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1. Introduction. The Fuglede–Putnam theorem (first proved by B. Fuglede [6]
and then by C. R. Putnam [14] in a more general version) plays a major role in the theory
of bounded (and unbounded) operators thanks to its numerous applications. Many
authors have worked on it since the papers of Fuglede and Putnam. M. Rosenblum [17]
gave a simple proof of that theorem using Liouville’s theorem. S. Berberian [2] showed
with a nice matrix operator trick that the Fuglede theorem was actually equivalent to
that of Putnam. Then there were various generalizations to non-normal operators (e.g.
hyponormal, subnormal, etc; see [8] for their definitions). There is a vast literature on
this from which we only cite [3, 7, 15, 20].

It is also worth mentioning that the author, in a previous work [11], gave a
generalization of the Fuglede–Putnam theorem where all the operators involved were
unbounded.

The classical and most known form of the Fuglede–Putnam theorem is the
following.

THEOREM A. If A, N and M are bounded operators such that M and N are normal,
then

AN = MA =⇒ AN∗ = M∗A.

The proof may be found in many textbooks (see e.g. [4, Chap. IX, Theorem 6.7],
[8, p. 67] or [9, Problem 152]).

Although there have been many generalizations, most of them went into the same
direction, i.e. relaxing the normality hypotheses on M and N. So, the purpose of this
paper is to generalize the Fuglede–Putnam theorem, but in two different ways. The
first one is to have a fourth operator involved in the equation (this was actually an
open question in [12]).
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The second one is to remove the normality hypothesis on the operators M and N
(as done, for instance, by Okuyama and Watanabe in [13]).

The paper is ‘spiced up’ with some examples and applications.
All operators considered in this paper are assumed to be linear, bounded and

defined on a complex Hilbert space H.
An operator A is called self-adjoint if it coincides with its adjoint A∗, normal if

it commutes with its adjoint, unitary if AA∗ = A∗A = I , an isometry if A∗A = I , and a
co-isometry if A∗ is an isometry, i.e. AA∗ = I .

In the end of this paper the notions of M-hyponormal or dominant operators will
be used the definitions of which we give for the sake of convenience of the reader. An
operator T is called M-hyponormal if for some constant M ≥ 1 and all λ ∈ � one has
(T − λ)(T − λ)∗ ≤ M2(T − λ)∗(T − λ); it is called dominant if for all complex numbers
λ there exists a number Mλ ≥ 1 such that (T − λ)(T − λ)∗ ≤ M2

λ(T − λ)∗(T − λ).
Finally, we also recall some known properties which may be found in [21].

DEFINITION. Let N be a contraction i.e. ‖N‖≤ 1. The Julia operator J(N) is
defined by

J(N) =
(

(1 − NN∗)
1
2 N

−N∗ (1 − N∗N)
1
2

)
.

THEOREM B. If N is a contraction, then J(N) is unitary.

Any other property or definition which will be used in this paper will be assumed
to be known by the reader. Some general references are [4, 8, 18].

2. Negative Results. Without any condition on the operators A and B it seems
hopeless that such generalizations hold.

CLAIM 1. Assume N and M are normal and that A and B are self-adjoint such that
AN = MB. Then AN∗ = M∗B.

False. Take

N =
(

1 1
−1 −1

)
, M =

(−1 −1
1 1

)
, A =

(
0 1
1 0

)
and B =

(
1 0
0 1

)
.

In this case A and B are self-adjoint. We do have AN = MB but we do not have
AN∗ 	= M∗B. However, we obtain BN∗ = M∗A.

CLAIM 2. Assume N and M are unitary and that A and B are self-adjoint such that
AN = MB. Then AN∗ = M∗B.

False again. Take

M =
(

0 1
−1 0

)
; N =

(
1 0
0 −1

)
; A =

(
0 1
1 0

)
; B =

(−1 0
0 −1

)
.

Again AN = MB, AN∗ 	= M∗B but BN∗ = M∗A.
The ‘sad’ fact about the previous example is that the operators A and B are also

unitary, i.e. the equation AN∗ = M∗B does not hold even if all operators involved are
unitary.
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All this has made us think that if there has to be a fourth operator involved in
these equations, then the order of A and B must be interchanged in the conclusion.

3. Positive Results: First Generalization.

THEOREM 1. If M is an isometry and N is a co-isometry. If A and B are such that
AN = MB, then BN∗ = M∗A.

Proof. We have

A = ANN∗ = (AN)N∗ = (MB)N∗ = M(BN∗).

Then

M∗A = M∗MBN∗ = BN∗. �

REMARK. Even if the order of the operators A and B does not look as one would
have hoped for, but it is actually a generalization since setting A = B allows us to get
back to the known version.

REMARK. We also observe that strong conditions are to be imposed if one wants
to keep the wanted order of A and B (e.g. some commutativity hypothesis).

REMARK. The hypotheses M being an isometry and N being a co-isometry cannot
be dropped.

For if one takes U to be the unilateral shift defined on �2, then by setting

M = N = A = B = U (and hence N is not a co-isometry),

one sees that AN = MB while BN∗ 	= M∗A.
And if one sets

M = N = A = B = U∗ (and hence M is not an isometry),

then AN = MB whereas BN∗ 	= M∗A.

COROLLARY 1. If M is an isometry and A is an operator such that A∗M = M∗A∗,
then AM∗ = MA.

Proof. Apply Theorem 1 and take the adjoint of the equation obtained. �
REMARK. The previous corollary constitutes in some sense a generalization of

Barrı́a’s Lemma (see Lemma 2 in [1]).

The coming result will be needed in order to state more consequences of the main
theorem in this section.

LEMMA A (M. R. EMBRY [5]). If A is such that 0 /∈ W (A) (W (A) is its numerical
range) or σ (A) ∩ σ (−A) = ∅ (σ (A) being the spectrum of A) and AE = − EA, where
either A or E is normal, then E = 0.

Another application of the previous theorem is as follows.

COROLLARY 2. Suppose M is an isometry and N is a co-isometry. Assume further that
A is a self-adjoint operator such that 0 /∈ W (A) or that σ (A) ∩ σ (−A) = ∅. If AN = MA,
then N = M.
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Proof. Since AN = MA, then by Theorem 1 we obtain AN∗ = M∗A. Also by taking
the adjoint of the first equation we get N∗A = AM∗. Combining these two equations
gives us

A(N − M)∗ = −(N − M)∗A.

By Lemma A we conclude that N = M. �
Another application concerns an operator equation.

COROLLARY 3. Assume X is such that 0 /∈ W (X) (or σ (X) ∩ σ (−X) = ∅). Let U be
the unilateral shift. Then the operator equation

XU = U∗X

has no non-zero normal solution X on �2.

Proof. Assume X is normal. Since U is an isometry,

XU = U∗X =⇒ XU∗ = UX and hence X(U − U∗) = −(U − U∗)X.

Lemma A implies that U is self-adjoint which is wrong, establishing the result. �
Obviously a unitary operator is an isometry. Conversely, a self-adjoint (or normal)

isometry is unitary. Here we give an answer to a similar question (and the method of
proof is similar to that in [11]).

PROPOSITION 1. Assume that A and B are two self-adjoint operators such that σ (B) ∩
σ (−B) ⊆ {0}. If AB is an isometry, then it is self-adjoint.

REMARK. Under the same hypothesis as in the previous proposition, one has

AB isometry ⇐⇒ AB unitary.

Proof. Let N = AB. Since A and B are self-adjoint,

BN = BAB = (BA)B = N∗B.

Now as N is an isometry, Theorem 1 gives us

BN∗ = NB, i.e. B2A = AB2.

Since σ (B) ∩ σ (−B) ⊆ {0}, applying the spectral mapping theorem to f (the function
x2 �→ x defined on σ (B2)) allows us to obtain

BA = AB, i.e. N = N∗,

completing the proof. �
COROLLARY 4. Let A be a projection onto a closed subspace M. If B is self-adjoint,

then

AB isometry =⇒ B reduces M.
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Proof. Since AB is an isometry, then the previous result yields AB = BA and hence
B reduces M. �

4. Positive Results: Second Generalization. Before giving another generalization,
we wish to recall the following standard lemma.

LEMMA 1. Assume that N is unitary and that A and B are two bounded operators.
Then

NA = BN =⇒ NA∗ = B∗N.

Now we wish to drop the ‘unitarity’ hypothesis on N. We use a trick of matrix
operators via the Julia operator which was defined in the introduction.

THEOREM 2. Let A and B be two bounded operators. Suppose N is a contraction such
that

(1 − N∗N)
1
2 A = B(1 − NN∗)

1
2 = (1 − N∗N)

1
2 A∗ = B∗(1 − NN∗)

1
2 = 0.

Then

NA = BN =⇒ NA∗ = B∗N.

REMARK. Before giving the proof, we would like to draw the attention of the
readers that there do exist non-unitary operators N and operators A and B satisfying
the hypotheses of the previous theorem. Take for instance A = I ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 1 0

0 0 1
. . .

0 0 1

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0 0

0 1 0 0
. . .

0 1 0
. . .

0
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can check that N is only an isometry and that all other hypotheses are fulfilled.

Proof. Consider the matrix operators defined on H ⊕ H as

Ã =
(

0 0
0 A

)
, B̃ =

(
B 0
0 0

)
and Ñ = J(N) =

(
(1 − NN∗)

1
2 N

−N∗ (1 − N∗N)
1
2

)
.

Then

ÑÃ =
(

0 NA
0 (1 − N∗N)

1
2 A

)
=

(
0 NA
0 0

)
by hypothesis.

We also have

B̃Ñ =
(

B(1 − NN∗)
1
2 BN

0 0

)
=

(
0 BN
0 0

)
by hypothesis.
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Then B̃Ñ = ÑÃ.
But Ñ is unitary so that the previous lemma gives us

B̃∗Ñ =
(

B∗(1 − NN∗)
1
2 BN

0 0

)
=

(
0 NA∗

0 (1 − N∗N)
1
2 A∗

)
= ÑÃ∗.

The remaining unused two hypotheses allow us to get B∗N = NA∗ and this completes
the proof. �

COROLLARY 5. Let A and B be two bounded operators. If N is an isometry such that

B(1 − NN∗)
1
2 = B∗(1 − NN∗)

1
2 = 0, (1)

then

BN = NA =⇒ B∗N = NA∗.

REMARK. The condition B(1 − NN∗)1/2 = B∗(1 − NN∗)1/2 = 0 cannot be
completely eliminated in the previous corollary. For instance, if one takes again the
unilateral shift U on �2 and sets N = B = U , then N is an isometry and one can check
that it does not verify equation 1. If we also set A = U , then

BN = U2 = NA while B∗N = U∗U 	= UU∗ = NA∗.

We now give an example satisfying the hypotheses of the previous corollary and
not satisfied by any other known version of the Fuglede–Putnam theorem.

EXAMPLE 1. Consider the infinite matrices

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

1 0
. . .

. . .

0 1 0
. . .

0 1
. . .

. . .

0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0

0 0 2 0
0 0 1 0

0 0 1
. . .

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0
0 0 0 1 0

0 0 0 1
. . .

0 0 0
. . .

0
. . .

. . .

0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then condition (1) is satisfied. Also, we easily have BN = NA and hence NA∗ = B∗N.
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However, one can also check that B is not normal and neither is A. In fact, B is
not hyponormal. It is not even dominant, hence our operators are not covered by the
Fuglede–Putnam theorem versions of Radjabalipour [15] or Stampfli and Wadhwa
[19].

Before we give the last remark in this paper, we would like to recall the following
theorem.

THEOREM C (Okuyama and Watanabe [13]). Let A and B be two bounded linear
operators. Let N be a partial isometry. If

(1) NA = BN,
(2) ‖A‖ ≥ ‖B‖,
(3) (N∗N)A = A(N∗N) and
(4) N(‖A‖2 − AA∗)

1
2 = 0,

then NA∗ = B∗N.

REMARK. Okuyama and Watanabe [13] gave in their paper an example which
satisfied their theorem and did not satisfy any of the Fuglede–Putnam theorem versions.
So our example (the foregoing one), in its turn, satisfies all hypotheses (in Theorem C)
but (4) and the Fuglede–Putnam conclusion still holds.

A Question. An interesting question is the following: Since (as alluded to in the
introduction) there have been many generalizations of the Fuglede–Putnam theorem
to non-normal operators, then can we prove it for posinormal operators? This notion
appeared in [10, 16].
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