YET MORE VERSIONS OF THE FUGLEDE-PUTNAM THEOREM*

MOHAMMED HICHEM MORTAD
Département de Mathématiques, Université d'Oran (Es-senia), B.P. 1524, El Menouar, Oran 31000, Algeria
e-mail: mhmortad@gmail.com,mortad@univ-oran.dz

(Received 3 June 2008; accepted 20 November 2008)

Abstract

We give two types of generalisation of the well-known Fuglede-Putnam theorem. The paper is 'spiced up' with some examples and applications.

2000 Mathematics Subject Classification. Primary 47A62, 47A99; Secondary 47B20.

1. Introduction. The Fuglede-Putnam theorem (first proved by B. Fuglede [6] and then by C. R. Putnam [14] in a more general version) plays a major role in the theory of bounded (and unbounded) operators thanks to its numerous applications. Many authors have worked on it since the papers of Fuglede and Putnam. M. Rosenblum [17] gave a simple proof of that theorem using Liouville's theorem. S. Berberian [2] showed with a nice matrix operator trick that the Fuglede theorem was actually equivalent to that of Putnam. Then there were various generalizations to non-normal operators (e.g. hyponormal, subnormal, etc; see [8] for their definitions). There is a vast literature on this from which we only cite $[\mathbf{3}, \mathbf{7}, \mathbf{1 5}, 20]$.

It is also worth mentioning that the author, in a previous work [11], gave a generalization of the Fuglede-Putnam theorem where all the operators involved were unbounded.

The classical and most known form of the Fuglede-Putnam theorem is the following.

Theorem A. If A, N and M are bounded operators such that M and N are normal, then

$$
A N=M A \Longrightarrow A N^{*}=M^{*} A
$$

The proof may be found in many textbooks (see e.g. [4, Chap. IX, Theorem 6.7], [8, p. 67] or [9, Problem 152]).

Although there have been many generalizations, most of them went into the same direction, i.e. relaxing the normality hypotheses on M and N. So, the purpose of this paper is to generalize the Fuglede-Putnam theorem, but in two different ways. The first one is to have a fourth operator involved in the equation (this was actually an open question in [12]).

[^0]The second one is to remove the normality hypothesis on the operators M and N (as done, for instance, by Okuyama and Watanabe in [13]).

The paper is 'spiced up' with some examples and applications.
All operators considered in this paper are assumed to be linear, bounded and defined on a complex Hilbert space \mathcal{H}.

An operator A is called self-adjoint if it coincides with its adjoint A^{*}, normal if it commutes with its adjoint, unitary if $A A^{*}=A^{*} A=I$, an isometry if $A^{*} A=I$, and a co-isometry if A^{*} is an isometry, i.e. $A A^{*}=I$.

In the end of this paper the notions of M-hyponormal or dominant operators will be used the definitions of which we give for the sake of convenience of the reader. An operator T is called M-hyponormal if for some constant $M \geq 1$ and all $\lambda \in \mathbb{C}$ one has $(T-\lambda)(T-\lambda)^{*} \leq M^{2}(T-\lambda)^{*}(T-\lambda)$; it is called dominant if for all complex numbers λ there exists a number $M_{\lambda} \geq 1$ such that $(T-\lambda)(T-\lambda)^{*} \leq M_{\lambda}^{2}(T-\lambda)^{*}(T-\lambda)$.

Finally, we also recall some known properties which may be found in [21].
Definition. Let N be a contraction i.e. $\|N\| \leq 1$. The Julia operator $J(N)$ is defined by

$$
J(N)=\left(\begin{array}{cc}
\left(1-N N^{*}\right)^{\frac{1}{2}} & N \\
-N^{*} & \left(1-N^{*} N\right)^{\frac{1}{2}}
\end{array}\right) .
$$

Theorem B. If N is a contraction, then $J(N)$ is unitary.
Any other property or definition which will be used in this paper will be assumed to be known by the reader. Some general references are $[4,8,18]$.
2. Negative Results. Without any condition on the operators A and B it seems hopeless that such generalizations hold.

Claim 1. Assume N and M are normal and that A and B are self-adjoint such that $A N=M B$. Then $A N^{*}=M^{*} B$.

False. Take

$$
N=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right), M=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right), A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

In this case A and B are self-adjoint. We do have $A N=M B$ but we do not have $A N^{*} \neq M^{*} B$. However, we obtain $B N^{*}=M^{*} A$.

Claim 2. Assume N and M are unitary and that A and B are self-adjoint such that $A N=M B$. Then $A N^{*}=M^{*} B$.

False again. Take

$$
M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ; N=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

Again $A N=M B, A N^{*} \neq M^{*} B$ but $B N^{*}=M^{*} A$.
The 'sad' fact about the previous example is that the operators A and B are also unitary, i.e. the equation $A N^{*}=M^{*} B$ does not hold even if all operators involved are unitary.

All this has made us think that if there has to be a fourth operator involved in these equations, then the order of A and B must be interchanged in the conclusion.

3. Positive Results: First Generalization.

Theorem 1. If M is an isometry and N is a co-isometry. If A and B are such that $A N=M B$, then $B N^{*}=M^{*} A$.

Proof. We have

$$
A=A N N^{*}=(A N) N^{*}=(M B) N^{*}=M\left(B N^{*}\right) .
$$

Then

$$
M^{*} A=M^{*} M B N^{*}=B N^{*} .
$$

Remark. Even if the order of the operators A and B does not look as one would have hoped for, but it is actually a generalization since setting $A=B$ allows us to get back to the known version.

Remark. We also observe that strong conditions are to be imposed if one wants to keep the wanted order of A and B (e.g. some commutativity hypothesis).

Remark. The hypotheses M being an isometry and N being a co-isometry cannot be dropped.

For if one takes U to be the unilateral shift defined on ℓ^{2}, then by setting

$$
M=N=A=B=U(\text { and hence } N \text { is not a co-isometry })
$$

one sees that $A N=M B$ while $B N^{*} \neq M^{*} A$.
And if one sets

$$
M=N=A=B=U^{*}(\text { and hence } M \text { is not an isometry })
$$

then $A N=M B$ whereas $B N^{*} \neq M^{*} A$.
Corollary 1. If M is an isometry and A is an operator such that $A^{*} M=M^{*} A^{*}$, then $A M^{*}=M A$.

Proof. Apply Theorem 1 and take the adjoint of the equation obtained.
Remark. The previous corollary constitutes in some sense a generalization of Barría's Lemma (see Lemma 2 in [1]).

The coming result will be needed in order to state more consequences of the main theorem in this section.

Lemma A (M. R. Embry [5]). If A is such that $0 \notin W(A)(W(A)$ is its numerical range) or $\sigma(A) \cap \sigma(-A)=\emptyset(\sigma(A)$ being the spectrum of $A)$ and $A E=-E A$, where either A or E is normal, then $E=0$.

Another application of the previous theorem is as follows.
Corollary 2. Suppose M is an isometry and N is a co-isometry. Assume further that A is a self-adjoint operator such that $0 \notin W(A)$ or that $\sigma(A) \cap \sigma(-A)=\emptyset$. If $A N=M A$, then $N=M$.

Proof. Since $A N=M A$, then by Theorem 1 we obtain $A N^{*}=M^{*} A$. Also by taking the adjoint of the first equation we get $N^{*} A=A M^{*}$. Combining these two equations gives us

$$
A(N-M)^{*}=-(N-M)^{*} A .
$$

By Lemma A we conclude that $N=M$.
Another application concerns an operator equation.
Corollary 3. Assume X is such that $0 \notin W(X)($ or $\sigma(X) \cap \sigma(-X)=\emptyset)$. Let U be the unilateral shift. Then the operator equation

$$
X U=U^{*} X
$$

has no non-zero normal solution X on ℓ^{2}.
Proof. Assume X is normal. Since U is an isometry,

$$
X U=U^{*} X \Longrightarrow X U^{*}=U X \text { and hence } X\left(U-U^{*}\right)=-\left(U-U^{*}\right) X
$$

Lemma A implies that U is self-adjoint which is wrong, establishing the result.
Obviously a unitary operator is an isometry. Conversely, a self-adjoint (or normal) isometry is unitary. Here we give an answer to a similar question (and the method of proof is similar to that in [11]).

Proposition 1. Assume that A and B are two self-adjoint operators such that $\sigma(B) \cap$ $\sigma(-B) \subseteq\{0\}$. If $A B$ is an isometry, then it is self-adjoint.

Remark. Under the same hypothesis as in the previous proposition, one has

$$
A B \text { isometry } \Longleftrightarrow A B \text { unitary. }
$$

Proof. Let $N=A B$. Since A and B are self-adjoint,

$$
B N=B A B=(B A) B=N^{*} B .
$$

Now as N is an isometry, Theorem 1 gives us

$$
B N^{*}=N B, \text { i.e. } B^{2} A=A B^{2} .
$$

Since $\sigma(B) \cap \sigma(-B) \subseteq\{0\}$, applying the spectral mapping theorem to f (the function $x^{2} \mapsto x$ defined on $\sigma\left(B^{2}\right)$) allows us to obtain

$$
B A=A B, \text { i.e. } N=N^{*},
$$

completing the proof.
Corollary 4. Let A be a projection onto a closed subspace \mathcal{M}. If B is self-adjoint, then

$$
A B \text { isometry } \Longrightarrow B \text { reduces } \mathcal{M}
$$

Proof. Since $A B$ is an isometry, then the previous result yields $A B=B A$ and hence B reduces \mathcal{M}.
4. Positive Results: Second Generalization. Before giving another generalization, we wish to recall the following standard lemma.

Lemma 1. Assume that N is unitary and that A and B are two bounded operators. Then

$$
N A=B N \Longrightarrow N A^{*}=B^{*} N .
$$

Now we wish to drop the 'unitarity' hypothesis on N. We use a trick of matrix operators via the Julia operator which was defined in the introduction.

Theorem 2. Let A and B be two bounded operators. Suppose N is a contraction such that

$$
\left(1-N^{*} N\right)^{\frac{1}{2}} A=B\left(1-N N^{*}\right)^{\frac{1}{2}}=\left(1-N^{*} N\right)^{\frac{1}{2}} A^{*}=B^{*}\left(1-N N^{*}\right)^{\frac{1}{2}}=0
$$

Then

$$
N A=B N \Longrightarrow N A^{*}=B^{*} N
$$

Remark. Before giving the proof, we would like to draw the attention of the readers that there do exist non-unitary operators N and operators A and B satisfying the hypotheses of the previous theorem. Take for instance $A=I$,

$$
B=\left[\begin{array}{cccccc}
0 & 0 & & & & 0 \\
0 & 0 & 0 & & & \\
0 & 0 & 1 & 0 & & \\
& 0 & 0 & 1 & \ddots & \\
& & 0 & 0 & 1 & \\
0 & & & \ddots & \ddots & \ddots
\end{array}\right] \text { and } \quad N=\left[\begin{array}{cccccc}
0 & 0 & & & & 0 \\
0 & 0 & 0 & & & \\
1 & 0 & 0 & 0 & & \\
0 & 1 & 0 & 0 & \ddots & \\
& 0 & 1 & 0 & \ddots & \\
0 & & \ddots & \ddots & \ddots & \ddots
\end{array}\right] .
$$

One can check that N is only an isometry and that all other hypotheses are fulfilled.
Proof. Consider the matrix operators defined on $\mathcal{H} \oplus \mathcal{H}$ as

$$
\tilde{A}=\left(\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right), \tilde{B}=\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right) \text { and } \tilde{N}=J(N)=\left(\begin{array}{cc}
\left(1-N N^{*}\right)^{\frac{1}{2}} & N \\
-N^{*} & \left(1-N^{*} N\right)^{\frac{1}{2}}
\end{array}\right)
$$

Then

$$
\tilde{N} \tilde{A}=\left(\begin{array}{cc}
0 & N A \\
0 & \left(1-N^{*} N\right)^{\frac{1}{2}} A
\end{array}\right)=\left(\begin{array}{cc}
0 & N A \\
0 & 0
\end{array}\right) \text { by hypothesis. }
$$

We also have

$$
\tilde{B} \tilde{N}=\left(\begin{array}{cc}
B\left(1-N N^{*}\right)^{\frac{1}{2}} & B N \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & B N \\
0 & 0
\end{array}\right) \text { by hypothesis. }
$$

Then $\tilde{B} \tilde{N}=\tilde{N} \tilde{A}$.
But \tilde{N} is unitary so that the previous lemma gives us

$$
\tilde{B}^{*} \tilde{N}=\left(\begin{array}{cc}
B^{*}\left(1-N N^{*}\right)^{\frac{1}{2}} & B N \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & N A^{*} \\
0 & \left(1-N^{*} N\right)^{\frac{1}{2}} A^{*}
\end{array}\right)=\tilde{N} \tilde{A}^{*} .
$$

The remaining unused two hypotheses allow us to get $B^{*} N=N A^{*}$ and this completes the proof.

Corollary 5. Let A and B be two bounded operators. If N is an isometry such that

$$
\begin{equation*}
B\left(1-N N^{*}\right)^{\frac{1}{2}}=B^{*}\left(1-N N^{*}\right)^{\frac{1}{2}}=0 \tag{1}
\end{equation*}
$$

then

$$
B N=N A \Longrightarrow B^{*} N=N A^{*}
$$

Remark. The condition $B\left(1-N N^{*}\right)^{1 / 2}=B^{*}\left(1-N N^{*}\right)^{1 / 2}=0$ cannot be completely eliminated in the previous corollary. For instance, if one takes again the unilateral shift U on ℓ^{2} and sets $N=B=U$, then N is an isometry and one can check that it does not verify equation 1 . If we also set $A=U$, then

$$
B N=U^{2}=N A \text { while } B^{*} N=U^{*} U \neq U U^{*}=N A^{*}
$$

We now give an example satisfying the hypotheses of the previous corollary and not satisfied by any other known version of the Fuglede-Putnam theorem.

Example 1. Consider the infinite matrices

$$
N=\left[\begin{array}{lllll}
0 & 0 & & & 0 \\
0 & 0 & 0 & & \\
1 & 0 & \ddots & \ddots & \\
0 & 1 & 0 & \ddots & \\
& 0 & 1 & \ddots & \ddots \\
0 & & \ddots & \ddots &
\end{array}\right], \quad B=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & & & & 0 \\
& 0 & 0 & 0 & 0 & & & \\
& & 0 & 0 & 2 & 0 & & \\
& & & 0 & 0 & 1 & 0 & \\
& & & 0 & 0 & 1 & \ddots \\
& & & & \ddots & \ddots & \ddots
\end{array}\right]
$$

and

$$
A=\left[\begin{array}{llllll}
0 & 0 & 2 & 0 & & 0 \\
0 & 0 & 0 & 1 & 0 & \\
& 0 & 0 & 0 & 1 & \ddots \\
& & 0 & 0 & 0 & \ddots \\
& & & 0 & \ddots & \ddots \\
& & & & \ddots & \ddots
\end{array}\right]
$$

Then condition (1) is satisfied. Also, we easily have $B N=N A$ and hence $N A^{*}=B^{*} N$.

However, one can also check that B is not normal and neither is A. In fact, B is not hyponormal. It is not even dominant, hence our operators are not covered by the Fuglede-Putnam theorem versions of Radjabalipour [15] or Stampfli and Wadhwa [19].

Before we give the last remark in this paper, we would like to recall the following theorem.

Theorem C (Okuyama and Watanabe [13]). Let A and B be two bounded linear operators. Let N be a partial isometry. If
(1) $N A=B N$,
(2) $\|A\| \geq\|B\|$,
(3) $\left(N^{*} N\right) A=A\left(N^{*} N\right)$ and
(4) $N\left(\|A\|^{2}-A A^{*}\right)^{\frac{1}{2}}=0$,
then $N A^{*}=B^{*} N$.
Remark. Okuyama and Watanabe [13] gave in their paper an example which satisfied their theorem and did not satisfy any of the Fuglede-Putnam theorem versions. So our example (the foregoing one), in its turn, satisfies all hypotheses (in Theorem C) but (4) and the Fuglede-Putnam conclusion still holds.

A Question. An interesting question is the following: Since (as alluded to in the introduction) there have been many generalizations of the Fuglede-Putnam theorem to non-normal operators, then can we prove it for posinormal operators? This notion appeared in $[\mathbf{1 0}, \mathbf{1 6}]$.

REFERENCES

1. J. Barría, The commutative product $V_{1}^{*} V_{2}=V_{2} V_{1}^{*}$ for isometries V_{1} and V_{2}, Indiana Univ. Math. J. 28 (1979), 581-585.
2. S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Am. Math. Soc. 10 (1959), 175-182.
3. S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Am. Math. Soc. 71/1 (1978), 113-114.
4. J. B. Conway, A course in functional analysis, 2nd ed. (Springer-Verlag, New York, 1990).
5. M. R. Embry, Similarities involving normal operators on Hilbert space, Pacif. J. Math. 35/2 (1970), 331-336.
6. B. Fuglede, A commutativity theorem for normal operators, Proc. Natl. Acad. Sci. 36 (1950), 35-40.
7. T. Furuta, On relaxation of normality in the Fuglede-Putnam theorem, Proc. Am. Math. Soc. 77 (1979), 324-328.
8. T. Furuta, Invitation to linear operators: From matrices to bounded linear operators on a Hilbert space (CRC Press, London, 2002).
9. P. R. Halmos, A Hilbert space problem book (Springer-Verlag, New York, 1974).
10. I. H. Jeon, S. H. Kim, E. Ko and J. E. Park, On positive-normal operators, Bull. Korean Math. Soc. 39/1 (2002), 33-41.
11. M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of self-adjoint operators, Proc. Am. Math. Soc. 131/10 (2003), 3135-3141.
12. M. H. Mortad, On some product of two unbounded self-adjoint operators, submitted.
13. T. Okuyama and K. Watanabe, The Fuglede-Putnam theorem and a generalization of Barría's Lemma, Proc. Am. Math. Soc. 126/9 (1998), 2631-2634.
14. C. R. Putnam, On normal operators in Hilbert space, Am. J. Math. 73 (1951), 357-362.
15. M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Zeit. 194/1 (1987), 117-120.
16. H. C. Rhaly, Jr, Posinormal operators, J. Math. Soc. Jpn. 46/4 (1994), 587-605.
17. M. Rosenblum, On a theorem of Fuglede and Putnam, J. Lond. Math. Soc. 33 (1958), 376-377.
18. W. Rudin, Functional analysis, 2nd ed. (McGraw-Hill, Singapore, 1991).
19. J. G. Stampfli, B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25/4 (1976), 359-365.
20. J. Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Am. Math. Soc. 129/8 (2001), 2261-2271.
21. N. Young, An introduction to Hilbert space (Cambridge University Press, Cambridge, 1988).

[^0]: *Supported in part by CNEPRU: B01820070020 (Ministry of Higher Education, Algeria).

