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DIVIDING LINES BETWEEN POSITIVE THEORIES

ANNA DMITRIEVA , FRANCESCO GALLINARO , AND MARK KAMSMA

Abstract. We generalise the properties OP, IP, k-TP, TP1, k-TP2, SOP1, SOP2, and SOP3 to positive
logic, and prove various implications and equivalences between them. We also provide a characterisation of
stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and
on the level of theories. For simple theories there are the classically equivalent definitions of not having TP

and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we
show that a thick theory T hasOP iff it has IP or SOP1 and that T hasTP iff it has SOP1 orTP2, analogous
to the well-known results in full first-order logic where SOP1 is replaced by SOP in the former and by TP1

in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.

§1. Introduction. Model-theoretic dividing lines are used to measure how “tame”
logical theories are. The most important such dividing lines can be formulated in
terms of combinatorial properties. For example, a theory is stable if it does not
have the order property. These various properties form an intricate diagram of
implications and equivalences.

Positive logic is a generalisation of full first-order logic, and allows for the treat-
ment of e.c. models of a non-companiable inductive theory [10], hyperimaginaries
(e.g., the (–)heq construction, see [7, Subsection 10C]), continuous logic [5] and more
[11]. Some of these dividing lines have recently been studied in positive logic [3, 7,
8, 10, 15, 18], and for some of them there is a positive version of the corresponding
combinatorial property. However, these definitions and the implications between
them that we know from full first-order logic are currently developed ad hoc, leaving
gaps in the overall picture. For example, simplicity theory has been developed
in positive logic [3, 15], but simplicity in positive logic has so far only been
defined in terms of local character for dividing and is nowhere equated to the
usual definition of not having the tree property. The main goal of this paper is to
provide the definitions of and implications between the most important dividing
lines in terms of combinatorial properties, while also proving equivalences with
other characterisations of these dividing lines.

1.1. Main results. In full first-order logic stable formulas are characterised in
various ways, for example, as those that do not have have OP (the order property) or
by counting types. We recover this characterisation in positive logic in Theorem 3.11,
tying together previous work on stability in positive logic from [3, 18]. Subsequently,
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2 ANNA DMITRIEVA, FRANCESCO GALLINARO, AND MARK KAMSMA

we obtain the usual equivalence of definitions for a stable theory in Theorem 3.15:
either through type counting or by the lack of OP.

Our first main result in the unstable setting is the implication diagram between
the various combinatorial properties we consider. See the start of Section 5 for a
discussion about the strictness of implications, and implications that are missing
compared to full first-order logic.

Theorem 1.1. The following implications between properties hold for a positive
theory T.

2-TP2 IP

k-TP2

TP1 k-TP

SOP3 SOP2 SOP1 2-TP OP

Like stable theories, simple theories can be defined in different ways, which are
equivalent in full first-order logic. This includes defining simplicity in terms of local
character for dividing, as is done in previous studies of simplicity in positive logic
[3], or as those theories not having TP. We prove that these are equivalent in positive
logic as well in Theorem 6.14.

Finally, we recall the following two famous theorems from full first-order logic.
Here SOP stands for the strict order property, a property that we do not consider in
this paper but that implies SOP3 (see also Remark 7.4).

Theorem 1.2 [19, Theorem II.4.7]. A full first-order theory T has OP iff it has IP
or SOP.

Theorem 1.3 [19, Theorem III.7.11]1. A full first-order theory T has TP iff it has
TP1 or TP2.

We will prove the following versions of these theorems for positive logic.

Theorem 1.4. A thick theory T has OP iff it has IP or SOP1. Equivalently: T is
stable iff it is NIP and NSOP1.

Theorem 1.5. A thick theory T has TP iff it has SOP1 or TP2. Equivalently: T is
simple iff it is NSOP1 and NTP2.

For an in-depth discussion about why we use NSOP1 we refer to Remark 6.13. It is
worth mentioning however that our proofs are completely different from the proofs
of the original two theorems. Using recent developments on Kim-independence
in NSOP1 theories we give proofs based on independence relations. Thickness is
a mild assumption that is automatically satisfied in full first-order logic, see also
Definition 6.4 and the discussion before it.

1Gaps in this proof have been filled in [13, Theorem 5.9].
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DIVIDING LINES BETWEEN POSITIVE THEORIES 3

1.2. Overview. We start with the basics for positive logic in Section 2. We deal with
the different characterisations of stable formulas and stable theories in Section 3. We
then collect all the definitions of the various combinatorial properties we consider in
Section 4. In Section 5 we prove the implications between the various properties, i.e.,
we prove Theorem 1.1. In Section 6 we consider interactions between independence
relations and some of the combinatorial properties, obtaining the equivalence of
definitions for a simple theory and proving Theorems 1.4 and 1.5. Finally, Section 7
discusses and asks some natural questions.

§2. Preliminaries of positive logic. We only recall the definitions and facts about
positive logic that we need, for a more extensive treatment and discussion, see [2,
16] and for a more survey-like overview, see [7, Section 2].

Definition 2.1. Fix a signature L. A positive formula in L is one that is obtained
from combining atomic formulas using ∧, ∨, �, ⊥, and ∃. An h-inductive sentence
is a sentence of the form ∀x(ϕ(x) → �(x)), where ϕ(x) and �(x) are positive
formulas. A positive theory is a set of h-inductive sentences.

Whenever we say “formula” or “theory” we will mean “positive formula” and
“positive theory” respectively, unless explicitly stated otherwise. This also means
that every formula and theory we consider will be implicitly assumed to be positive.

Remark 2.2. We can study full first-order logic as a special case of positive logic.
This is done through a process called Morleyisation. For this we add a relation
symbolRϕ(x) to our language for every full first-order formula ϕ(x). Then we have
our theory (inductively) express thatRϕ(x) and ϕ(x) are equivalent. This way every
first-order formula is (equivalent to) a relation symbol, and thus in particular to a
positive formula.

We are generally only interested in existentially closed models. These can be
characterised in various ways, but the one that matters for us is the following.

Definition 2.3. A negation of a formula ϕ(x) is a formula �(x) such that T |=
¬∃x(ϕ(x) ∧ �(x)). Equivalently, �(x) implies ¬ϕ(x) modulo T.

Definition 2.4. We call a model M of a theory T existentially closed or e.c. if
wheneverM 	|= ϕ(a) then there is a negation �(x) of ϕ(x) withM |= �(a).

Following our earlier convention about dropping the “positive” everywhere, a
(positive) type will be a set of (positive) formulas, over some parameter set B,
satisfied by some tuple a in some e.c. model M:

tp(a/B) = {ϕ(x, b) :M |= ϕ(a, b) and b ∈ B}.

Throughout we will assume that our theories have the joint continuation property or
JCP (that is, for any two modelsM1 andM2 there is a model N with homomorphisms
M1 → N ←M2). This is the positive version of working in a complete theory, and we
can always extend a theory T to a theory with JCP by taking the set of all h-inductive
sentences that are true in some e.c. model of T. Under the JCP assumption we can
work in a monster model, and these can be constructed for positive theories using
the usual techniques. We let the reader fix their favourite notion of smallness (e.g.,
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fix a big enough cardinal κ, and let “small” mean < κ). We recall the properties of
a monster model M:

• existentially closed, M is an e.c. model;
• very homogeneous, for any small a, b, C we have tp(a/C ) = tp(b/C ) iff there

is f ∈ Aut(M/C ) with f(a) = b (we will also write a ≡C b);
• very saturated, any finitely satisfiable small set of formulas Σ overM is satisfiable

in M.

As usual, we will omit the monster model from notation. For example, we write
|= ϕ(a) instead of M |= ϕ(a).

We finish this section with the definition of indiscernible sequences and a lemma
for finding such sequences. The construction of indiscernible sequences using
Ramsey’s theorem fails in positive logic, but the construction using the Erdős–Rado
theorem goes through and gives in fact a stronger result.

Definition 2.5. A sequence (ai)i∈I (for some linear order I) is C-indiscernible
if for any i1 < ··· < in and j1 < ··· < jn in I we have ai1 ... ain ≡C aj1 ... ajn .

Lemma 2.6 [3, Lemma 1.2]. Let C be any parameter set, κ any cardinal, and let
� = �(2|T |+|C |+κ)+ . Then for any sequence (ai)i<� of κ-tuples there is a C-indiscernible
sequence (bi)i<� such that for all n < � there are i1 < ··· < in < � with b1 ... bn ≡C
ai1 ... ain .

Definition 2.7. For a theory T we write �T = �(2|T |)+ .

Remark 2.8. Since inequality may not be positively definable, there may be
infinite bounded positively definable sets in our monster. In fact, the cardinality
of the e.c. models of a positive theory might be bounded (such a theory is called
bounded), which results in a monster model that is itself “small”. An extreme example
is the empty theory in the empty language, whose e.c. models are singletons, and
so the monster is a singleton. However, there is no need for special treatment for
these cases. It just means that if we speak about a sequence (or otherwise indexed
set) of parameters (ai)i<� where � is larger than the cardinality of the monster, we
will have duplicates in this sequence. Particularly, the only indiscernible sequences
in bounded theories (or, more generally, in bounded positively definable sets) are
the constant ones.

§3. Positive stability. In this section we begin our treatment of dividing lines in
positive theories from stability. We introduce the order property (Definition 3.5),
the first example of the combinatorial properties which will be discussed in the next
sections. Theorem 3.11 provides a characterisation of stable formulas in the positive
context, analogous to the various characterising properties that are well known from
full first-order logic. The techniques used in this section are adapted from [3, 9, 17,
18], as well as from the standard techniques used for full first-order theories. There
is also work on stability in the positive setting in [1, Chapter 4], see Remark 3.19 for
more details.

Definition 3.1. Let ϕ(x, y) be a formula. For a and a parameter set B, we write

tpϕ(a/B) = {ϕ(x, b) : |= ϕ(a, b) where b ∈ B}.
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A ϕ-type over B is a set of formulas of the form tpϕ(a/B) for some a. So it is the
restriction of a maximal type over B to just the ϕ-formulas. We write Sϕ(B) for the
set of ϕ-types over B.

Example 3.2. A ϕ-type is not necessarily maximal. For example, consider the
theory T with inequality and two disjoint unary predicates P and Q. The e.c. models
of T are then simply two disjoint infinite sets. Let M be such an e.c. model and let
a ∈ P(M ) and b ∈ Q(M ). Let ϕ(x) be the formula P(x): then tpϕ(a) = {ϕ(x)},
while tpϕ(b) = ∅.

Definition 3.3. Let � be an infinite cardinal. A formula ϕ(x, y) is �-stable if
|B | ≤ � implies |Sϕ(B)| ≤ �. We call ϕ(x, y) stable if it is �-stable for some �.

The following is taken from [3, Definition 2.1].

Definition 3.4. Let p(x) be a type over B and let ϕ(x, y) be a formula.
A ϕ-definition of p(x) over C is a partial type dpϕ(y) over C with |dpϕ(y)| ≤ |T |
such that

ϕ(x, b) ∈ p(x) ⇐⇒ |= dpϕ(b).

We say that p(x) is ϕ-definable (over C) if it has a ϕ-definition over C. If p(x) is
ϕ-definable over B we just say it is ϕ-definable.

Definition 3.5. A formula ϕ(x, y) has the order property (OP) if there are
sequences (ai)i<� and (bi)i<� and a negation �(x, y) of ϕ(x, y) such that for all
i, j < �, we have

|= ϕ(ai , bj) if i < j,

|= �(ai , bj) if i ≥ j.
Note that by compactness the exact shape of the linear order in the order property

(Definition 3.5) does not matter. That is, we can replace � with any infinite linear
order. In fact, we can use this trick to state the order property in terms of indiscernible
sequences, getting rid of the negation �(x, y).

Proposition 3.6. A formula ϕ(x, y) has the order property iff there is an
indiscernible sequence (aibi)i<� such that

|= ϕ(ai , bj) ⇐⇒ i < j.

Proof. For the left to right direction let (a′i )i<� , (b′i )i<� and �(x, y) witness the
order property. By compactness we may elongate the sequences to (a′i )i<� and (b′i )i<�.
Making sure that � is big enough, we can then by Lemma 2.6 base an indiscernible
sequence (aibi)i<� on (a′i b

′
i )i<�. Now if i < j < � then there are i0 < j0 < � such

that aibj ≡ a′i0b
′
j0

, and so |= ϕ(ai , bj) follows from |= ϕ(a′i0 , b
′
j0

). For the converse
we prove the contrapositive, so let j ≤ i . Then there are j0 ≤ i0 < � (with j0 = i0 iff
j = i) such that aibj ≡ a′i0b

′
j0

. Hence |= �(a′i0 , b
′
j0

) and so 	|= ϕ(ai , bj).
For the right to left direction we only need to find the negation �(x, y). As we

have 	|= ϕ(a0, b0) there must be some negation�1(x, y) ofϕ(x, y) with |= �1(a0, b0).
By indiscernibility we have |= �1(ai , bi) for all i < �. Similarly, using 	|= ϕ(a1, b0)
we find a negation �2(x, y) with |= �2(ai , bj) for all j < i . Take �(x, y) to be
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�1(x, y) ∨ �2(x, y). As both of �1(x, y) and �2(x, y) are negations of ϕ(x, y) we
have that �(x, y) is also a negation of ϕ(x, y). Furthermore, by construction j ≤ i
implies |= �(ai , bj). �

Definition 3.7. A formula ϕ(x, y) is said to have the binary tree property if there
is a negation �(x, y) of ϕ(x, y) together with (b�)2<� such that for every � ∈ 2� the
set

{	�(n)(x, b�|n ) : n < �}
is consistent, where 	0 := ϕ and 	1 := �.

Definition 3.8 ([3, Definition 2.1], simplified). For contradictory formulas
ϕ(x, y) and �(x, y) we define the (ϕ,�)-rank Rϕ,�(–) as follows. The input is a
set of formulas (possibly with parameters) in free variables x. Then Rϕ,�(–) is the
least function into the ordinals (together with –1 and ∞) such that:

• Rϕ,�(Σ) ≥ 0 if Σ(x) is consistent;
• Rϕ,�(Σ) ≥ α + 1 if there is some b such that Rϕ,�(Σ ∪ {ϕ(x, b)}) ≥ α and
Rϕ,�(Σ ∪ {�(x, b)}) ≥ α;

• Rϕ,�(Σ) ≥ � if Rϕ,�(Σ) ≥ α for all α < �, where � is a limit ordinal.

Lemma 3.9. Let ϕ(x, y) and �(x, y) be contradictory formulas.
(i) If Σ(x) implies Σ′(x) then Rϕ,�(Σ) ≤ Rϕ,�(Σ′).

(ii) The property Rϕ,�(Σ) ≥ n is type-definable by

∃(y�)�∈2<n

( ∧
�∈2n

∃x
(

Σ(x) ∧
∧
k<n

	�(k)(x, y�|k )

))
,

where 	0 and 	1 are ϕ and � respectively. In particular, if Σ is finite (i.e., a
formula), then this is just a formula.

Proof. Both are straightforward induction arguments. The key intuition being
that Rϕ,�(Σ) ≥ n expresses that we can build a binary tree like in Definition 3.7 of
height n and where every path is also consistent with Σ. �

Lemma 3.10. A formula ϕ(x, y) has the binary tree property iff there is a negation
�(x, y) of ϕ(x, y) such that Rϕ,�(x = x) ≥ �.

Proof. By Lemma 3.9 and compactness. �
Theorem 3.11. The following are equivalent for a formula ϕ(x, y):
(i) ϕ is stable,

(ii) |Sϕ(B)| ≤ (|B | + |T |)|T | for every B,
(iii) ϕ does not have the order property,
(iv) ϕ does not have the binary tree property,
(v) Rϕ,�(x = x) < � for every negation �(x, y) of ϕ(x, y),

(vi) for any B every type over B is ϕ-definable.

Proof. The equivalence (iv) ⇔ (v) is Lemma 3.10. The equivalence between (i),
(ii), (v), and (vi) is exactly [3, Proposition 2.2].

(i) ⇒ (iii) We prove the contraposition. So let � be an arbitrary infinite cardinal.
By a standard result there is a linear order I with a dense subset I0 ⊆ I such that
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|I0| = � and |I | > � (see, e.g., [21, Exercise 8.2.8]). Let �(x, y) be the negation
of ϕ(x, y) witnessing the order property. So by compactness there are (ai)i∈I and
(bi)i∈I such that for all i, j ∈ I :

|= ϕ(ai , bj) if i < j,

|= �(ai , bj) if i ≥ j.

Set B = (bi)i∈I0 , then as I0 is dense in I we have that tpϕ(ai/B) 	= tpϕ(aj/B) for
any i 	= j. So we find |Sϕ(B)| ≥ |I | > � while |B | ≤ � and we conclude that ϕ is not
�-stable.

(iii) ⇒ (i) This implication requires some more preparation, so we postpone it to
Lemma 3.18. �

Example 3.12. In full first-order logic, for a formula ϕ(x, y) the following are
equivalent (see, e.g., [21, Theorem 8.2.3]):

(i) ϕ is stable,
(ii) there is no sequence (aibi)i<� such that |= ϕ(ai , bj) iff i < j,

(iii) |Sϕ(B)| ≤ |B | for any infinite B.

Of course, (ii) is the classical formulation of the order property. In a full first-order
theory this is easily seen to be equivalent to Definition 3.5: just take �(x, y) to be
¬ϕ(x, y). Point (iii) is a stronger version of Theorem 3.11(ii).

We will show that this equivalence generally fails in positive logic. That is, we will
construct a theory together with a stable formula ϕ(x, y) (in fact, the entire theory
will be stable) such that (ii) and (iii) fail for ϕ.

Write Q(0,1) = {q ∈ Q : 0 < q < 1}. Consider the language L with a constant for
each element of Q(0,1), and an order symbol ≤. Considering the obvious L-structure
on Q(0,1), we let T be the set of all h-inductive sentences true in Q(0,1). One quickly
verifies that the real unit interval [0, 1] is a maximal e.c. model for this theory. So the
number of ϕ-types is bounded by 2ℵ0 , for any ϕ. Hence every formula is stable.

Consider the formulaϕ(x, y) given byx ≤ y. Forn < � setan = 1 – 1
n+2 and bn =

1 – 1
n+1 . Then clearly |= ϕ(ai , bj) iff i < j, so (ii) fails for ϕ(x, y). The important

difference with Definition 3.5 is of course that for i ≥ j there is not just one uniform
reason (in the form of a negation of ϕ) for 	|= ϕ(ai , bj).

Using the same formula ϕ(x, y), we let B = Q(0,1). The ϕ-types over B then
correspond exactly to real numbers in [0, 1], via Dedekind cuts. So we have |Sϕ(B)| =
2ℵ0 > ℵ0 = |B |, and hence (iii) fails. As B only contains constants we may even take
B = ∅, but then B is no longer infinite, which is technically required for (iii).

Generally, this example shows that in positive logic we may find some infinite
linear order in a stable theory, but as long as they are bounded this should not cause
instability. Intuitively this is because growth (e.g., of the type spaces) beyond that
bound is then again well-behaved.

Note that in particular this sort of behaviour can also appear in unbounded
theories, if they have bounded sorts or bounded positively definable sets. For
example, we could add a separate sort with a symbol for inequality to the theory
in this example, and have our theory state that the additional sort is an infinite set.
The theory is now unbounded, but the example still goes through.
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With the adjusted definitions for stability of a formula, we get the usual equivalent
definitions of a stable theory. The arguments are standard, but we include them for
completeness’ sake.

Definition 3.13. Let � be an infinite cardinal. A theory T is �-stable if |B | ≤ �
implies |Sn(B)| ≤ � for all n < �, where Sn(B) is the set of n-types with parameters
in B. We call T stable if it is �-stable for some �.

Example 3.14. Any bounded theory is stable: since every type must be realised
in the monster, we have for all n < � that |Sn(M)| = |M|. Considering |M| is fine
here, because in bounded theories the monster is small, see Remark 2.8.

Theorem 3.15. The following are equivalent for a theory T :
(i) T is stable,

(ii) all formulas in T are stable,
(iii) T is �-stable for all � such that �|T | = �.

Proof. (i) ⇒ (ii) Let � be such that T is �-stable. Then whenever |B | ≤ � we
have for any ϕ(x, y) that |Sϕ(B)| ≤ |Sn(B)| ≤ �, where n = |x|. So every formula is
�-stable.

(ii) ⇒ (iii) Let � be such that �|T | = �, and let |B | ≤ �. As �|T | = � we have that
� > |T |. So for any ϕ we have by Theorem 3.11 that |Sϕ(B)| ≤ (|B | + |T |)|T | ≤
�|T | = �. Every type is fully determined by its restrictions to ϕ-types, as ϕ ranges
over all formulas in the theory. So there are at most |T | × � = �many types over B,
as required.

(iii) ⇒ (i) Note that (2|T |)|T | = 2|T |, so T is 2|T |-stable and hence stable. �
In the remainder of this section we finish the proof of Theorem 3.11.

Definition 3.16. Let ϕ(x, y) and �(y, z) be formulas without parameters and
let A ⊆ B be sets of parameters. We say that a type p(x) ∈ Sϕ(B) (�,ϕ)-splits over
A if there are b, b′ ∈ B such that tp�(b/A) = tp�(b′/A) while ϕ(x, b) ∈ p(x) and
ϕ(x, b′) 	∈ p(x).

Lemma 3.17. Let ϕ(x, y) and �(y, z) be formulas without parameters, and let
A ⊆ C be parameter sets.

(i) Suppose B is such that A ⊆ B ⊆ C and it realises every �-type over A that is
realised in C. Then if p1, p2 ∈ Sϕ(C ) do not (�,ϕ)-split over A we have that
p1|B = p2|B implies p1 = p2.

(ii) There are at most 2|S�(A)|+|A|+|T | many types in Sϕ(C ) that do not (�,ϕ)-split
over A.

(iii) If � ≥ |A| + |T | then there are at most 22� many types in Sϕ(C ) that do not
(�,ϕ)-split over A.

Proof. To prove (i) we show that p1 ⊆ p2, from which the result follows by
symmetry. Let ϕ(x, c) ∈ p1. By the assumption on B, tp�(c/A) is realised by some
b ∈ B . As p1 does not (�,ϕ)-split over A we must then have ϕ(x, b) ∈ p1. We thus
have ϕ(x, b) ∈ p2, because p1|B = p2|B , and ϕ(x, c) ∈ p2 follows from the fact that
p2 does not (�,ϕ)-split over A.

For (ii) we can let B be such that A ⊆ B ⊆ C and realising every �-type over
A that is realised in C, while also |B | ≤ |S�(A)| + |A|. By (i) then the number of
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types in Sϕ(C ) that do not (�,ϕ)-split over A is bounded by |Sϕ(B)| ≤ 2|B|+|T | ≤
2|S�(A)|+|A|+|T |.

Finally, for (iii) we apply (ii) using that |S�(A)| + |A| + |T | ≤ 2�. �

We can now fill in the final missing piece of Theorem 3.11. The proof strategy
used here is based on [9].

Lemma 3.18. If a formula ϕ(x, y) does not have the order property then it is stable.

Proof. We prove the contrapositive, so we assume that ϕ(x, y) is not stable. For
convenience, set � = 22�T . As ϕ is not �-stable, we find some set A such that |A| ≤ �
and Sϕ(A) > �. We can thus find (ai)i<�+ such that tpϕ(ai/A) 	= tpϕ(aj/A) for all
i 	= j < �+. We inductively build a continuous chain of sets (Ai)i<� with A0 = A
such that for all i < �:

(A1) |Ai | ≤ �,
(A2) for every B ⊆ Ai with |B | ≤ �T every type in S(B) (in finitely many

variables) is realised in Ai+1.

We can indeed do this because there are at most ��T = � many subsets of Ai that
have cardinality at most �T , and there are at most 2|B|+|T | ≤ 2�T < � many types
over such a parameter set B.

Set 	(y, x) := ϕ(x, y). We now claim that there are cofinally many i < �+ such
that for all j < �T the type tpϕ(ai/Aj) (	, ϕ)-splits over each B ⊆ Aj of cardinality
at most �T .

Proof of claim. Suppose for a contradiction that the claim is false. Then there
is some α < �+ such that for all α < i < �+ there is ji < �T and Bi ⊆ Aji of
cardinality at most �T such that tpϕ(ai/Aji ) does not (	, ϕ)-split over Bi . As �+ >
�T , by the pigeonhole principle, we can find some I ⊆ �+ with |I | = �+ such that
ji = ji′ for all i, i ′ ∈ I . Write j for ji , where i ∈ I . As �+ > � = ��T ≥ |Aj |�T we
can apply the pigeonhole principle again to find I ′ ⊆ I with |I ′| = �+ and Bi = Bi′
for all i, i ′ ∈ I ′. Write B forBi , where i ∈ I ′. We have thatA ⊆ Aj , so for any distinct

i, i ′ ∈ I ′ we have that tpϕ(ai/Aj) 	= tpϕ(ai′/Aj). We thus find�+ > 22�T many types
that do not (	, ϕ)-split over a set of cardinality at most �T . This contradicts Lemma
3.17(iii) and completes the proof of the claim. �

Using the claim we find some i < �+ such that ai 	∈
⋃
j<�T
Aj , because∣∣∣⋃j<�T Aj

∣∣∣ ≤ �. So for all j < �T tpϕ(ai/Aj) (	, ϕ)-splits over every B ⊆ Aj of

cardinality at most �T . By induction on j < �T we define bj, b′j , cj ∈ A2j+2, such
that:

(B1) writing Bj = {bk, b′k, ck : k < j}, we have Bj ⊆ A2j ;
(B2) tp	(bj/Bj) = tp	(b

′
j/Bj),

(B3) |= ϕ(ai , bj) and 	|= ϕ(ai , b′j),
(B4) cj ∈ A2j+1 is such that tp(cj/Bjbjb′j) = tp(ai/Bjbjb′j).

Let j < �T and assume we have constructed bk, b′k, ck for all k < j. As Bj ⊆
A2j has cardinality at most �T , we have that tpϕ(ai/A2j) (	, ϕ)-splits over Bj .
We can thus find bj, b′j ∈ A2j such that tp	(bj/Bj) = tp	(b

′
j/Bj) while ϕ(x, bj) ∈
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tp(ai/A2j) and ϕ(x, b′j) 	∈ tp(ai/A2j). By construction of A2j+1, in particular by
(A2), we can find cj ∈ A2j+1 realising tp(ai/Bjbjb′j).

Let (djd ′jej)j<� be an indiscernible sequence based on (bjb′jcj)j<�T . We note the
following two properties.

(C1) By (B2) we have for all k < j < �T that |= 	(bj, ck) if and only if
|= 	(b′j , ck), that is |= ϕ(ck, bj) if and only if |= ϕ(ck, b′j). So we must
have |= ϕ(ek, dj) if and only if |= ϕ(ek, d ′j) for all k < j < �.

(C2) By (B3) and (B4) we have for all k ≤ j < �T that |= ϕ(cj, bk) and 	|=
ϕ(cj, b′k). So we must have |= ϕ(ej, dk) and 	|= ϕ(ej, d ′k) for all k ≤ j < �.

Based on (C1) we distinguish two cases, and show that in each case ϕ(x, y) has the
order property.

(1) The case where for all k < j < � we have |= ϕ(ek, d ′j). By (C2) we have
	|= ϕ(ej, d ′k) for all k ≤ j < �. We conclude by applying Proposition 3.6 to
(en, d ′n)n<� .

(2) The case where for all k < j < � we have 	|= ϕ(ek, dj). By (C2) we have that
|= ϕ(ej, dk) for all k ≤ j < �. Write �op for � with the opposite order, then
(en, dn+1)n∈�op is an indiscernible sequence such that |= ϕ(ek, dj) ⇔ k <op j.
Applying compactness and an analogue of Proposition 3.6 we conclude that
ϕ(x, y) has the order property.

Remark 3.19. We compare the work in this section to [1, Chapter 4]. Their
Definition 4.10 is a definition for the order property for formulas ϕ(x, y) where x
and y are tuples of variables of the same length (and sorts). One quickly verifies
that their order property implies our Definition 3.5. Conversely, given ϕ(x, y)
satisfying our Definition 3.5, as witnessed by (ai)i<� , (bi)i<� and �(x, y), the
formula 
(x1y1, x2y2) := ϕ(x1, y2) has the order property in the sense of [1] as
witnessed by (aibi)i<� and negation�′(x1y1, x2y2) := �(x1, y2). Another difference
is that [1] treats bounded theories separately, proving in [1, Lemme 4.8] that they
are stable. However, as we noted in Remark 2.8, there is no need for such special
treatment: we have seen how stability of bounded theories fits in our approach in
Example 3.14. Given the translation of the notion of stability for formulas, we get
the same results as [1] on the level of theories. However, our version allows for
local stability and comparison to further combinatorial properties on the level of
formulas (e.g., Corollary 5.9).

§4. Definitions of the combinatorial properties. In this section we gather the
definitions of the combinatorial properties we will consider. The definitions are very
similar to those we know from full first-order logic, and they do indeed coincide
when considering a full first-order theory as a positive theory (Remark 2.2). The
main ingredient, which we already used in Definition 3.5 for OP, is the idea of [10,
Section 6] to introduce “inconsistency witnesses”. Whenever a traditional definition
would say that a set of formulas is inconsistent, we now require the satisfaction
of a positive formula that implies the inconsistency of that set of formulas. For
example, if we would normally say that {ϕ(x, a1), ϕ(x, a2)} is inconsistent, we now
want |= �(a1, a2) where �(y1, y2) is a negation of ∃x(ϕ(x, y1) ∧ ϕ(x, y2)). The
importance of this is that we can then use compactness to change the size or shape
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of the set of parameters involved. For example, instead of only considering sequences
of shape � for OP we can consider any infinite sequence.

Definition 4.1. A formula ϕ(x, y) has the independence property (IP) if there
are (ai)i<� , (c�)�∈2� and a negation �(x, y) of ϕ(x, y) such that for all i < � and
� ∈ 2� we have

|= ϕ(ai , c�) if �(i) = 1,

|= �(ai , c�) if �(i) = 0.

The study of IP in positive logic has been initiated in the recent preprint [8] by
Dobrowolski and Mennuni.

Definition 4.2. Let κ and � be (potentially finite) cardinals. As usual, we will
consider the set κ<� of functions � : α → κ where α < �, as a tree. The partial
order on the tree is given by � � � if � extends � as a function. We call � and
� incomparable if � 	� � and � 	� �. For any �, � ∈ κ<� we write ��� for their
concatenation (viewing the functions as strings of ordinals < κ).

Definition 4.3. For a natural number k ≥ 2, a formula ϕ(x, y) has the k-tree
property (k-TP) if there are (a�)�∈�<� and a negation �(y1, ... , yk) of the formula
∃x(ϕ(x, y1) ∧ ··· ∧ ϕ(x, yk)) such that:

(1) for all � ∈ �� the set {ϕ(x, a�|n ) : n < �} is consistent,
(2) for all � ∈ �<� and i1 < ... < ik < � we have |= �(a��i1 , ... , a��ik ).

A formula ϕ(x, y) has the tree property (TP) if there exists a natural number
k ≥ 2 such that ϕ(x, y) has k-TP.

Definition 4.4. A formula ϕ(x, y) has the tree property of the first kind (TP1) if
there are (a�)�∈�<� and a negation �(y1, y2) of ∃x(ϕ(x, y1) ∧ ϕ(x, y2)) such that:

(1) for all � ∈ �� the set {ϕ(x, a�|n ) : n < �} is consistent,
(2) for all incomparable �, � ∈ �<� we have |= �(a�, a�).

Definition 4.5. A formula ϕ(x, y) has the k-tree property of the second kind (k-
TP2) if there are (ai,j)i,j<� and a negation�(y1, ... , yk) of the formula ∃x(ϕ(x, y1) ∧
··· ∧ ϕ(x, yk)) such that:

(1) for all � ∈ �� the set {ϕ(x, ai,�(i)) : i < �} is consistent,
(2) for all i < � and j1 < ··· < jk < � we have |= �(ai,j1 , ... , ai,jk ).

A formula ϕ(x, y) has the tree property of the second kind (TP2) if there exists a
natural number k ≥ 2 such that ϕ(x, y) has k-TP2.

The definition of TP2 in positive logic first appeared in [10], as did the following
definition of SOP1.

Definition 4.6. A formulaϕ(x, y) has the 1-strong order property (SOP1) if there
are (a�)�∈2<� and a negation �(y1, y2) of ∃x(ϕ(x, y1) ∧ ϕ(x, y2)) such that:

(1) for all � ∈ 2� the set {ϕ(x, a�|n ) : n < �} is consistent,
(2) for all �, � ∈ 2<� , if ��0 � � then |= �(a��1, a�).

Definition 4.7. A formulaϕ(x, y) has the 2-strong order property (SOP2) if there
are (a�)�∈2<� and a negation �(y1, y2) of ∃x(ϕ(x, y1) ∧ ϕ(x, y2)) such that:
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(1) for all � ∈ 2� the set {ϕ(x, a�|n ) : n < �} is consistent,
(2) for all incomparable �, � ∈ 2<� we have |= �(a�, a�).

Definition 4.8. A theory T has one of the properties above (OP, IP, k-TP, k-TP2,
SOP1, SOP2) if there exists a formula witnessing it.

Definition 4.9. A theory T has the 3-strong order property (SOP3) if there are
formulas ϕ0(x, y) and ϕ1(x, y), a sequence (ai)i<� , and a negation �(y1, y2) of
∃x(ϕ0(x, y2) ∧ ϕ1(x, y1)) such that:

(1) for all k < � the {ϕ0(x, ai) : i < k} ∪ {ϕ1(x, aj) : j ≥ k} is consistent,
(2) for all i < j < � we have |= �(ai , aj).

In the full first-order setting, SOP3 is usually defined on the level of formulas with
a definition which easily generalizes to any natural number larger than 3, giving rise
to the notion of an SOPn formula (or theory). This definition heavily relies on the
use of negation, which forms an obstruction to translating it to the positive setting,
see Remark 7.4. The definition given here, on the level of theories, is based on [20,
Claim 2.19].

Definition 4.10. If a theory T does not have one of the properties OP, IP, TP,
TP1, TP2, SOP1, SOP2, SOP3, we say that T is NOP, NIP, NTP, NTP1, NTP2,
NSOP1, NSOP2, NSOP3, respectively.

§5. Implications between the combinatorial properties. In this section we prove
Theorem 1.1 by proving the implications between the various properties of positive
theories defined in Section 4. We break up the proof in its individual components,
stating each arrow separately. We start from the left-most implication and make our
way inside the diagram. Some of the implications will be proved on a formula level
(e.g., Proposition 5.3) and for some implications this will only happen on a theory
level (e.g., Corollary 5.7).

Remark 5.1. We make some remarks about the strictness of the implications in
Theorem 1.1.

• The strictness of the implication SOP3 =⇒ SOP2 is also still open in full
first-order logic. See also Question 7.2.

• Mutchnik’s recent preprint [14] proves the implication SOP1 =⇒ SOP2 in full
first-order logic. As the machinery used there is considerably more involved
than what we apply here, we do not deal with this problem and leave it to
future work, see Question 7.1.

• In full first-order logic we have k-TP2 =⇒ 2-TP2. A recent preprint by
the third author proves this for thick theories [12, Theorem 1.4]. See also
Remark 7.3.

• The remaining implications are known to be strict, already in full first-order
logic.

Proposition 5.2. If a theory T has SOP3 then it has SOP2.

This proof is based on the similar argument in Proposition 1.8 of [6], adapted to
the definition of SOP3 at the level of theories that we use here.
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Proof. Assume T has SOP3, witnessed by formulas ϕ0(x, y), ϕ1(x, y) and a
negation�(y1, y2) of ∃x(ϕ0(x, y2) ∧ ϕ1(x, y1)). By compactness we find a sequence
(bq)q∈Q such that:

(1) for all t ∈ Q the set {ϕ0(x, bq) : q < t} ∪ {ϕ1(x, br) : r ≥ t} is consistent,
(2) for all q < r in Q we have |= �(bq, br).

Consider 	(x, y1, y2) := ϕ0(x, y1) ∧ ϕ1(x, y2). We inductively define a tree, indexed
by 2<� , which will witness that 	, and hence T, has SOP2.

c∅ = (b0, b1),
c��0 = (bq, b 2

3 q+
1
3 r

) for c� = (bq, br),

c��1 = (b 1
3 q+

2
3 r
, br) for c� = (bq, br).

Let moreover 
(y1, y2, y3, y4) denote the formula �(y4, y1) ∨ �(y2, y3).
We claim that 
(y1, y2, y3, y4) is a negation of ∃x(	(x, y1, y2) ∧ 	(x, y3, y4)).

Indeed, assume that 
(a, b, c, d ) holds. Then either �(d, a) holds or �(b, c) holds.
By definition of � we have that in the first case ∃x(ϕ0(x, a) ∧ ϕ1(x, d )) does
not hold, and in the second case ∃x(ϕ0(x, c) ∧ ϕ1(x, b)). Either way, we have
that ∃x(ϕ0(x, a) ∧ ϕ1(x, d ) ∧ ϕ0(x, c) ∧ ϕ1(x, b)) “does not hold”. The claim now
follows from the definition of 	.

We will now verify that (c�)�∈2<� and 
 witness that 	 has SOP2. For consistency
along the branches, let � ∈ 2� and n < �. Then there are 0 = q0 ≤ ··· ≤ qn < rn ≤
··· ≤ r0 = 1 such that for 0 ≤ i ≤ n, c�|i = (bqi , bri ). Taking t = rn in (1) above, we
see that

{ϕ0(x, bqi ) : i ≤ n} ∪ {ϕ1(x, bri ) : i ≤ n}
is consistent. Thus {	(x, c�|i ) : i < �} is finitely consistent, and hence consistent.

Now let �, � be incomparable. Then there are q < r < s < t such that either c� =
(bq, br) and c� = (bs , bt), or c� = (bs , bt) and c� = (bq, br). In both cases, since r < s ,
we have |= �(br, bs). That means both |= 
(bq, br, bs , bt) and |= 
(bs , bt , bq, br),
giving |= 
(c�, c�) in any case. This concludes the proof. �

Proposition 5.3. A formula ϕ(x, y) has SOP2 if and only if it has TP1.

Proof. One direction is obvious: if (a�)�∈�<� and �(y1, y2) witness TP1 of ϕ,
then (a�)�∈2<� and �(y1, y2) witness SOP2 of ϕ.

For the converse, let us then assume thatϕ(x, y) has SOP2, witnessed by (a�)�∈2<�

and �(y1, y2). We inductively define a function h : �<� → 2<� as

h(∅) = ∅,

h(��i) = h(�)�(0)i�1 for i < �.

Note that � � � implies h(�) � h(�) and so for any � ∈ �� there is �′ ∈ 2� such
that {h(�|n) : n < �} ⊆ {�′|n : n < �}.

Define a tree (b�)�∈�<� by b� = ah(�). We verify that this tree witnesses TP1 for
ϕ(x, y), with the same negation �(y1, y2).

For any � ∈ �� there is �′ ∈ 2� such that

{ϕ(x, b�|n ) : n < �} = {ϕ(x, ah(�|n)) : n < �} ⊆ {ϕ(x, a�′|n ) : n < �}.
The rightmost set is consistent because (a�)�∈2<� witnesses SOP2 for ϕ(x, y), so the
leftmost set is consistent.
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Let �, � ∈ �<� be incomparable. Then there are �, �0, �0 ∈ �<� and i 	= j < �
such that � = ��i��0 and � = ��j��0. By definition of h, there are �1, �1 ∈ 2<�

such that h(�) = h(�)�(0)i�1��1 and h(�) = h(�)�(0)j�1��1. If i < j then h(�)
has a 1 in a place where h(�) has a 0, and thus they are incomparable. Similarly,
if j < i then h(�) and h(�) are again incomparable. Hence, by definition of SOP2,
|= �(ah(�), ah(�)), and so (b�)�∈�<� and � witness TP1 of ϕ. �

Proposition 5.4. If a formula ϕ(x, y) has SOP2 then it has SOP1.

Proof. Suppose ϕ(x, y) has SOP2, witnessed by (a�)�∈2<� and �(y1, y2). Let
�, � ∈ 2<� , and ��0 � �. Then ��1 and � are incomparable, so by SOP2 we have
|= �(a��1, a�). Hence the second clause in the definition of SOP1 is satisfied. The
first clause is the same as the first clause of the definition of SOP2, and therefore
ϕ(x, y) has SOP1, witnessed again by (a�)�∈�<� and �(y1, y2). �

Proposition 5.5. If a formula ϕ(x, y) has SOP1 then it has 2-TP.

Proof. Suppose thatϕ(x, y) hasSOP1, witnessed by (a�)�∈2<� and�(y1, y2). We
define h : �<� → 2<� as in the proof of Proposition 5.3. Again, we define (b�)�∈�<�
by b� = ah(�), so that for any � ∈ �� , we get that {ϕ(x, b�|n : n < �} is consistent.

Now let � ∈ �<� and let i < j < �. Then

h(�)�(0)i+1 � h(�)�(0)j�1 = h(��j).

We have that h(��i) = h(�)�(0)i�(1) and hence, by the second clause in the
definition of SOP1 we have |= �(ah(��i), ah(��j)). Hence (b�)�∈�<� and � witness
2-TP for ϕ. �

The following argument is based on [19, Theorem III.7.7].

Theorem 5.6. If ϕ(x, y) has TP then for some k′ the conjunction ϕ(x, y1) ∧ ··· ∧
ϕ(x, yk′) has 2-TP.

Proof. Let κ = |T |+. We will find a set of parameters A and a set B ⊆ Aκ such
that:

(i) |B | > |A|<κ + 22κ ;
(ii) if B ′ ⊆ B and |B ′| > 2κ then {ϕ(x, b(α)) : b ∈ B ′, α < κ} is inconsistent;

(iii) for any b ∈ B we have that {ϕ(x, b(α)) : α < κ} is consistent.

Let � = �κ(|T | + 2κ). By compactness we find a tree (a�)�∈�<κ such that for every
� ∈ �κ the set {ϕ(x, a�|α ) : α < κ} is consistent, but there exists 2 ≤ k < � such
that for any � ∈ �<κ the set {ϕ(x, a��i) : i < �} is k-inconsistent. Because of this
last property we may assume that for any � ∈ �<κ all the terms of (a��i)i<� are
distinct.

Write A = {a� : � ∈ �<κ} and for � ∈ �κ we define b� : κ → A by b�(α) = a�|α .
We claim that this A together with B = {b� : � ∈ �κ} satisfies (i)–(iii).

(i) As cf(�) = κwe have |B | = �κ > � = �<κ = |A|<κ, and the required inequal-
ity follows. Here we use that for distinct �, �′ ∈ �κ we have b� 	= b�′ , which
follows from our earlier assumption that the terms of (a��i)i<� are distinct
for any � ∈ �<κ.

(ii) Let B ′ ⊆ B be such that {ϕ(x, b(α)) : b ∈ B ′, α < κ} is consistent, we will
show that |B ′| ≤ 2κ. Define X = {� ∈ �κ : b� ∈ B ′}, so {ϕ(x, a�|α ) : � ∈
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X,α < κ} is consistent. By construction of (a�)�∈�<κ we then must have for
all � ∈ �<κ that the branches in X pass through at most k – 1 immediate
successors of �, that is,

|{i < � : there is � ∈ X such that ��i � �}| < k.

After re-indexing we then have that X ⊆ kκ and hence |B ′| = |X | ≤ 2κ.
(iii) This is just consistency of {ϕ(x, a�|α ) : α < κ} for every � ∈ �κ.

With A and B be as above, let � = |A|<κ + 22κ . We will find a cardinal κ ≤ 	 ≤ 2κ

and a set S ⊆ A	 such that:

(1) |S| = �+;
(2) for any distinct s, s ′ ∈ S we have that {ϕ(x, s(α)) : α < 	} ∪ {ϕ(x, s ′(α)) :
α < 	} is inconsistent;

(3) for any s ∈ S the set {ϕ(x, s(α)) : α < 	} is consistent;
(4) for any s, s ′ ∈ S, viewing them as infinite tuples, we have s ≡ s ′.

First we may assume |B | = �+. We inductively construct Ui ⊆ B as follows: Ui is a
maximal subset such thatUj ∩Ui = ∅ for all j < i and {ϕ(x, b(α)) : b ∈ Ui , α < κ}
is consistent. Note that the latter implies that |Ui | ≤ 2κ by (ii), which together with
(iii) allows us to continue the construction until we have constructed {Ui}i<�+ . By
the pigeonhole principle we may assume that all the Ui have the same cardinality.
For all i < �+, let Ai = {b(α) : b ∈ Ui , α < κ}, 	 = |Ai | = κ · |Ui |, and si ∈ A	 an
enumeration of Ai . If we let S = {si : i < �+} then it satisfies (1)–(3), and by the
pigeonhole principle we can replace S by a subset to also ensure (4).

For s ∈ S we now define pairs (vsα, �
s
α) inductively on α < �s , where �s is the first

α for which (vsα, �
s
α) cannot be defined. We require:

(A) vsα ⊆ 	 is finite;
(B) there is {sn}n<� ⊆ S with sn(j) = s(j) for all n < � and all j ∈

⋃
�<α v

s
� ;

(C) �sα((y�)�∈vsα , (y
′
�)�∈vsα ) is a negation of ∃x

(∧
�∈vsα ϕ(x, y�) ∧ ϕ(x, y′�)

)
;

(D) for any distinct n,m < � we have |= �sα((sn(�))�∈vsα , (sm(�))�∈vsα ).

We will show that there is s ∈ S such that �s ≥ κ. Suppose for a contradiction
that �s < κ for all s ∈ S. There are (	<� · |T |)<κ = 	<κ ≤ 2κ ≤ � many possible
sequences (vsα, �

s
α)α<�s . So by the pigeonhole principle there is S1 ⊆ S with |S1| =

�+ and for all s, s ′ ∈ S1 we have �s = �s′ and (vsα, �
s
α)α<�s = (vs

′
α , �

s′
α )α<�s′ . Write

(vα, �α)α<� = (vsα, �
s
α)α<�s for some s ∈ S1. As � < κ we have that |

⋃
�<� v� | < κ.

So as |A|<κ ≤ � we can again apply the pigeonhole principle to find S2 ⊆ S1 with
|S2| = �+ and for any s, s ′ ∈ S2 we have that s(j) = s ′(j) for all j ∈

⋃
�<� v� .

By (2) we have that any two distinct s, s ′ ∈ S2 the set {ϕ(x, s(α)) :
α < 	} ∪ {ϕ(x, s ′(α)) : α < 	} is inconsistent. So we can assign a finite
us,s′ ⊆ 	 and 
s,s′((y�)�∈us,s′ , (y

′
�)�∈us,s′ ) to each such a pair, such that


s,s′((y�)�∈us,s′ , (y
′
�)�∈us,s′ ) is a negation of ∃x

(∧
�∈us,s′

ϕ(x, y�) ∧ ϕ(x, y′�)
)

and

|= 
s,s′((s(�))�∈us,s′ , (s
′(�))�∈us,s′ ). This defines a colouring function on [S2]2 with

(	<� · |T |) = 	 many colours. As �+ ≥ (2	)+ we can apply the Erdős–Rado
theorem to find S3 ⊆ S2 with |S3| = 	+ such that u = us,s′ and 
 = 
s,s′ do not
depend on the pair s, s ′ ∈ S3. However, for any s ∈ S3 we could now have taken

https://doi.org/10.1017/jsl.2023.89 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.89
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(vs�s , �
s
�s

) to be (u, 
), contradicting the definition of �s . Indeed (A) and (C) follow
immediately from the construction of u and 
. For (B) and (D) any {sn}n<� ⊆ S3

suffices, which exists because |S3| = 	+ is infinite, then (B) follows because this is
also a subset of S2 and (D) follows from the construction of 
.

There is thus some s ∈ S such that �s ≥ κ. As κ = |T |+ there is some k′ and
�(ȳ, ȳ′) := �(y1, ... , yk′ , y

′
1, ... , y

′
k′) such that there are infinitely many α < κ with

|vsα | = k′ and �sα = � (after renaming variables). For convenience we may as well
assume that this happens for all α < �. We will show that ϕ(x, y1) ∧ ··· ∧ ϕ(x, yk′)
has 2-TP. The relevant negation will be�, so we need to construct the tree (c�)�∈�<�
of parameters. For α < � we write s̄(α) for the tuple (s(�))�∈vsα . We now construct
(c�)�∈�<� by induction on the length of � ∈ �<� , such that for � ∈ �n we have that
(c�|α )α≤n ≡ (s̄(α))α≤n.

We can simply take c∅ = s̄(0). Now assuming we have constructed c� for � ∈ �n,
we will construct c��i for all i < �. By an automorphism we may assume (c�|α )α≤n =
(s̄(α))α≤n. Let (si)i<� be as in (B) for vsn+1. We set c��i = s̄i(n + 1) for all i < �.
Then we get

c��i(c�|α )α≤n = s̄i(n + 1)(s̄(α))α≤n = s̄i(n + 1)(s̄i(α))α≤n ≡ s̄(n + 1)(s̄(α))α≤n.

Here the second equality follows from (B) and the third equivalence follows from
(4).

We are left to verify that the tree (c�)�∈�<� is an instance of 2-TP. Indeed, for any
� ∈ �<� and i < j < � we have |= �(c��i , c��j) by (D). Finally, for any � ∈ ��
we have by the induction hypothesis that (c�|α )α<� ≡ (s̄(α))α<� , so the required
consistency follows from (3). �

Corollary 5.7. A theory T has TP if and only if it has 2-TP.

Proposition 5.8. Suppose ϕ(x, y) has 2-TP. Then there exists an infinite set B
such that |Sϕ(B)| > (|B | + |T |)|T |.

Proof. Let κ = �|T |+, then�<κ = κ and κ|T | = κ. To see the latter we note that
for any f : |T | → κ, there is α < |T |+ such that the image of f is contained in �α .
Hence κ|T | =

⋃
α<|T |+ �

|T |
α , and �

|T |
α ≤ �α+1, from which the equality follows.

We assumeϕ(x, y) has 2-TP, so by compactness we find (b�)�∈�<κ and a negation
�(y1, y2) of the formula ∃x(ϕ(x, y1) ∧ ϕ(x, y2)) witnessing 2-TP.

Let B = {b� : � ∈ �<κ}. For � ∈ �κ let a� be a realisation of {ϕ(x, b�|α ) : α <
κ}. Given distinct �1, �2 ∈ �κ, we have tpϕ(a�1/B) 	= tpϕ(a�2/B). Indeed, let � ∈
�<κ be such that � � �1, �2 but there are i 	= j < � such that ��i � �1 and ��j �
�2. Without loss of generality, assume i < j. Then |= �(b��i , b��j) and so because
we have |= ϕ(a�1 , b��i) and |= ϕ(a�2 , b��j) we cannot have |= ϕ(a�2 , b��i).

We thus find�κ > κmany types in Sϕ(B), while at the same time (|B | + |T |)|T | =
(�<κ + |T |)|T | = κ|T | = κ by our choice of κ. �

Corollary 5.9. If a formula ϕ(x, y) has 2-TP then it has OP.

Proof. By Proposition 5.8 and Theorem 3.11. �
Proposition 5.10. If a formula ϕ(x, y) has k-TP2 then it has k-TP.

Proof. Suppose that ϕ(x, y) has k-TP2, witnessed by (ai,j)i,j<� and
�(y1, ... , yk). We construct (b�)�∈�<� such that together with �(y1, ... , yk) they
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witness k-TP. For � ∈ �<� , let �(�) be the length (domain) of � and let t(�) be the
last element of � and t(∅) = 0. Define b� = a�(�),t(�).

For any � ∈ �� we have that {ϕ(x, b�|n ) : n < �} = {ϕ(x, an,t(�|n)) : n < �} is
consistent. Let now � ∈ �<� , and write n = �(�) + 1. Then for any i1 < ··· < ik <
� we have |= �(an,i1 , ... , an,ik ). This is the same as |= �(b��i1 , ... , b��ik ). Hence,
(b�)�∈�<� and �(y1, ... , yk) witness ϕ(x, y) having k-TP. �

Proposition 5.11. If a theory T has 2-TP2 then it has IP.

Proof. Assume T has 2-TP2 witnessed by the formula ϕ(x, y), (ai,j)i,j<� and a
negation�(y1, y2) of the formula ∃x(ϕ(x, y1) ∧ ϕ(x, y2)). Then for every � ∈ 2� ⊆
�� , there exists c� such that for all i < � we have |= ϕ(c�, ai,�(i)).

Consider the formulas 	(z1z2, t) := ϕ(t, z2) and �(z1z2, t) := ϕ(t, z1) ∧ �(z1, z2).
Also for i < � let bi be the tuple (ai,0, ai,1). We are going to show that 	 has IP
witnessed by (bi)i<� , (c�)�∈2� and �.

First of all note that � is indeed a negation of 	, since

T |= ¬∃z1z2t (ϕ(t, z2) ∧ ϕ(t, z1) ∧ �(z1, z2)).

Now take any i < � and� ∈ 2� . If�(i) = 1, then we have |= ϕ(c�, ai,1) and therefore
|= 	(bi , c�). If �(i) = 0, then we have |= ϕ(c�, ai,0) as well as |= �(ai,0, ai,1) and
therefore |= �(bi , c�). Hence, (bi)i<� , (c�)�∈2� and �witness IPof	 and T has IP. �

Proposition 5.12. If a formula ϕ(x, y) has IP then it has OP.

Proof. Suppose ϕ(x, y) has IP, witnessed by (ai)i<� , (c�)�∈2� and �(x, y). We
use the same �(x, y) and (ai)i<� to show that ϕ(x, y) has OP. Let �j ∈ 2� be
defined by

�j(i) =

{
1 if i < j,
0 if i ≥ j.

Then we get

|= ϕ(ai , c�j ) if i < j,

|= �(ai , c�j ) if i ≥ j.

Therefore, ϕ(x, y) has OP, witnessed by (ai)i<� , (c�j )j<� and �(x, y). �

§6. Interactions with independence relations. In this section we study the inter-
action between independence relations and some of the combinatorial properties
studied above. We first recall the notion of dividing and the corresponding definition
of simplicity, and the way different notions of independence interact with a theory
being NSOP1, simple or stable. We do not define Kim-dividing or use it directly; we
rely on the axiomatic characterization of the notion of independence given in [7,
Theorem 9.1].

Definition 6.1. Letp(x, b) = tp(a/Cb) be a type. We say thatp(x, b) divides over
C if there is a C-indiscernible sequence (bi)i<� , with b0 ≡C b, such that

⋃
i<� p(x, bi)

is inconsistent. We write a |�
d

C
b if tp(a/Cb) does not divide over C.
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Lemma 6.2. A type p(x, b) = tp(a/Cb) divides over C if and only if it contains
a formula ϕ(x, b) ∈ p(x, b) and there are a negation �(y1, ... , yk) of ∃x(ϕ(x, y1) ∧
··· ∧ ϕ(x, yk)) and some infinite sequence (bi)i<� such that bi ≡C b for all i < � and
for all i1 < ··· < ik < � we have |= �(bi1 , ... , bik ).

The above lemma is the positive variant of k-dividing (see, e.g., [21, Definition
7.1.2]). The role of k is replaced by �, and accordingly we say in the situation of
Lemma 6.2 that ϕ(x, b) �-divides over C. The proof is standard, but instructive on
how � is used.

Proof. If p(x, b) divides then let (bi)i<� be an indiscernible sequence
witnessing this. By compactness there is ϕ(x, b) ∈ p(x, b) and some k < �
such that {ϕ(x, b1), ... , ϕ(x, bk)} is inconsistent. So there is a negation
�(y1, ... , yk) of ∃x(ϕ(x, y1) ∧ ··· ∧ ϕ(x, yk)) with |= �(b1, ... , bk). It then follows
by C-indiscernibility that for all i1 < ··· < ik < � we have |= �(bi1 , ... , bik ).

Conversely, suppose that ϕ(x, b) ∈ p(x, b) �-divides over C. Let (bi)i<� be
the infinite sequence witnessing this. By compactness we may elongate (bi)i<�
to (bi)i<� for suitably large �. Then by Lemma 2.6 we find an indiscernible
sequence (b′i )i<� based on (bi)i<�. In particular, there are i1 < ··· < ik < � such that
b′1 ... b

′
k ≡C bi1 ... bik . As we have |= �(bi1 , ... , bik ), we thus have |= �(b′1, ... , b

′
k). So

{ϕ(x, b′1), ... , ϕ(x, b′k)} is inconsistent and therefore
⋃
i<� p(x, b′i ) is inconsistent.

We conclude that p(x, b) divides over C. �

Definition 6.3. We say that a theory T is simple if dividing has local character.
That is, there is some cardinal � such that for any finite a and any parameter set B
there is B0 ⊆ B with |B0| ≤ � such that tp(a/B) does not divide over B0.

To make independence work nicely in simple and NSOP1 positive theories we
need the mild assumption of thickness from [4]. Note that in particular every theory
in full first-order logic, viewed as a positive theory, is thick.

Definition 6.4. A theory T is called thick if being an indiscernible sequence
is type-definable. So there is a partial type Θ((xi)i<�) such that |= Θ((ai)i<�) iff
(ai)i<� is an indiscernible sequence.

Definition 6.5. We write dB(a, a′) ≤ n if there are a = a0, a1, ... , an = a′ such
that ai and ai+1 are on a B-indiscernible sequence for all 0 ≤ i < n. We say that a and
a′ have the same Lascar strong type (overB), and write a ≡Ls

B a
′, if dB(a, a′) ≤ n

for some n < �.

Fact 6.6 [7, Lemma 2.20]. Let T be a thick theory and M a �T -saturated e.c.
model, then a ≡M a′ implies a ≡Ls

M a
′.

Fact 6.7 [7, Theorem 9.1]. Let T be a thick theory. Then T is NSOP1 if and only
if there exists an automorphism invariant ternary relation |� on subsets, only allowing
e.c. models in the base, satisfying the following properties:

Finite Character: if a |�M b0 for all finite b0 ⊆ b then a |�M b.
Existence: a |�M M for any e.c. model M.
Monotonicity: aa′ |�M bb

′ implies a |�M b.
Symmetry: a |�M b implies b |�M a.
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Chain Local Character: let a be a finite tuple and κ > |T | be regular, then
for every continuous chain (Mi )i<κ, with |Mi | < κ for all i, there is
i0 < κ such that a |�Mi0

M , whereM =
⋃
i<κ Mi .

Independence Theorem: if a |�M b, a
′ |�M c and b |�M c with a ≡Ls

M a
′ then

there is a′′ such that a′′b ≡Ls
M ab, a

′′c ≡Ls
M a

′c and a′′ |�M bc.
Extension: if a |�M b then for any c there is a′ ≡Mb a such that a′ |�M bc.
Transitivity: if a |�M N and a |�N b withM ⊆ N then a |�M Nb.

Furthermore, in this case |� = |�
K is given by non-Kim-dividing.

Fact 6.8 [3, Theorem 1.51] and [4, Theorem 1.15]. Let T be a thick theory. Then
T is simple if and only if there exists an automorphism invariant ternary relation |�
on subsets, only allowing e.c. models in the base, satisfying all the properties from Fact
6.7 as well as:

Base-Monotonicity: if a |�M B and M ⊆ N ⊆ B , with N an e.c. model, then
a |�N B .

Furthermore, in this case |� = |�
d is given by non-dividing.

In this fact we may restrict the base of |� further to κ-saturated e.c. models for
some fixed κ.

Fact 6.9 [3, Theorem 2.8]. Let T be a thick theory. Then T is stable if and only
if it is simple and dividing independence satisfies Stationarity over �T -saturated e.c.
models: whenever M is a �T -saturated e.c. model, a |�

d

M
b, a′ |�

d

M
b and a ≡M a′

then a ≡Mb a′.

In Fact 6.9 we use �T -saturated e.c. models, because we want types over these e.c.
models to be Lascar strong types (see Fact 6.6). The proof of [3, Theorem 2.8] works
with |T |+-saturated e.c. models, but goes through for �T -saturated e.c. models as
well (noting that �T > |T |+).

Proposition 6.10. A thick NSOP1 theory T is stable iff Kim-independence satisfies
Stationarity over �T -saturated e.c. models.

Proof. If T is stable then Kim-dividing is the same as dividing by the canonicity
parts of Facts 6.7 and 6.8, so by Fact 6.9 we have Stationarity over �T -saturated
e.c. models for Kim-dividing.

By the other direction of Fact 6.9 it suffices to prove that Stationarity for |�
K

implies that T is simple. By Fact 6.8 it is then enough to prove that |�
K satisfies

Base-Monotonicity, where we may in fact restrict ourselves in the base to �T -
saturated e.c. models. So let M be a �T -saturated e.c. model such that a |�

K

M
B ,

and let N be a (�T -saturated) e.c. model such thatM ⊆ N ⊆ B . By Existence we
have a |�

K

N
N , so by Extension we find a′ ≡N a with a′ |�

K

N
B . By Monotonicity

applied to a |�
K

M
B we find a |�

K

M
N and so a′ |�

K

M
N . We then apply Transitivity

to find a′ |�
K

M
B . As a ≡M a′ we can apply Stationarity to find a ≡B a′ and so

we conclude a |�
K

N
B , as required. �
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Definition 6.11. Let M be some e.c. model. An |�
K

M
-Morley sequence is an

M-indiscernible sequence (ai)i<� such that ai |�
K

M
(aj)j<i for all i < �.

Lemma 6.12. Let T be a thick NSOP1 theory, and let a be any tuple and M be any
e.c. model. Then there is an |�

K

M
-Morley sequence (ai)i<� with a0 = a.

Proof. Standard, but we give the proof for completeness. By Existence we have
a |�

K

M
M . So by repeatedly applying Extension we find, for some big enough �, a

sequence (a′i )i<� with a′i ≡M a and a′i |�
K

M
(a′j)j<i for all i < �. Then using Lemma

2.6 we base an M-indiscernible sequence (ai)i<� on (a′i )i<�, and by an automorphism
we may assume a0 = a. By Finite Character it is then enough to verify that for
any i1 < ··· < in < � we have ain |�

K

M
ai1 ... ain–1 , which follows because there are

j1 < ··· < jn < � such that ai1 ... ain ≡M a′j1 ... a
′
jn

. �
Theorem 1.4, repeated. A thick theory T hasOP iff it has IP orSOP1. Equivalently:

T is stable iff it is NIP and NSOP1.

Proof. From Theorem 1.1 we already know that IP and SOP1 imply OP, i.e.,
instability. For the other direction we will prove that any thick unstable NSOP1

theory has IP.
As T is unstable we have by Proposition 6.10 that there is a �T -saturated e.c.

model M such that Stationarity over M fails. That is, there are a0, a1, b such that
a0 |�

K

M
b, a1 |�

K

M
b and a0 ≡M a1 while a0 	≡Mb a1. Write p0(x, y) = tp(a0b/M )

and p1(x, y) = tp(a1b/M ). Use Lemma 6.12 to find an |�
K

M
-Morley sequence

(bi)i<� with b0 = b. We will now construct (a�)�∈2<� by induction on the length
(domain) of �, such that for � ∈ 2n:

(1) |= p�(i)(a�, bi) for all i < n,
(2) a� |�

K

M
b<n,

(3) a� ≡Ls
M a0 ≡Ls

M a1.

For a〈0〉 and a〈1〉 we can just take a0 and a1, respectively, where (3) is satisfied by
Fact 6.6 and the fact that M is �T -saturated. Now assume that (a�)�∈2≤n has been
constructed and let � ∈ 2n+1. As bn ≡Ls

M b0 = b we can find a′ such that a′bn ≡Ls
M

a�(n)b. We also have a′ |�
K

M
bn, a�|n |�

K

M
b<n and bn |�

K

M
b<n, so by Independence

Theorem we find the required a�, where (1)–(3) are easily verified using the induction
hypothesis and the application of Independence Theorem.

By (1) and compactness we now find (a�)�∈2� such that a� |=
⋃
i<� p�(i)(x, bi)

for every � ∈ 2� . As p0(x, y) and p1(x, y) are distinct, there is ϕ(x, y) ∈ p1(x, y)
such thatϕ(x, y) 	∈ p0(x, y). So there is a negation�(x, y) ofϕ(x, y) with�(x, y) ∈
p0(x, y). Now for any � ∈ 2� and i < � we have

�(i) = 1 =⇒ |= p1(a�, bi) =⇒ |= ϕ(a�, bi),
�(i) = 0 =⇒ |= p0(a�, bi) =⇒ |= �(a�, bi).

Any parameters from M contained in ϕ(x, y) or �(x, y) can be assumed to be part
of the bi ’s, so we see that the formula 
(y, x) := ϕ(x, y) has IP. �

Theorem 1.5, repeated. A thick theory T has TP iff it has SOP1 or TP2.
Equivalently: T is simple iff it is NSOP1 and NTP2.

https://doi.org/10.1017/jsl.2023.89 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.89


DIVIDING LINES BETWEEN POSITIVE THEORIES 21

Proof. From Theorem 1.1 we know that if T has SOP1 or TP2 then it has TP.
We will prove the converse by proving that a thick non-simple NSOP1 theory has
TP2. This uses that simplicity is equivalent to NTP, which is exactly Theorem 6.14.

Assume then that T is thick, non-simple, andNSOP1. By Facts 6.7 and 6.8 we have
that an NSOP1 theory is simple iff |�

K satisfies Base-Monotonicity. We have that

|�
d always satisfies Base-Monotonicity by definition: if tp(a/B) does not divide

over M andM ⊆ N are e.c. models contained in B then tp(a/B) does not divide over
N. Hence we must have |�

d 	= |�
K . It follows easily from the definition of Kim-

dividing (see, for example, [7, Remark 4.12]) that |�
d =⇒ |�

K , so there must be

a, b,M with a |�
K

M
b while a 	 |�

d

M
b. Write p(x, b) = tp(a/Mb) and let J = (bj)j<�

be an M-indiscernible sequence with b0 = b such that
⋃
j<� p(x, bj) is inconsistent.

So there isϕ(x, y) ∈ p(x, y) together with a negation�(y1, ... , yk) of ∃x(ϕ(x, y1) ∧
··· ∧ ϕ(x, yk)) such that for all j1 < ··· < jk < �we have |= �(bj1 , ... , bjk ). We claim
that ϕ has k-TP2, as witnessed by �.

By Lemma 6.12 we find an |�
K

M
-Morley sequence (Ji)i<� with J0 = J . For i < �

we write Ji = (ci,j)j<� . This yields an array (ci,j)i,j<� such that the following hold.
(1) For all � ∈ �� the set {ϕ(x, ci,�(i)) : i < �} is consistent. First note that

for any i < � we have ci,�(i) ≡Ls
M ci,0 ≡Ls

M c0,0 = b. So (ci,�(i))i<� is an |�
K

M
-

independent sequence, all having the same Lascar strong type as b over M,
hence by the usual inductive application of compactness and Independence

Theorem we get that {ϕ(x, ci,�(i)) : i < �} is consistent.
(2) For all i < � and j1 < ··· < jk < � we have |= �(ci,j1 , ... , ci,jk ). This follows

because Ji is an M-automorphic copy of J0 = J .
Any parameters from M contained in ϕ or � can be assumed to be part of the ci,j ’s,
so we conclude that ϕ does indeed have k-TP2. �

Remark 6.13. Compared to Theorem 1.2 we replaced SOP by SOP1 in Theorem
1.4, which gives a weaker result. However, it is not even clear how the SOP property
should be formulated in positive logic, see also Remark 7.4. In the Theorem 1.5 we
replaced TP1 by SOP1, compared to Theorem 1.3, again giving an a priori slightly
weaker result. However, for full first-order logic Mutchnik’s recent preprint [14]
proves that SOP1 is equivalent to TP1, and it is very reasonable to expect the same
thing in positive logic, see also Question 7.1.

It is worth noting that the proofs of both theorems here are completely different
from the classical proofs for Theorems 1.2 and 1.3. In particular, modulo Mutchnik’s
result, Theorem 1.5 gives a completely new proof of Theorem 1.3.

For the remainder of this section we shift our focus to the equivalent definitions
of a simple theory.

Theorem 6.14. A theory T is simple if and only if it does not have TP.

Proof. TP =⇒ failure of local character. Take any cardinal � and suppose that
ϕ(x, y) has TP. By compactness we can assume this is witnessed by (c�)�∈κ<�+ for

κ = (2|T |+�
+

)+ and �(y1, ... , yk).
We construct some � ∈ κ�+ by induction on its length (i.e., its domain). Suppose

we have already defined �|� for some � < �+. Write C = {c�|i : i ≤ �} and � = �|� .
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Consider the set of types {tp(c��i/C ) : i < κ}. There are at most 2|T |+�
+

different
types over C, so by our choice of κ and the pigeonhole principle there exists infinite
I� ⊆ κ such that for any i, j ∈ I� we have tp(c��i/C ) = tp(c��j/C ). Let i0 be the
least element of I� and define �(�) = i0.

Now that the construction of � is finished we write bi = c�|i for i < �+. With this
notation, and using the fact that (c�)�∈κ<�+ witnesses TP for ϕ(x, y), we find some a
realising {ϕ(x, bi) : i < �+}. We claim that tp(a/(bi)i<�+ ) divides over every subset
B0 ⊆ (bi)i<�+ with |B0| ≤ �. Suppose for a contradiction that tp(a/(bi)i<�+ ) does not
divide over some B0 ⊆ (bi)i<�+ , where |B0| ≤ �. Let � < �+ such that B0 ⊆ (bi)i<� .
Then tp(a/(bi)i<�+ ) does not divide over (bi)i<� by Base-Monotonicity (which
holds for dividing in any theory, as already mentioned in the proof of Theorem
1.5). We have ϕ(x, b�) ∈ tp(a/(bi)i<�+ ), hence by Lemma 6.2 it suffices to prove
that ϕ(x, b�) �-divides over (bi)i<� . Enumerate the set I� from the construction
of � as i0 < i1 < ... and let dj = c�|��ij for j < �. Note that d0 = b� . Then by
the construction of I� , (dj)j<� is a sequence of realizations of tp(b�/(bi)i<�).
Moreover, byTPwe also have |= �(dj1 , ... , djk ) for all j1 < ··· < jk < �. Therefore,
tp(a/(bi)i<�+ ) divides over B0 and T does not have local character.

Failure of local character =⇒ TP. Let � = |T |+. As local character for dividing
fails there is some finite a and a parameter set B such that tp(a/B) divides over B0

for every B0 ⊆ B with |B0| ≤ �.
We construct a tree (c�)�∈�<� by induction on its height. Let �α ∈ �α denote the

constant zero function. As induction hypothesis for step � we use three statements:

• c�α is a finite tuple of elements from B for all α ≤ �;
• (c�|α )α≤� ≡ (c�α )α≤� for all � ∈ �� ;
• if � = � + 1 is a successor then there areϕ�(x, y) and a negation��(y1, ... , yk� )

of ∃x(ϕ�(x, y1) ∧ ··· ∧ ϕ�(x, yk� )) such that for any � ∈ �� and any i1 < ··· <
ik� < � we have |= ��(c��i1 , ... , c��ik� ).

For � < � limit or zero we let all c�, where � ∈ �� , be the empty tuple. Now suppose
that we constructed (c�)�∈�≤� and we need to construct level � + 1. As c�α is a finite
tuple for allα ≤ � and � < �, we have that |{c�α : α ≤ �}| < � and so tp(a/B) divides
over {c�α : α ≤ �}. By Lemma 6.2 there exists formulas ϕ�+1(x, d ) ∈ tp(a/B) and a
negation��+1(y1, ... , yk�+1

) of ∃x(ϕ�+1(x, y1) ∧ ··· ∧ ϕ�+1(x, yk�+1
)) together with a

sequence (di)i<� such that di ≡(c�α )α≤� d for all i < � and for any i1 < ··· < ik�+1
<

�we have |= ��+1(di1 , ... , dik�+1
). By an automorphism we may assumed0 = d . Note

that d0 is a finite tuple of elements from B. We start by defining c��
�
i to be di for

all i < �. Since di ≡(c�α )α≤� dj for all i, j < �, we have (c��
�
i|α )α≤�+1 ≡ (c�α )α≤�+1.

Now take any � ∈ �� . We know by induction hypothesis that (c�|α )α≤� ≡ (c�α )α≤� .
Let (c��i)i<� be such that (c��i)i<�(c�|α )α≤� ≡ (di)i<�(c�α )α≤� . Then the induction
hypothesis holds by construction. Moreover, since for any i1 < ··· < ik�+1

< �

we have |= ��+1(di1 , ... , dik�+1
), we now also get |= ��+1(c��i1 , ... , c��ik�+1

). This

completes the inductive construction of the tree (c�)�∈�<� .
There are |T | possible pairs of formulas ϕ(x, y) and �(y1, ... , yk) but we have

� = |T |+ successor levels, and each is assigned a pair ϕ�(x, y) and ��(y1, ... , yk� ).
Hence, by pigeonhole principle we can choose an infinite set of successor levels
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l0 < l1 < l2 < ... having the same ϕ� and �� . We denote these just as ϕ(x, y) and
�(y1, ... , yk). We consider a subtree (f�)�∈�<� that consists only of the chosen
levels (with the root being the leftmost point on level l0). That is, for � ∈ �<� of
length n we define �� ∈ �ln of length ln as

��(l) =

{
�(i), if l = li+1 – 1,
0, otherwise.

Note that li+1 – 1 makes sense, because we only chose successor levels. Letf� = c�� .
We claim (f�)�∈�<� and � witness TP for ϕ. Let � ∈ �� . By construction

{ϕ(x,f�n ) : n < �} ⊆ tp(a/B), and so this set is consistent. Then since (f�|n )n<� ≡
(f�n )n<� we get that {ϕ(x,f�|n ) : n < �} is consistent. Finally take any � ∈ �<�
and i1 < ··· < ik < �. The elements f��i1 , ... , f��ik are equal to c��i1 , ... , c��ik for
some � ∈ �<�. Hence, by construction of the subtree, we get |= �(f��i1 , ... , f��ik ).
We conclude that ϕ, and thus T, has TP. �

Remark 6.15. In [3] simplicity of a theory is defined as dividing having local
character, as we did here. In [15] simplicity is defined as forking having local
character. Note that trivially local character of forking implies local character of
dividing. In thick theories the converse is true: by [4, Theorem 1.15] non-dividing
satisfies Extension and so dividing coincides with forking.

Without the thickness assumption the converse can fail. By [3, Example 4.3] there
is a stable positive theory T with a type over the empty set that forks over the empty
set.

The above example motivates our choice of terminology for simplicity, because if
we defined simplicity in terms of local character for forking then stability would not
imply simplicity. Furthermore, the fact that local character of dividing is equivalent
to NTP (Theorem 6.14) does not need thickness. So the T from above is an example
of an NTP theory where local character for forking fails, further motivating our
choice of terminology.

§7. Further discussion and open questions. In light of the recent [14], where it
is shown that SOP1 is equivalent to SOP2 for theories in full first-order logic, the
following is a natural question.

Question 7.1. Is SOP1 equivalent to SOP2 in positive logic? As Mutchnik’s proof
[14] makes heavy use of various notions of independence, and these tend to work better
in thick theories [4, 7], it would be natural to assume thickness in order to answer this
question.

Question 7.2. Is SOP3 equivalent to SOP2, and so, if Question 7.1 has a positive
answer, also equivalent to SOP1?

Remark 7.3. In full first-order logic we have that if ϕ(x, y) has k-TP2 for
some k ≥ 2 then some conjunction

∧n
i=1 ϕ(x, yi) has 2-TP2 [13, Proposition 5.7].

The proof for this makes use of array-indiscernibles and array-modelling. The
development of these tools is out of the scope of this paper, but it is done in a
recent preprint [12] by the third author. In particular, [12, Theorem 1.4] proves the
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above statement for thick theories. This implies in particular that a thick theory has
2-TP2 iff it has k-TP2 for some k ≥ 2.

Remark 7.4. In this work we left out the SOPn hierarchy for n ≥ 4, as well as
the strict order property SOP. It is not clear what would be the right definition of
these properties in positive logic. The combinatorial properties we have considered
all have a similar form: there is some combinatorial configuration of parameters and
we require a formula to be consistent along certain parts of those parameters, while
being inconsistent along other parts. The only change for positive logic is then that
we require this inconsistency to be uniformly witnessed by some negation. However,
SOP≥4 and SOP are defined in a different way and, unlike SOP3, there is no known
equivalent formulation of the above form.

Remark 7.5. The first work to consider the independence property IP in positive
logic is [8]. There some basics for positiveNIP theories are developed, such as closure
of NIP formulas under conjunctions and disjunctions and the fact that one can swap
the roles of the variables. On the level of theories they also prove that to verify that
a theory is NIP one only needs to check the formulas ϕ(x, y) where y is a single
variable (as opposed to a tuple of variables).

Remark 7.6. In positive logic we can add hyperimaginaries (e.g., the (–)heq-
construction) in the same way we can add imaginaries (e.g., the (–)eq-construction)
in full first-order logic, see [7, Subsection 10C] for details. In [7, Theorem 10.18]
it is proved that whether a theory is SOP1 or NSOP1 is preserved under such
hyperimaginary extensions. As is remarked there as well, the proof strategy should
go through for any of the combinatorial properties discussed in this paper. For NIP
the details of this are verified in [8, Proposition 6.22].
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