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A CONTRIBUTION TO THE THEORY OF 
METRIZATION 

H. H. HUNG 

In a paper on the same subject [28] and another coming out at the same time 
[27], Nagata gave his celebrated Double (treble, really) Sequence Theorem, 
with which he deduced easily and thus brought together the basic metrization 
theorems, i.e. theorems in which the conditions for metrizability are given as 
the availability of bases or subbases of certain descriptions. The power of that 
theorem is demonstrated by the ease with which everything follows from it, 
and it must be that the theorem comes close to the heart of the matter for it 
to have that power; although, no doubt, from the other theorems the Double 
Sequence Theorem can also be deduced to different extents and with various 
degrees of difficulty: the theorem itself has in fact been proved [27; 28; 29] 
via the theorem of Alexandroff-Urysohn [1] with the help of A. H. Stone [35] 
and Michael's results [21 ; 22; 23] on paracompactness, and it has been demon­
strated that it is an easy consequence of Frink's [9; 19], etc. But there is not 
a description of bases, which this Nagata Structure, as the base described in 
the Double Sequence Theorem is called, and the Nagata-Smirnov Base [6; 26; 
34] and others simultaneously fit. Such a description would certainly come 
even closer to the matter, providing another (perhaps better) view of the 
metric landscape. We propose the result in § 2 (largely formulated early in 1975 
but unpublished [14]) which is implicit in Hung [13]. There we have a baselike 
object, generalizing the Nagata-Smirnov Base, the description of which Nagata 
Structure can be seen to fit, with a tilt of the head perhaps—but no tinkering 
whatsoever is necessary. Thus Theorem 2.1 generalizes (slightly) the Double 
Sequence Theorem, while truly unifying Nagata with Nagata-Smirnov and 
others, allowing at the same time other formulations. 

One notion used here for our purpose is that of a (well ordered) family of 
disjoint pairs and their separation of points, which is explained in § 1. In § 2 we 
present the main Theorem and go on immediately to show how many basic 
theorems are its straightforward corollaries, deferring its two proofs to § 3 
and § 4. 

1. Prel iminar ies . A disjoint pair Se is a collection of two disjoint sets. 
We say a disjoint pair Se = {B, B\ separates a point x and a point y if x £ B 
and y G B or x G B and y G B. 

The axiom of choice is assumed. Ordinal numbers are denoted by a, 0, £, f, rj. 
An ordinal coincides with the set of all smaller ordinals, i.e., £ < f is equivalent 
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to £ G f. Nevertheless we make the notational distinction between the first 
ordinal 0 and the empty set 0. A cardinal number is an initial ordinal. The first 
infinite cardinal is co. An ordinal £ is a non-limit ordinal if £ = f U {f} for 
some ordinal f ; otherwise £ is a limit ordinal. Let £ be a limit ordinal. The 
cofinality of £, denoted by cf (£), is the least ordinal f from which there is a 
function/ into £ such that 

a) / is order-preserving (i.e.,/(r?) g /(V) f° r * ? < * ? ' < f), and 
b) f \s unbounded (i.e., s u p ^ r / M = £). (See e.g. [8]). 

A family of disjoint pairs \Së^^<a separates the sets A\ and A2 if for every 
x £ i i and every y £ At there is some f < a such that «Ŝ j- separates x and y. 

2. Main theorem. We state our theorem as follows. 

THEOREM 2A. A topological space X is metrizable if and only if it is T0 and 
there exists on it a family of disjoint pairs, {£/i\t<a, for some a confinai with co, 
i.e., cf (a) = co, with the following property. For each x £ X and each /3 < a, 
the set 

Oi{~B :x e B}{B,B) = J / € , £ < 0} 

is a neighbourhood of x (it is sufficient that these sets form a weak base of the 
topology (cf. [5, 12; 20])), and 

(i) for each x £ X and each open U containing x, there exist a neighbourhood 
V of x and an ordinal f < a such that V and ~ U are separated by the family 
î ^h<r ; or 

(ii) every compact set K is separated from every disjoint closed set C by a 
family {s$%} £<„ for some r\ < a ^depending on K and C (cf. Michael [24] and 
O'Meara [33] on pseudobases) ; or 

(iii) for each x G X and each open U containing x, there exist ??, f < a such that 

x e B C ~B C C C - C C f / 

where \B,B) = J / „ {C, C) = j / r (cf. Harley and Faulkner [10]). 

One proof of this theorem parallels exactly that in Hung [13], which we shall 
give briefly in § 3. Another proof is given in § 4. We now, in order to acquaint 
our readers with the meaning of the conditions in the theorem, give an example 
of a baselike object of the descriptions in Theorem 2.1 in a metric space. 
For all w Ç N , \et&fn be the family of all disjoint pairs of sets distant at least 
1/n apart. The family 

can clearly be well ordered into one that fits the descriptions given in the 
theorem. At the same time, o--locally finite bases, bases described by Nagata, 
Hung [7; 13; 19] are of those descriptions. The difference between our theorem 
here and Nagata's in [7; 13; 19] may formally look small, but it represents a 
movement into the crux of the matter, as seen below. While the success of the 
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c-discrete bases and Nagata and Smirnov bases and even the Nagata [7; 13 ; 19] 
bases are due to the severe and not so severe limitation on the ability of the 
parts of the bases to accumulate) in our case, we let them accumulate to the 
best of their ability only keeping them at an arm's (shortening) length, as 
it were. To demonstrate that we may be moving into the crux of the matter, 
we note the following obvious corollary to our theoren, alternative (i), which 
is Nagata's celebrated Double (treble really) Sequence Theorem. 

COROLLARY 2.2 (Nagata). A topological space X is metrizable if and only if it 
is To and has two (countable) sequences, Sn(x) and Un(x), of neighbourhoods 
about every point x £ X satisfying the following. At each x £ X, 

(i) the family { Un(x) : n £ N} is a fundamental system of neighbourhoods 
atx (These neighbourhoods and fundamental systems requirements at every 
point can evidently be weakened to anything that satisfies (i) in Theorem 2.1.); 

(ii) for every n £ N, there is one (open) neighbourhood 12(x) of x such that 

V(x)nSn(y) = 0 ifxd Un(y); 

(iii) for every n £ N, 

0'(«) C H \Un(y) : x e Sn(y)} 

for some (open) neighbourhood & (x) of x. 

Corollary 2.2 is obvious if one sees in the two neighbourhoods Sn(x) and Un(x) 
the disjoint pairs {Sn(x), ^ Un(x)\. 

We may further note the following equally obvious corollary to our theorem, 
again alternative (i), which is (a strengthened version of) Frink's [9; 19]. 

COROLLARY 2.3. A topological space X is metrizable if and only if it is T0 and 
has neighbourhoods { Un(x) : n £ N} at every x £ X with the following property: 
For each x £ X and each open U containing x} there exist a neighbourhood V 
of x and an m £ N such that 

i) Um(y) r\ V = 0 ifyi U,and 
ii) Um(y) QU ify£V. 

Corollary 2.3 is obvious if one notes that { ~ U, V) is a disjoint pair. 
Readers may note that Corollary 2.3 strengthens simultaneously Arhangel'skii-
Stone [2; 5; 36] and Alexandrofï-Urysohn [1]. It also strengthens the usual 
Double Sequence Theorem, although not Corollary 2.2 above in which the 
original conditions have already been relaxed somewhat. This corollary and the 
one above point up the redundancies in the Double Sequence Theorem. 

The next corollary, representing an alternative to Nagata's formulation 
above and a substantial improvement on an earlier unifying result [15], itself 
generalizing Arhangel'skii-Stone [2; 5; 36] and Alexandroff-Urysohn [1], 
follows also from alternative (i) of Theorem 2.1. 
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COROLLARY 2.4. A topological space X is metrizable if and only if it is T0 and 
has at every point p G X a set of neighbourhoods \Un(p)}n^N satisfying the 
following: 

(i) for every n G N, there is one neighbourhood 12 for each point x such that 
y d tiifx (I Un(y);and 

(ii) for every open neighbourhood W of x, there exist a neighbourhood V and 
an m G N such that either a) F H Um(y) = 0 if y G W, or b) W D Um(z), 
ifz G V. 

Condition (ii) can evidently be weakened to the following: 

(ii)' for every open neighbourhood W of x, there exist a neighbourhood V and an 
m G N such that for each y G W and z G V, either y G Um(z) or z (£ Um(y). 

Alternative a) is Heath's characterization of Nagata Spaces [11]. (Every 
Un(p) may be looked upon as a disjoint pair, {{p\, ^ Un(p)\.) 

The same corollary with alternative a) may be reformulated as follows. 

COROLLARY 2.4a. A topological space x is metrizable if and only if it is FQ 

and has at every point p G X a countable local base { Un(p)}n£N satisfying the 
following: Given any (countable) sequence {xt}, (i) if x is a cluster point, then 
for each n G N, x G Un(xt) for infinitely many i; on the other hand (ii) if x 
is not a cluster point, then there is at least one m G N such that not only x $ 
Um(Xi) for any i, but no points in some neighbourhood V belong to Um(xt) for 
any i. 

Nagami's Theorem [30; 31] as stated below, and therefore Morita's [25], 
are also obvious corollaries to Theorem 2.1, alternative (i). 

COROLLARY 2.5 (Nagami). A topological space X is metrizable if and only if 
it is To and has a (countable) sequence &'n of closure preserving closed covers with 
the following property: For each x G X and each open U containing x, there 
exists such an n G N that St (x, Jr

TO) C U. 

(Corollary 2.5 is obvious if one observes that 

{ ~ S t ( x , J*"»), ~ U {F:x G Fe^n}} 

is a disjoint pair.) 

Readers may have noticed that Corollaries 2.2-2.5 are all corollaries to 
Theorem 2.1 with alternative (i). Clearly, if alternatives (ii) or (iii) are in­
voked instead in each instance, we would have parallels to the above every 
time. Of these parallels, we name but two in the following and remark that 
clearly a parallel to 2.4 would improve on Theorem 1.1 of [15], itself generalizing 
Arhangel'skii-Jones [3; 4; 16; 17]. 

COROLLARY 2.6. A topological space x is metrizable if and only if it is T0 and 
has two (countable) sequences Sn(K) and Un(K) of sets about (i.e. containing) 
every compact K satisfying the following: 

https://doi.org/10.4153/CJM-1977-113-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-113-6


METRIZATION 1149 

(i) for every K C X contained in an open set U, there exists an n G N such 
that 

K C Sn(K) C Un{K) CU at each x G X; 

(n) for every n G N, there is one {open) neighbourhood Q(#) of x such that 

Q(*) H Sn(K) = 0 i / x î C/»(X); o»d 

(iii) for every n G N, 

«'(*) C H {Un(K) : x e Sn(K)\ 

for some (open) neighbourhoods'(x) ofx. 

COROLLARY 2.7. A topological space X is melrizable if and only if it is T0 and 
has two (countable) sequences, Sn(x) and Un(x), of sets above every point x G X 
satisfying the following. At each x ^ Z , 

(i) for every x G X contained in an open set U, there exist m, n G N such that 

x G Sn(x) C Un(x) C Sm(x) C Um(x) C U; 

(n) for every n G N, there is one (open) neighbourhood £l(x) of x such that 

Q(x) r\ Sn(y) = 0 ifxt Un(y); and 

(iii) for every n G N, 

0'(*) Cn{Un(y):xtSn(y)} 

for some (open) neighbourhood W (x) of x. 

3. Proof of main theorem. Given any space X and any family of disjoint 
pairs separating points, ( j / ^ < a , where the cofinality cf (a) of a is co, the first 
infinite ordinal. For any countable sequence {fii} i<ù} of ordinals cofinal with a, 
we can define a non-negative real valued function p on X X X as follows. For 
all x, y G X, x 9^ y, we can define p(xf y) such that l/p(x, y) equals the 
smallest non-zero i for which the family {J^h</3i separates x, y; which is 
always possible. For all x £X , p(x, x) is defined to be 0. Such a p is obviously 
a symmetric. (Cf. [5; 10; 13; 14; 15; 18; 32; 37]. Bri'efly, a symmetric is that 
which if it also satisfies the usual triangle inequality is also a metric. A sym­
metric space is a space the topology of which consists of those (and only those) 
sets that contain a ball of some radius around every one of their members. Such 
a topology is said to be induced by the symmetric onto the space.) Since, 
for all x G X, j G N, the set 

H {~B:x G B, {B,B\ = s/b £ < 0,} 

is iV(x, 1/j) = {x £ X, p(x, y) < I/;} ; this symmetric induces a topology 
not finer than that of X} which is at the same time guaranteed not to be less 
fine by the facts (i), (ii) or (iii) in 2.1. X is therefore a symmetric space. The 
symmetric p is also guaranteed coherent (A symmetric p (on a symmetric space) 
is coherent if, for any compact set K and any disjoint closed set C, p(K, C) > 0; 
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according to Martin [18].) by the facts (i), (ii) or (iii) in 2.1. X is metrizable 
by Niemytzki-Wilson [32; 37; 5; 18]. 

4. Another proof of the main theorem. A space X satisfying Theorem 2.1 
by way of alternative (i) has, for every open cover of it, obviously a cr-cushioned 
open refinement and has therefore also a cr-discrete open refinement according 
to Michael [23]. While it is clear that condition (i) is a special case of (ii) and 
(iii) is a special case of (i), condition (ii) can be seen to be eqivalent to (i) with 
an argument similar to what F. B. Jones used to strengthen Moore's Metriza-
tion Theorem in [16; 17]. Thus the conclusion above is good for all three 
alternatives. 

We can also prove with another argument similar to F. B. Jones' that if, 
for every x £ X and every ft < a, we write Fp,x for the set 

H {~B:x € 5 , {5 ,5} = J a 6 , £ < 0}, 

write GptX for the interior of FptX> write for every /3 < a, & $ for the collection 
{GpiZ : x f l ) , and name any arbitrary increasing sequence {Pi}i<(1} of ordi­
nals cofinal with a; then at every x 6 X, the family of stars {St (x, S^.) : i < 
coj forms a local base. 

If we now apply our first observation to the family of (open) covers 
{&Pi • i < co}, we will have a cr-discrete base. Our space X being clearly normal, 
it is almost obvious how a (compatible) metric can be constructed [6]. 

Since the argument we refer to in the second paragraph above is all-important, 
we set it out in full here. If we write, for every 0 < a, J % for the collection 
{Fp,x ' oc Ç X}, it clearly suffices to argue that the family of stars 

{St ( x J ^ . ) : i < a] 

forms a local base. Suppose such is not the case. Then there exist such an 
x G X and such an open set U containing x that St (x, J ^ . ) Ç£ U for any 
i < co, i.e. that there exists a sequence {3̂ } i<ù}, with yt G FpitX and FpitVi Çf U. 
Clearly, yt —* x and for some N} the set {x, 3^, 3^+1, . • .} is compact and 
disjoint from ~ U but not separated from it by any family {J^^}^<7?, rj < a; 
which contradicts (ii) and proves our assertion. 

It is interesting to compare this proof with that of Nagata's Theorem in [29]. 
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