \quad \text{for } x > (1 - w^2)/\left(\sqrt{1 + 6w + w^2}\right) \end{cases}$$

3.
$$f_3 \text{ is monotonic decreasing.}$$

4.
$$\max_{x = 0} f_1(x) = f_1\left(\sqrt{2/2} - 1\right) = 3 - \sqrt{6}$$

4.
$$\max_{0 \leq x \leq 1/2} f_4(x) = f_4\left(\sqrt{3/2} - 1\right) = 3 - \sqrt{6}.$$

113

The proof is straight forward.

PROOF OF PROPOSITION 1: Without loss of generality, let R = 1. From Lemma 4 we have

(1)
$$||u - v||^2 + r^2 \leq 1$$

and from Theorem 1 we have

(2)
$$m(X,d^2) = \frac{1+r^2 - \|u-v\|^2}{D(X,d^2)}$$

If r = 0 we get u = v and therefore u is in $conv(S_1 \cap X)$. From this we get $D(X, d^2) \ge 3$ and hence

$$m(X,d^2)\leqslant \frac{1}{3}.$$

So assume r > 0. Then it is easy to see that $|X \cap S_1| > 1$.

CASE 1. $|X \cap S_1| = 2$. So $X \cap S_1 = \{y_1, y_2\}$ and $D(X, d^2) \ge ||y_1 - y_2||^2$. Let g be the line with v is in g, with g perpendicular to the line segment uv and let $\{x_1, x_2\} = S_1 \cap g$. Then we have $||x_1 - x_2||^2 = 4(1 - ||u - v||^2)$. Since v is in conv $\{y_1, y_2\}$ we get from Lemma 1 $||y_1 - y_2|| \ge ||x_1 - x_2||$ and therefore

$$D(X, d^2) \ge 4(1 - ||u - v||^2)$$

Now we get with (1) and (2):

$$m(X,d^2) \leq \frac{1+r^2 - \|u-v\|^2}{4(1-\|u-v\|^2)} \leq \frac{2(1-\|u-v\|^2)}{4(1-\|u-v\|^2)} = \frac{1}{2}.$$

CASE 2. $|X \cap S_1| > 2$. From Lemma 3 we get points y_1, y_2, y_3 in $S_1 \cap X$ with v in $\operatorname{conv}\{y_1, y_2, y_3\}$.

CASE 2.1. *u* is not in conv $\{y_1, y_2, y_3\}$. Then there are two points in $\{y_1, y_2, y_3\}$, without loss of generality, y_1 and y_2 , such that the line segment y_1y_2 does intersect the line segment *uv*. That is, $y_1y_2 \cap uv = \{\overline{v}\}$. It follows that $||u-\overline{v}|| \leq ||u-v||$. Define two lines g, h which are perpendicular to the line segment *uv* with \overline{v} on g and v on h. Let $\{y'_1, y'_2\} = S_1 \cap g$ and $\{x_1, x_2\} = S_1 \cap h$. From Lemma 1 we get $||y'_1 - y'_2|| \leq ||y_1 - y_2||$. Further we get

$$\left(\frac{\|x_1 - x_2\|}{2}\right)^2 = 1 - \|u - v\|^2 \leq 1 - \|u - \overline{v}\|^2 = \left(\frac{\|y_1' - y_2'\|}{2}\right)^2$$

and hence

$$D(X, d^2) \ge ||y_1 - y_2||^2 \ge ||y_1' - y_2'||^2 \ge ||x_1 - x_2||^2 = 4(1 - ||u - v||^2).$$

[5]

Again we use (1) and (2) and get

$$m(X,d^2)\leqslant \frac{1}{2}.$$

CASE 2.2. u is in conv $\{y_1, y_2, y_3\}$. From Lemma 2 we have

$$\max_{1 \leq i, j \leq 3} \|y_i - y_j\| \ge \sqrt{3}$$

and so $D(X, d^2) \ge 3$. Assume ||u - v|| > 1/2. Then we get together with (1) and (2)

$$m(X, d^2) \leq \frac{2(1 - ||u - v||^2)}{3} < \frac{2(1 - 1/4)}{3} = \frac{1}{2}$$

So in the following we only have to consider the case $||u - v|| \leq 1/2$. We have r in the interval I = (0, 1]. Define the intervals

$$I_1 := \left(0, \sqrt{3} - \sqrt{1 - \|u - v\| + \|u - v\|^2}\right],$$

$$I_2 := \left[\sqrt{3} - \sqrt{1 - \|u - v\|} + \|u - v\|^2, \frac{1 + \|u - v\|}{\sqrt{4\|u - v\|} + 1}\right]$$

and

$$I_3 := \left[\frac{1 + ||u - v||}{\sqrt{4||u - v|| + 1}}, 1\right].$$

Therefore r is in $I_1 \cup I_2 \cup I_3$.

CASE 2.2.1. r is in I_1 .

Since $D(X, d^2) \ge 3$ we get together with (2) and Lemma 5,

$$m(X, d^{2}) \leq \frac{1 + r^{2} - ||u - v||^{2}}{3}$$

$$\leq \frac{5}{3} - \frac{2\sqrt{3}\sqrt{1 - ||u - v|| + ||u - v||^{2}} + ||u - v||}{3}$$

$$= f_{1}(||u - v||)$$

$$\leq \frac{1}{2}\left(3 - \sqrt{\frac{11}{3}}\right) \approx 0.5425728.$$

CASE 2.2.2. r is in I_2 . For $1 \le i \le 3$ define the lines $g_i, v + t(v - y_i)$ for $t \ge 0$. Since y_1, y_2, y_3 are points in X and X is connected there are at least two indices $i_1, i_2 \in \{1, 2, 3\}$, $i_1 \ne i_2$ and two points a_1, a_2 in X with $a_1 \in g_{i_1}$ and $a_2 \in g_{i_2}$. Then define $x_1 := y_{i_1}$, $x_2 := y_{i_2}$ and $x_3 := y_k$, where $k \ne i_1, i_2$. From this it is clear that $||x_1 - a_1|| \ge ||x_1 - v|| + r$ and $||x_2 - a_2|| \ge ||x_2 - v|| + r$. So we have

$$D(X, d^2) \ge \max\{\|x_1 - x_2\|, \|x_2 - x_3\|, \|x_1 - x_3\|, \|x_1 - v\| + r, \|x_2 - v\| + r\}^2.$$

114

If $||x_1-x_2|| > 2\sqrt{1-||u-v||^2}$ we have $D(X,d^2) > 4(1-||u-v||^2)$ and therefore together with (1) and (2), we have $m(X,d^2) < 1/2$. So we only have to consider $||x_1-x_2|| \le 2\sqrt{1-||u-v||^2}$.

Consider the arc joining x_1 and x_2 on S_1 which contains x_3 . Let x'_3 be on this arc with $||x_1 - x'_3|| = ||x_2 - x'_3||$. Then we have

$$\max\{\|x_1-x_3\|,\|x_2-x_3\|\} \ge \|x_1-x_3'\|$$

and so we get

$$D(X, d^{2}) \ge \max\{\|x_{1} - x_{2}\|, \|x_{1} - x_{3}'\|, \|x_{1} - v\| + r, \|x_{2} - v\| + r\}^{2}.$$

Now let $T: S_1 \longrightarrow S_1$ be a rotation with centre u and $Tx'_3 = u + t(u - v)$ for a t > 0. Then we have

$$||Tx_1 - v|| + r = ||Tx_2 - v|| + r.$$

Of course $||x_1 - x_2|| = ||Tx_1 - Tx_2||$, $||x_1 - x_3'|| = ||Tx_1 - Tx_3'||$ and

 $\max\{\|x_1-v\|+r,\|x_2-v\|+r\} \ge \|Tx_1-v\|+r.$

So we get

(3)
$$D(X, d^2) \ge \max\{\|Tx_1 - Tx_2\|, \|Tx_1 - Tx_3'\|, \|Tx_1 - v\| + r\}^2.$$

For short write again $x_1 := Tx_1, x_2 := Tx_2$ and $x_3 := Tx'_3$. Let \overline{x}_i be the intersection point of the circle S_2 and the line segment ux_i , for $1 \le i \le 3$. Now define the following set X': X' is the arc joining \overline{x}_1 and \overline{x}_2 in S_2 with u in the convex hull of this arc, together with the line segments $x_i\overline{x}_i$, for $1 \le i \le 3$. Then we have

- 1. X' is a compact, connected subset of $convS_1 \setminus (convS_2)^\circ$.
- 2. $u \text{ is in } \operatorname{conv}(S_2 \cap X)$, and since $||x_1 x_2|| \leq 2\sqrt{1 ||u v||^2}$ also v is in $\operatorname{conv}\{x_1, x_2, x_3\}$.
- 3. $D(X', d^2) = \max\{\|x_1 x_2\|, \|x_1 x_3\|, \|x_1 v\| + r\}^2 \leq D(X, d^2) \text{ and therefore } m(X', d^2) \geq m(X, d^2).$

So in the following we only consider sets of the kind of X'.

Let z be the intersection point of S_1 and the line u + t(u - v) for $t \ge 0$. If $S_1 \cap S_2$ is not empty, let y be in $S_1 \cap S_2$. Otherwise let y be the intersection point of S_1 and the line u + t(u - v) for $t \le 0$. Let B be the shortest arc joining y and z on S_1 . Let g be the line which is perpendicular to uv and which contains v and define p as the intersection point of B and g. Each point x on B corresponds to an angle ϕ between the line segments uv and ux. Therefore we write $x = x(\phi)$. Now define the angles ϕ_1 and ϕ_2 with $y = x(\phi_1)$ and $p = x(\phi_2)$. Clearly $\phi_1 \ge 0$. Assume $\phi_1 > \pi/3$. Then we have $r > \sqrt{1 - \|u - v\|} + \|u - v\|^2 \ge (1 + \|u - v\|) / (\sqrt{4\|u - v\|} + 1) \text{ and therefore } r \text{ is not}$ in I_2 . Hence we have $\phi_1 \le \pi/3$. On the other hand we have $\cos \phi_2 = \|u - v\|$. Since $0 \le \|u - v\| \le 1/2$ we get $\pi/3 \le \phi_2 \le \pi/2$.

By definition of X' we have now $x_3 = z$, $x_1 = x(\phi)$ for $\phi_1 \leq \phi \leq \phi_2$ and x_2 is the point on S_1 with $x_1 \neq x_2$ and $||x_3 - x_1|| = ||x_3 - x_2||$.

Now we have

$$\left\|x(\phi)-x_3\right\|=\sqrt{2}\sqrt{1+\cos\phi}$$

and

$$\|x(\phi) - v\| + r = \sqrt{1 - 2\|u - v\|\cos\phi + \|u - v\|^2} + r.$$

It is easy to see that $||x(\phi) - x_3||$ is a monotonic decreasing function of ϕ and $||x(\phi) - v|| + r$ is a monotonic increasing function of ϕ . If $S_1 \cap S_2$ is not empty we have $||x(\phi_1) - v|| + r = 2r$. Since ϕ_1 is the angle between the line segments uy, and uv we have

$$r^{2} = 1 + ||u - v||^{2} - 2||u - v||\cos\phi_{1}$$

and therefore

$$\cos \phi_1 = \frac{1 + ||u - v||^2 - r^2}{2||u - v||}.$$

Hence we get

$$\|x(\phi_1) - x_3\| = \sqrt{2}\sqrt{1 + \cos\phi_1}$$
$$= \sqrt{\frac{(1 + \|u - v\|)^2 - r^2}{\|u - v\|}}.$$

Since r is in I_2 we get

$$\begin{aligned} \|x(\phi_1) - x_3\|^2 &= \frac{\left(1 + \|u - v\|\right)^2 - r^2}{\|u - v\|} \\ &\geqslant \frac{1}{\|u - v\|} \left[\left(1 + \|u - v\|\right)^2 - \frac{\left(1 + \|u - v\|\right)^2}{4\|u - v\| + 1} \right] \\ &= 4 \frac{\left(1 + \|u - v\|\right)^2}{4\|u - v\| + 1} \\ &\geqslant 4r^2 \end{aligned}$$

and therefore

$$\left\|x(\phi_1)-x_3\right\| \geq \left\|x(\phi_1)-v\right\|+r.$$

On the other hand we have $||x(\phi_2) - x_3|| \leq ||x(\pi/3) - x_3|| = \sqrt{3}$ and $||x(\phi_2) - v|| + r \geq ||x(\pi/3) - v|| + r \geq \sqrt{3}$ since r is in I_2 . So there is ϕ_0 in $[\phi_1, \phi_2]$ with

$$||x(\phi_0) - x_3|| = ||x(\phi_0) - v|| + r.$$

If $S_1 \cap S_2$ is empty we have $\phi_1 = 0$ and therefore we get $||x(\phi_2) - x_3|| \leq \sqrt{3}$, $||x(0) - x_3|| = 2$, $||x(\phi_2) - v|| + r \geq \sqrt{3}$ and $||x(0) - v|| + r \leq 1 + r \leq 2$. As above there is ϕ_0 in $[\phi_1, \phi_2]$ with

$$||x(\phi_0) - x_3|| = ||x(\phi_0) - v|| + r$$

For short we define w := ||u - v||. Therefore we have

$$1 - 2w\cos\phi_0 + w^2 = 2(1 + \cos\phi_0) + r^2 - 2\sqrt{2}r\sqrt{1 + \cos\phi_0}$$

Since $\cos^2(\phi_0/2) = (1 + \cos \phi_0)/2$ and with $\psi := \phi_0/2$ we have

$$1 - 2w(2\cos^2\psi - 1) + w^2 = r^2 + 4\cos^2\psi - 2\sqrt{2}\sqrt{2}r\cos\psi.$$

So we get the following equation for $\cos \psi$:

$$(4+4w)\cos^2\psi - 4r\cos\psi + r^2 - (1+w)^2 = 0.$$

Solving this equation we get

$$\cos \psi = \frac{r \pm \sqrt{(1+w)^3 - w r^2}}{2(1+w)}$$

Since $\sqrt{(1+w)^3 - w r^2} > r$ we get

$$\cos \psi = \frac{r + \sqrt{(1+w)^3 - w r^2}}{2(1+w)}$$

(Otherwise we have $\cos \psi < 0$ and that is a contradiction to $0 \le \psi \le \pi/4$.) Now we get together with (3)

$$D(X', d^2) \ge \left(\sqrt{2}\sqrt{1+\cos\phi_0}\right)^2$$
$$= 4\cos^2\psi$$
$$= \left[\frac{r+\sqrt{(1+w)^3-w\,r^2}}{(1+w)}\right]^2$$

and hence

$$m(X',d^2) \leqslant \frac{(1+r^2-w^2)(1+w)^2}{\left(r+\sqrt{(1+w)^3-w\,r^2}\right)^2} = f_2(r).$$

From Lemma 5 we have

$$\max_{x \in I_2} f_2(x) = \max\left\{f_2\left(\sqrt{3} - \sqrt{1 - w + w^2}\right), f_2\left(\frac{1 + w}{\sqrt{4w + 1}}\right)\right\}$$

and

118

$$f_2\left(\sqrt{3}-\sqrt{1-w+w^2}\right) = f_1(w) \leq \frac{1}{2}\left(3-\sqrt{\frac{11}{3}}\right).$$

The value $f_2((1+w)/\sqrt{4w+1})$ will be calculated later. CASE 2.2.3. r is in I_3 . We have $D(X, d^2) \ge 4r^2$ and so

$$m(X, d^2) \leq \frac{1 + r^2 - ||u - v||^2}{4r^2} = f_3(r)$$

where w is chosen as ||u - v||. We have

$$f_3\left(\frac{1+\|u-v\|}{\sqrt{4\|u-v\|+1}}\right) = f_2\left(\frac{1+\|u-v\|}{\sqrt{4\|u-v\|+1}}\right).$$

Since f_3 is a monotonic decreasing function on I_3 we have

$$f_{3}(r) \leq f_{3}\left(\frac{1 + ||u - v||}{\sqrt{4||u - v|| + 1}}\right)$$

= $f_{4}(||u - v||)$
 $\leq f_{4}\left(\sqrt{\frac{3}{2}} - 1\right)$
= $3 - \sqrt{6}$.

So we have

$$m(X, d^2) \leqslant f_3(r) \leqslant 3 - \sqrt{6}$$

and we are done.

PROOF OF THEOREM 2: Let X be a compact, connected subset of \mathbb{R}^2 . Then there is a circle S_1 with centre u and radius R and a circle S_2 with centre v and radius r with X contained in conv $S_1 \setminus (\operatorname{conv} S_2)^\circ$ and u in conv $(S_2 \cap X)$ and v in conv $(S_1 \cap X)$ (see Theorem 1). Therefore we get from Proposition 1

$$m(X,d^2) \leqslant 3 - \sqrt{6}$$

and hence

$$g_2(\mathbb{R}^2) \leqslant 3 - \sqrt{6}.$$

Now we consider the set A from Remark 1 in Section 2. We have

$$D(A, d^2) = \frac{6}{2\sqrt{6}-3}.$$

So we get with Wilson's Theorem,

$$M(A, d^{2}) = \frac{1 + \frac{3}{4\sqrt{6} - 6} - \left(\sqrt{3/2} - 1\right)^{2}}{\frac{6}{2\sqrt{6} - 3}}$$
$$= 3 - \sqrt{6}.$$

References

- J. Cleary, S.A. Morris and D. Yost, 'Numerical geometry numbers for shapes', Amer. Math. Monthly 93 (1986), 117-127.
- [2] O. Gross, 'The Rendezvous value of a metric space', in Advances in Game Theory, Ann. of Math. Studies 52 (Princeton University Press, Princeton, N.J., 1964), pp. 49-53.
- [3] W. Stadje, 'A property of compact connected spaces', Arch. Math. (Basel) 36 (1981), 275-280.
- [4] D.J. Wilson, 'A game with squared distance as payoff', Melbourne University Mathematics Research Report 1982, no. 16.

Institut für Mathematik Universität Salzburg Hellbrunnerstrasse 34 A-5020 Salzburg Austria e-mail: Friedrich.Pillichshammer@sbg.ac.at

[11]

119