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A FIXED POINT THEOREM FOR WEAKLY 
UNIFORMLY STRICT CONTRACTIONS^ 

BY 
NADIM A. ASSAD 

In Meir and Keeler [3], the authors proved a fixed point theorem in a complete 
metric space (X, d) for a mapping/that satisfies the following condition of weakly 
uniformly strict contraction: 

Given e>0 , there exists (5>0 such that 

(A) s < d(x, y) < s+d implies d(f(x),f(y)) < e. 

Below we prove a new theorem for mappings satisfying (̂ 4) in convex metric 
spaces. As usual for K <= X, dK denotes the boundary of K. 

THEOREM 1. Let (X,d) be a complete, metrically convex, metric space and K 
a nonempty closed subset ofX. Suppose that T:K-+X satisfies (A) and T(x) e Kfor 
every x e dK Then T has a unique fixed point in K 

Proof. We construct a sequence {pn} in K as follows: Let p0 be an arbitrary 
point in K. Let p'i = T(p0). If p[ e K, then set p1=p,

1, otherwise we choose p± e dK 
so that d{ptoPÙ+<Hpx,piï=d(ptoPÙ (cf. [1, p.3]). Suppose that {/?j, {/#, 
/ = 1, . . . , iV have been chosen so that 

(ii) either Pi=p\ e K or p{ e dK and satisfies the relation: 

d{p^l9pt)+d{pi9pi) = dipi^ph 

Now set pN+i=T(pN). If p'N+1 eK we put PN+I=P'N+I> otherwise we choose 

PN+I e d& s o ^ a t 

d(pN> PN+I) = d(PN> PN+i)+d(PN+i> PN+I)-

Thus by induction we are finished. 
If there exists pj e {pn} such that all of its iterates lie in K, Meir and Keeler [3] 

showed that this sequence of iterates converges to a fixed point of T. Hence we may 
assume that there exist infinitely many points pt e {pn} for which p^Pi- Let 
{pn } be the subsequence of all such points in {pn}, i.e.,pn ^pn . 
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We assert that 

(B) d(pn9 pn+1) -> 0 as n - * o o 
and 

(C) d(T(pn)9pn)-+0 as n ->oo . 

To prove (B) and (C) we first prove that 

(G) d(pnk_l9 Pnk) -» 0 as fc->oo 

Here we use the fact that T satisfies (A) implies that T is contractive 

(d(T(x),T(y))<d(x,y)). 

If we put nk=r and nk+1=s9 then it follows that 

d(ps-i, Ps) < d(ps_2, ps_i) 

< • • • < d(pr9 j>r+i) 

^ J(PffjPr) + ^(Pr»jPrfl) 

Therefore {£/(/?„ -i>p'n )} is decreasing. Suppose that d(pn -l9p'n )-*e>0. Then for 
all fc=l, 2 , . . . , rf(pw _i,/?n )>£. But condition (A) implies there exists <5>0 such 
that 

s <; d(x9 y) < s+ô implies d(T(;c), T(y)) < e. 

We know there exists an integer N such that for k>N9 d(pnj__l9 p'n^<e+ô; so if 
we let nk=r and nk+1=s9 it follows that 

d(pr, Pr+l) ^ <*(Pr> # ) + <*(#» Pr+l) 
<d(pr,Pr)+d(pr_l9pr) 

= d(pr_l9p'r) <e+ô. 
On the other hand, 

e < d(p8_l9 p's) 

< d(pr, Pr+1). 
Therefore, 

e <d(pr9pr+1) <e+ô. 
It follows that, 

d(ps-i, Ps) <-' < d(pr+l9 p'r+2) 

= d(T(pt), T(Pr+1)) < e 

and this contradicts the assumption that for all k—\9 2 , . . . , d{pnjrl9pn )>s. 
Therefore we have proved (G). To see how (B) follows from (G), we assume (B) 
is false. Then there exists e>0 such that for every positive integer N9 there exists 
n>N such that d(pn9pn+1)>e; but by (G), we know that there exists a positive 
integer M such that for k^M9 d(pn -i,p'n)<s. So, let N=nk for some k>_M. 
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Clearly, for all n^N, 

d(Pn> Pn+i) < ' ' ' ^ d(PN-i> PN) < £> 
and this is a contradiction. Therefore (B) is true. An identical argument establishes 
(C). 

Now we show that the sequence {pn} is Cauchy. If this sequence is not Cauchy, 
then there exists 2e>0 such that l i m ^ ^ ^ sup d(pm,pn)>2e. 

By hypothesis there exists a ô>0 such that 

(D) e <i d(x, y)< e+ô implies d(T(x), T(y)) < e. 

Formula (D) remains true with ô replaced by (5'=min(<5, e). Also, observe that 
(B) and (C) imply that there exists an integer M such that for n^M, 

d(pn9 Pn+i) < - and d(pn, T(pJ) < —. 

Now, we choose m, n>M so that d(pm,pn)>2e. For y e [m, n], 

d(Pm> Pi) < d(pm9 Pj+d+diPj, p,+1). 
Therefore 

\d(pm, Pi)-d(pm9 pj+1)\ < d(pj9 pj+1) < - ; 

this, together with the fact that 
«/ 

d(Pm> Pm+l) < J < ^ < £, 

and 

d(Pm> Pn) >2e = € + 8 ^ 6 + Ô', 

implies that there exists a y e [m, n] with 

(E) e+2ô'l3<d(pm,Pj)<e+ô'. 

However, for this m and y, 

d(pm, Pi) < d(pm, nPm))+d(T(pm), T(Pj))+d(T(Pj), Pj) 

3 3 

= e+2(573, 

and this contradicts (E). Therefore we may conclude that the sequence {pn} is 
Cauchy, and it follows that the limit of this sequence is a fixed point of T. The fixed 
point is unique because, as we observed earlier in the proof, T is a contractive 
mapping. 

REMARK 1. Theorem 1 remains true if, instead of (A), we require 7" to have the 
property (*): d(T(x), T(y))<ip(d(x,y)), where ip:S->[0, oo) is a function satisfying 
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y)(t)<t for all t e S\{0}. Here S={d(x,y), x,yeK} and S is the closure of S. To 
see this, it suffices to observe that every mapping T satisfying property (*) is a 
weakly uniformly strict contraction (cf. [2] and [3]). This remark is a generaliza­
tion to Theorem 2 in Boyd and Wong [2], 

REMARK 2. Observe that a contraction mapping (d(T(x), Tiyty^adÇx,y), 
0<a<\) is a weakly uniformly strict contraction. Moreover, if A" is a compact 
space, then any contractive mapping (d(f(x),f(y))<d(x,y))f:X->X isa weakly 
uniformly strict contraction (cf. [3, p. 328]). 

EXAMPLE 1. This example shows that Theorem 1 fails in an arbitrary complete 
metric space. Consider the space X that consists of two points {a, b}, with the dis­
crete metric, i.e., d(a, b) = l, d(a, a)~d(b, 6)=0. Let K={b}, a closed subset of 
X. Define T:K->X by T(b)=a. Then T satisfies (A), T(dK) c K, but Tdoes not 
have a fixed point. 

EXAMPLE 2. Now we give an example of a space X, a subset K of X, and a 
mapping T which satisfies (A) and the conditions of Theorem 1 but for which 
there is some xeK with T(x) $ K. Let X be the real line with the euclidean metric 
(d(a,b)=\a-b\), and let K={-\} U [0, | ] . Define T;K-+X as follows: 
T ( - i ) = - i , and for xe [0, £], T(x)=x2-l. Then T satisfies (A) because the 
set ^Tis compact and Tis contractive (see Remark 2 above). Also, dK={—£, 0, £} 
and clearly T: BK-+K. Moreover, for all x e (0, | ) , T(x) <£ K. We might add that 
T is not a contraction because for x^y, x,y e [0, J] , d(T(x), T(y))=\x2— y2\ = 
\x—y\ ' l*+jl = l*+jl " d(x,y) which approaches d(x, y) as x,y-+\. 
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