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Abstract
This paper proposes a proper compass adjustment method using only a GPS (or any other GNSS receiver) and a single
visual reference to enhance the efficiency of compass adjustment. During compass adjustment, the ship proceeds
on magnetic courses using a gyroscopic or satellite compass and considering magnetic declination. However, non-
magnetic compasses are only compulsory for ships of 500 gross tonnage or upwards (SOLAS V/19.2.5.1). Many
ships of less than 500 gross tonnage have only a magnetic compass to indicate heading. In these cases, a minimum of
five leading lines or a minimum of five bearings of conspicuous and distant points or sun azimuths are necessary to
adjust the compass. This makes compass adjustment more laborious and time consuming. To expedite this process,
a reliable and practical method was developed to use the courses over ground given by a GNSS receiver and a single
visual reference instead of the headings provided by a gyroscopic or satellite compass. The method is valid for all
ships, but is primarily intended for those equipped with only a magnetic compass to indicate heading.

1. Introduction

The objective of this paper is to propose a proper compass adjustment method using only a GNSS
receiver and a single visual reference for ships equipped with only a magnetic compass to indicate
heading.

Compass adjustment is required for the correct operation of the magnetic compass, namely the first
nautical equipment mentioned in SOLAS V/19. For many years, the process of compass adjustment
has remained stagnant. However, with the emergence of new technologies, magnetic compass applica-
tions and adjustment techniques have again become subjects of research. Several works focus on the
improvement of magnetic compass performance. Recently, Androjna et al. published a compendium on
the current use of the magnetic compass (Androjna et al., 2021). Other authors have taken a closer look
at specific items. For example, Felski applies the least squares method to determine residual deviations
(Felski, 1999); Basterretxea updates the residual deviations according to latitude (Basterretxea Iribar
et al., 2014); Martínez-Lozares obtains the deviations in real time (Martínez-Lozares, 2009a, 2009b)
and Lushnikov updates the table of residual deviations for any single course (Lushnikov, 2011). The
present paper follows this line of research by tackling the efficiency of compass adjustment.

The paper is divided into seven sections. Section 2 explains compass adjustment on ships of less
than 500 gross tonnage. In Sections 3–5, the proposed method is developed, discussed and verified,
respectively, while in Section 6 the proposed method is completed by applying Lushnikov’s method
(Lushnikov, 2011). Section 7 describes the application of the complete method. Finally, conclusions are
drawn in Section 8.
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2. Introduction to compass adjustment

The process of compass adjustment has two phases: actual compass adjustment or compensation and
creation of the table of residual deviations (deviation table).

2.1. Deviation equation

The deviation equation commonly applied is

Δ = 𝐴 + 𝐵 · sin 𝜁 ′ + 𝐶 · cos 𝜁 ′ + 𝐷 · sin 2𝜁 ′ + 𝐸 · cos 2𝜁 ′, (1)

where Δ is the deviation, 𝜁 ′ is the compass course (𝜁 indicates the magnetic course, see Subsection
2.3 and Section 3), and A, B, C, D and E are the approximate coefficients, with the exact coefficients
being the sines of the approximate ones (Gaztelu-Iturri Leicea, 1999; National Geospatial–Intelligence
Agency, 2004).

Course deviation comprises three parts: constant deviation, A, which does not depend on the course;
semicircular deviation, B · sin 𝜁 ′ +C · cos 𝜁 ′, which depends on the course; and quadrantal deviation,
D · sin 2𝜁 ′ +E · cos 2𝜁 ′, which depends on twice the course. The second and the third are called
semicircular and quadrantal deviations because they are repeated with a different sign every 180° and
90°, respectively, where 180° corresponds to half a circle (semicircle) and 90° to a quarter of a circle
(quadrant).

Semicircular deviation depends mainly on the ship’s hard iron, which has permanent magnetism and
is corrected with magnets. On the other hand, constant and quadrantal deviations depend solely on the
ship’s soft iron, which does not have permanent magnetism, but is induced according to its orientation
within the earth’s magnetic field.

Considering 𝜁 ′ = 0°, 90°, 180° and 270°, the expressions of the deviations on the cardinal courses
are obtained as

Δ𝑛 = 𝐴 + 𝐶 + 𝐸 (2)
Δ𝑒 = 𝐴 + 𝐵 − 𝐸 (3)
Δ𝑠 = 𝐴 − 𝐶 + 𝐸 (4)
Δ𝑤 = 𝐴 − 𝐵 − 𝐸. (5)

Therefore, these deviations depend on the constant (coefficient A), semicircular (coefficients B, C) and
part of the quadrantal (coefficient E) deviation, with the semicircular one being the main deviation.

2.2. Compensating device

Semicircular deviation of magnetic compasses on ships of less than 500 gross tonnage can be com-
pensated in two ways. Many compasses have a mechanism that adjusts the position of longitudinal and
transversal magnets by using an anti-magnetic screwdriver to turn one screw for longitudinal magnets
and one for transversal ones. If the compass does not have this device, the magnets must be stuck directly
on the compass or in its vicinity.

Quadrantal deviation can be compensated using soft iron correctors, such as small spheres or cylin-
ders, or boxes where several soft iron plates can be placed. However, as this is not a common practice,
this paper does not consider the compensation of this deviation. Note, however, that the effect of the
quadrantal and constant deviations is always included in the residual deviations.

A common compensating device consists of one (or two) longitudinal and one (or two) transversal
magnets that can rotate vertically around their centres, as shown in Figure 1. Note that the longitudinal
magnets are inside the transversal rotating cylinder and the transversal magnets are inside the longitudinal
rotating cylinder.

https://doi.org/10.1017/S0373463323000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000176


434 Jorge Moncunill Marimón et al.

Figure 1. Example of compensating device.

The horizontal component of the magnetic moment of the magnets is used to adjust the compass. If a
magnet is completely vertical, the horizontal component (longitudinal or transversal, depending on the
type of magnet) of its magnetic moment is zero. If it is completely horizontal, the horizontal component
is equal to its own magnetic moment, with a polarity that can be changed by turning the magnet 180°.
On the other hand, if the magnet is fitted at a vertical angle of less than 90°, the horizontal component
is smaller than its own magnetic moment and smaller the larger the angle.

2.3. Traditional method of compensation

Compensation is typically accomplished by proceeding on the four cardinal magnetic headings, a
manoeuvre known as swing (Gaztelu-Iturri Leicea, 1999; National Geospatial–Intelligence Agency,
2004). If the ship is equipped with a gyroscopic or satellite compass, a magnetic heading is followed by
keeping the corresponding true course, TC (i.e. TC= 𝜁 + 𝛿, where 𝜁 is the magnetic course and 𝛿 is the
magnetic declination).

On the east (or west) magnetic heading, the deviation is nullified by setting 𝜁 ′ = 90° (or 270°) with
longitudinal magnets because they are perpendicular to the earth’s magnetic field and can alter the
compass course, while transversal magnets are in the same direction as the earth’s magnetic field and
cannot therefore alter the compass course. Next, on the north (or south) magnetic heading, the deviation
is also nullified by setting 𝜁 ′ = 0° (or 180°) but with transversal magnets, which are perpendicular to the
earth’s magnetic field. The effect of the ship’s hard iron (coefficients B and C) is thus minimised but
not completely eliminated because the deviations on the cardinal courses also depend on the constant
(coefficient A) and part of the quadrantal deviation (coefficient E) (see Subsection 2.1). Consequently,
residual magnetic effects remain after the compensation, i.e.

(3) ⇒ Δ𝑒 = 0 = 𝐴 + 𝐵′ − 𝐸 (6)

or

(5) ⇒ Δ𝑤 = 0 = 𝐴 − 𝐵′ − 𝐸 (6 bis)
(2) ⇒ Δ𝑛 = 0 = 𝐴 + 𝐶 ′ + 𝐸 (7)

or
(4) ⇒ Δ𝑠 = 0 = 𝐴 − 𝐶 ′ + 𝐸, (7 bis)
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where B′ and C′ are the new coefficients corresponding to the hard iron and smaller than the original
coefficients B and C.

Next, we continue the swing. On the west (or east) magnetic heading, we have

(5) ⇒ Δ𝑤 = 𝐴 − 𝐵′ − 𝐸 (8)

or

(3) ⇒ Δ𝑒 = 𝐴 + 𝐵′ − 𝐸, (8 bis)

and on the south (or north) magnetic heading, we have

(4) ⇒ Δ𝑠 = 𝐴 − 𝐶 ′ + 𝐸 (9)

or

(2) ⇒ Δ𝑛 = 𝐴 + 𝐶 ′ + 𝐸. (9 bis)

Consequently,

(6)–(8) or (6 bis)–(8 bis) ⇒ Δ𝑒 − Δ𝑤 = 2𝐵′ ⇒ 𝐵′ = 1
2 (Δ𝑒 − Δ𝑤) (10)

(7)–(9) or (7 bis)–(9 bis) ⇒ Δ𝑛 − Δ𝑠 = 2𝐶 ′ ⇒ 𝐶 ′ = 1
2 (Δ𝑛 − Δ𝑠). (11)

Assuming that Δe (or Δw) and Δn (or Δs) are exactly zero, expressions (10) and (11) show that only half
the deviations on the west (or east) and on the south (or north) must be nullified with the longitudinal
and transversal magnets, respectively, to eliminate coefficients B′ and C′.

2.4. Residual deviations

From the previous expressions, we obtain

(6) + (8) or (6 bis) + (8 bis) ⇒ Δ𝑒 + Δ𝑤 = 2𝐴 − 2𝐸 (12)
(7) + (9) or (7 bis) + (9 bis) ⇒ Δ𝑛 + Δ𝑠 = 2𝐴 + 2𝐸. (13)

Hence,

(12) + (13) ⇒ 𝐴 = 1
4 (Δ𝑛 + Δ𝑒 + Δ𝑠 + Δ𝑤) (14)

(13)–(12) ⇒ 𝐸 = 1
4 (Δ𝑛 + Δ𝑠 − Δ𝑒 − Δ𝑤). (15)

Thus, expressions (14) and (15) give coefficients A and E, respectively.
If half the deviations on the west (or east) and on the south (or north) are not nullified, expressions

(10) and (11) give coefficients B′ and C′, which are residual coefficients B and C.
By contrast, if half the deviations on the west (or east) and on the south (or north) are nullified or

minimised, the coefficients corresponding to the hard iron are altered again, nullifying or minimising
coefficients B′ and C′. In this case, new deviations and new coefficients are obtained, i.e.

Δ′𝑤 = 𝐴 − 𝐵′′ − 𝐸 (16)

or

Δ′𝑒 = 𝐴 + 𝐵′′ − 𝐸 (16 bis)
Δ′𝑠 = 𝐴 − 𝐶 ′′ + 𝐸 (17)
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or

Δ′𝑛 = 𝐴 + 𝐶 ′′ + 𝐸, (17 bis)

where B′′ and C′′ are zero or have very small values.
The magnets alter coefficients B and C but not the other coefficients. Hence, expressions (14) and

(15) are valid to determine coefficients A and E. Once coefficients A and E, and deviations Δ′w (or Δ′e)
and Δ′s (or Δ′n), are known, coefficient B′′ is calculated from expression (16) or (16 bis) and coefficient
C′′ is analogously calculated from expression (17) or (17 bis).

Thus, residual coefficients B and C are B′ and C′ or B′′ and C′′ depending on whether the deviations
on the third and fourth courses of the swing, i.e. west (or east) and south (or north), are altered.

We now know coefficients A, B, C and E but not coefficient D. To obtain coefficient D, it is necessary
to complete the swing on a fifth course, which must be a quadrantal one, i.e. NE, SE, SW or NW, with
the deviation equations (1) for these courses (𝜁 ′ = 45°, 135°, 225° and 315°) being

Δ𝑛𝑒 = 𝐴 + 𝐵 · 0 · 707 + 𝐶 · 0 · 707 + 𝐷 (18)
Δ𝑠𝑒 = 𝐴 + 𝐵 · 0 · 707 − 𝐶 · 0 · 707 − 𝐷 (19)
Δ𝑠𝑤 = 𝐴 − 𝐵 · 0 · 707 − 𝐶 · 0 · 707 + 𝐷 (20)
Δ𝑛𝑤 = 𝐴 − 𝐵 · 0 · 707 + 𝐶 · 0 · 707 − 𝐷 (21)

where 0 · 707 is a sufficient approximation of the sine and cosine of 45°. Note that sin 2𝜁 ′ is always
±1 and cos 2𝜁 ′ is always zero. For this reason, coefficient E does not appear in the deviations on the
quadrantal courses.

Expression (18), (19), (20) or (21) is used to obtain coefficient D, depending on which the fifth
course is.

Once all coefficients, A, B, C, D and E, are known, the deviation on different compass courses,
typically each 10 or 15 degrees from the north, is calculated by applying the deviation equation with a
spreadsheet. Finally, the obtained deviation table is attached to the certificate of compass adjustment, in
compliance with SOLAS V/19.2.1.3; IMO Resolution A.382 (X), Annex I.3; ISO Standard 25862:2019,
Annex G.7 and the corresponding national regulations (IMO, 1977; ISO, 2019). According to ISO
Standard 25862:2019, Annex G.1, the deviation on any course must not exceed 4° for ships of a length
less than 82 · 5 m.

3. Approach and development of the method

The method aims to determine coefficients A, B, C, D and E of the deviation equation (1) by comparing
the compass courses with the courses over ground (COGs), indicated by a GNSS receiver. It is based on
type of courses and triangle of speeds, as shown in Figure 2. References TN, MN and CN correspond to
the true, magnetic and compass north (i.e. the origins of the true course, TC; magnetic course, 𝜁 ; and
compass course, 𝜁 ′, respectively, where 𝛿 is the magnetic declination, Δ the deviation, and S the vessel’s
speed through the water). The parameters of the external forces are set, 𝛼, and drift, d, where set is
expressed as a magnetic course, and 𝛽 is the course difference due to the external forces, 𝛽 =COG–TC
(Moncunill Marimón et al., 2020).

3.1. Deviation equation referred to course over ground

According to Figure 2, by the law of sines (Moncunill Marimón et al., 2020),

𝑆

sin 𝛾
=

𝑑

sin 𝛽
⇒ sin 𝛽 =

𝑑

𝑆
· sin 𝛾.
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Figure 2. Types of courses and triangle of speeds.

But 𝛽 + 𝛾 =𝛼–𝜁 since they are opposite angles of a parallelogram. Then,

sin 𝛽 =
𝑑

𝑆
· sin(𝛼 − 𝜁 − 𝛽).

Developing,

sin 𝛽 =
𝑑

𝑆
· sin(𝛼 − 𝜁) · cos 𝛽 −

𝑑

𝑆
· cos(𝛼 − 𝜁) · sin 𝛽

sin 𝛽 ·

[
1 +

𝑑

𝑆
· cos(𝛼 − 𝜁)

]
=

𝑑

𝑆
· sin(𝛼 − 𝜁) · cos 𝛽 ⇒ tan 𝛽 =

𝑑
𝑆 · sin(𝛼 − 𝜁)

1 + 𝑑
𝑆 · cos(𝛼 − 𝜁)

.

Given that (a+ b) · (a−b)= a2−b2, by multiplying the numerator and denominator by 1–d/S · cos (𝛼–𝜁),
we obtain

tan 𝛽 =
𝑑
𝑆 · sin(𝛼 − 𝜁) ·

[
1 − 𝑑

𝑆 · cos(𝛼 − 𝜁)
]

1 − 𝑑2

𝑆2 · cos2(𝛼 − 𝜁)
.

Because d2 is much smaller than S2, the denominator can be considered 1. Also, since 𝛽 is a small angle,
its tangent can be replaced by its sine, which in turn can be replaced by 𝛽 · sin 1°. Thus,

𝛽 · sin 1◦ =
𝑑

𝑆
· sin(𝛼 − 𝜁) −

𝑑

𝑆
· sin(𝛼 − 𝜁) ·

𝑑

𝑆
· cos(𝛼 − 𝜁)

𝛽 =
𝑑

𝑆
· csc 1◦ · sin(𝛼 − 𝜁) −

𝑑

𝑆
· csc 1◦ · sin(𝛼 − 𝜁) ·

𝑑

𝑆
· csc 1◦ · cos(𝛼 − 𝜁) · sin 1◦,
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where

sin(𝛼 − 𝜁) = sin𝛼 · cos 𝜁 − cos𝛼 · sin 𝜁
cos(𝛼 − 𝜁) = cos𝛼 · cos 𝜁 + sin𝛼 · sin 𝜁 .

Let

𝑥 =
𝑑

𝑆
· csc 1◦ · cos𝛼

𝑦 =
𝑑

𝑆
· csc 1◦ · sin𝛼

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑑

𝑆
· csc 1◦ · sin(𝛼 − 𝜁) = −𝑥 · sin 𝜁 + 𝑦 · cos 𝜁

𝑑

𝑆
· csc 1◦ · cos(𝛼 − 𝜁) = 𝑥 · cos 𝜁 + 𝑦 · sin 𝜁 .

Consequently,

𝑑

𝑆
·𝑐𝑠𝑐1º · sin(𝛼 − 𝜁) ·

𝑑

𝑆
·𝑐𝑠𝑐1º · cos(𝛼 − 𝜁) = (−𝑥 · sin 𝜁 + 𝑦 · cos 𝜁) · (𝑥 · cos 𝜁 + 𝑦 · sin 𝜁)

= −𝑥2 · sin 𝜁 · cos 𝜁 − 𝑥 · 𝑦 · sin2𝜁 + 𝑥 · 𝑦 · cos2𝜁

+ 𝑦2 · sin 𝜁 · cos 𝜁
= 𝑥 · 𝑦 · cos 2𝜁 − 1

2 (𝑥
2 − 𝑦2) · sin 2𝜁

and

𝛽 = −𝑥 · sin 𝜁 + 𝑦 · cos 𝜁 − 𝑥 · 𝑦 · sin 1◦ · cos 2𝜁 + 1
2 (𝑥

2 − 𝑦2) · sin 1◦ · sin 2𝜁 .

Since the magnetic and compass courses are similar,

𝛽 = −𝑥 · sin 𝜁 ′ + 𝑦 · cos 𝜁 ′ − 𝑥 · 𝑦 · sin 1◦ · cos 2𝜁 ′ + 1
2 (𝑥

2 − 𝑦2) · sin 1◦ · sin 2𝜁 ′.

The deviation is the difference between the magnetic course and the compass course, i.e.Δ= 𝜁–𝜁 ′. On the
other hand, the magnetic course is the difference between the true course and the magnetic declination,
i.e. 𝜁 =TC–𝛿. Hence, Δ=TC–𝛿–𝜁 ′, and TC is the difference between COG and 𝛽, i.e. TC=COG–𝛽.
Therefore,

Δ = COG − 𝛽 − 𝛿 − 𝜁 ′,

and the deviation equation (1) is

Δ = 𝐴 + 𝐵 · sin 𝜁 ′ + 𝐶 · cos 𝜁 ′ + 𝐷 · sin 2𝜁 ′ + 𝐸 · cos 2𝜁 ′.

Thus,

COG–𝛽–𝛿–𝜁 ′ = 𝐴 + 𝐵 · sin 𝜁 ′ + 𝐶 · cos 𝜁 ′ + 𝐷 · sin 2𝜁 ′ + 𝐸 · cos 2𝜁 ′.

Now let the pseudo-deviation, Ψ, be defined as the difference between the COG and the compass
course, i.e. Ψ=COG–𝜁 ′. Then,

Ψ = 𝐴 + 𝐵 · sin 𝜁 ′ + 𝐶 · cos 𝜁 ′ + 𝐷 · sin 2𝜁 ′ + 𝐸 · cos 2𝜁 ′ + 𝛽 + 𝛿

Ψ = 𝐴 + 𝐵 · sin 𝜁 ′ + 𝐶 · cos 𝜁 ′ + 𝐷 · sin 2𝜁 ′ + 𝐸 · cos 2𝜁 ′ − 𝑥 · sin 𝜁 ′

+ 𝑦 · cos 𝜁 ′ − 𝑥 · 𝑦 · sin 1◦ · cos 2𝜁 ′ + 1
2 (𝑥

2 − 𝑦2) · sin 1◦ · sin 2𝜁 ′ + 𝛿. (22)
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3.2. Compensation and calculation of coefficients of deviation equation

Particularising expression (22) for the four cardinal compass courses (Moncunill Marimón et al., 2020),
we obtain

Ψ𝑛 = 𝐴 + 𝐶 + 𝐸 + 𝑦 − 𝑥 · 𝑦 · sin 1◦ + 𝛿 (23)
Ψ𝑒 = 𝐴 + 𝐵 − 𝐸 − 𝑥 + 𝑥 · 𝑦 · sin 1◦ + 𝛿 (24)
Ψ𝑠 = 𝐴 − 𝐶 + 𝐸 − 𝑦 − 𝑥 · 𝑦 · sin 1◦ + 𝛿 (25)
Ψ𝑤 = 𝐴 − 𝐵 − 𝐸 + 𝑥 + 𝑥 · 𝑦 · sin 1◦ + 𝛿 (26)

If we apply the traditional method of compensation (see Subsection 2.3) but consider the COGs provided
by a GNSS receiver instead of the true courses provided by a gyroscopic or satellite compass, the first
COGs must be 90°+ 𝛿 (or 270°+ 𝛿) and 0°+ 𝛿 (or 180°+ 𝛿). Then, when the ship proceeds on these
COGs, the compass course must be altered by the longitudinal and transversal magnets to obtain the
following compass courses, respectively: 90° (or 270°) and 0° (or 180°), resulting in Ψe= 𝛿 (or Ψw= 𝛿)
and Ψn= 𝛿 (or Ψs= 𝛿). Thus,

(24) ⇒ Ψ𝑒 = 𝛿 = 𝐴 + 𝐵′ − 𝐸 − 𝑥 + 𝑥 · 𝑦 · sin 1◦ + 𝛿 (or analogously forΨ𝑤) (27)
(23) ⇒ Ψ𝑛 = 𝛿 = 𝐴 + 𝐶 ′ + 𝐸 + 𝑦 − 𝑥 · 𝑦 · sin 1◦ + 𝛿 (or analogously forΨ𝑠) (28)

Next, we continue the swing on the other cardinal courses but by steering the ship on compass courses,
which are easier to handle than are COGs, and we observe the corresponding COGs to obtain the
pseudo-deviations. Then, we have

(26) ⇒ Ψ𝑤 = 𝐴 − 𝐵′ − 𝐸 + 𝑥 + 𝑥 · 𝑦 · sin 1◦ + 𝛿 (or analogously forΨ𝑒) (29)
(25) ⇒ Ψ𝑠 = 𝐴 − 𝐶 ′ + 𝐸 − 𝑦 − 𝑥 · 𝑦 · sin 1◦ + 𝛿 (or analogously forΨ𝑛) (30)

Consequently,

(27)–(29) ⇒ 𝐵′ = 1
2 (Ψ𝑒 −Ψ𝑤) + 𝑥 (31)

(28)–(30) ⇒ 𝐶 ′ = 1
2 (Ψ𝑛 −Ψ𝑠) − 𝑦 (32)

(27) + (29) ⇒ Ψ𝑒 +Ψ𝑤 = 2𝐴 − 2𝐸 + 2 · 𝑥 · 𝑦 · sin 1◦ + 2𝛿 (33)
(28) + (30) ⇒ Ψ𝑛 +Ψ𝑠 = 2𝐴 + 2𝐸 − 2 · 𝑥 · 𝑦 · sin 1◦ + 2𝛿 (34)
(33) + (34) ⇒ 𝐴 = 1

4 (Ψ𝑛 +Ψ𝑒 +Ψ𝑠 +Ψ𝑤) − 𝛿 (35)
(34)–(33) ⇒ 𝐸 = 1

4 (Ψ𝑛 +Ψ𝑠 −Ψ𝑒 −Ψ𝑤) + 𝑥 · 𝑦 · sin 1◦. (36)

Expressions (31), (32), (35) and (36) give coefficients B′, C′, A and E, respectively. Coefficient
A depends solely on the pseudo-deviations and the magnetic declination, which are known data. The
other coefficients depend on the pseudo-deviations, which are known data, but also on parameters x and
y, which are not known. However,

𝑥 =
𝑑

𝑆
· csc 1◦ · cos𝛼 � 57 · 3 ·

𝑑

𝑆
· cos𝛼 𝑦 =

𝑑

𝑆
· csc 1◦ · sin𝛼 � 57 · 3 ·

𝑑

𝑆
· sin𝛼

Thus,

𝑥 · 𝑦 · sin 1◦ =
𝑑

𝑆
· csc 1◦ · cos𝛼 ·

𝑑

𝑆
· csc 1◦ · sin𝛼 · sin 1◦ =

𝑑2

𝑆2 · csc 1◦ · 1
2 sin 2𝛼

𝑥 · 𝑦 · sin 1◦�28 · 65 ·
𝑑2

𝑆2 · sin 2𝛼. (37)
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Finally, we complete the swing by proceeding on a quadrantal course, for example NE:

(22) ⇒ Ψ𝑛𝑒 = 𝐴 + 𝐵′ · 0 · 707 +𝐶 ′ · 0 · 707 +𝐷 − 𝑥 · 0 · 707 + 𝑦 · 0 · 707 + 1
2 (𝑥

2 − 𝑦2) · sin 1◦ + 𝛿. (38)

Let �̄� = 1
4 (Ψ𝑛 +Ψ𝑒 +Ψ𝑠 +Ψ𝑤), �̄� = 1

2 (Ψ𝑒 −Ψ𝑤) and �̄� = 1
2 (Ψ𝑛 −Ψ𝑠). Then,

𝐴 = �̄� − 𝛿 (39)
𝐵′ = �̄� + 𝑥 (40)
𝐶 ′ = �̄� − 𝑦 (41)

Replacing (39), (40) and (41) in (38), we obtain

Ψ𝑛𝑒 = �̄� + �̄� · 0 · 707 + �̄� · 0 · 707 + 𝐷 + 1
2 (𝑥

2 − 𝑦2) · sin 1◦

𝐷 = Ψ𝑛𝑒 − �̄� − �̄� · 0 · 707 − �̄� · 0 · 707 − 1
2 (𝑥

2 − 𝑦2) · sin 1◦, (42)

where

1
2 (𝑥

2 − 𝑦2) · sin 1◦ = 1
2 ·

(
𝑑2

𝑆2 · csc21◦ · cos2𝛼 −
𝑑2

𝑆2 · csc21◦ · sin2𝛼

)
· sin 1◦ = 1

2 ·
𝑑2

𝑆2 · csc 1◦ · cos 2𝛼

1
2 (𝑥

2 − 𝑦2) · sin 1◦�28 · 65 ·
𝑑2

𝑆2 · cos 2𝛼, (43)

and analogously for the other quadrantal courses.

3.3. Residual deviations and verification of compensation

The residual deviations cannot be determined because, except A, the coefficients of the deviation
equation depend on factors x and y, which are unknown. Consequently, we cannot check whether any
residual deviation exceeds 4° (in accordance with ISO Standard 25862:2019, Annex G.1). If one does,
coefficients B′ or C′ must be completely nullified. Section 7 explains how to nullify coefficients. In
Section 4, coefficients D and E are obtained, and in Section 6, residual coefficients B and C are calculated
to finally check the deviation table and make the necessary readjustments.

4. Discussion of method

Expressions (31) and (32) are not reliable for the calculation of residual coefficients B and C because an
imprecise d/S ratio can lead to a considerable error. It is observed, however, that, at a sufficient speed,
the d2/S2 ratio is very small, so that expressions (37) and (43) can be considered zero. Thus, coefficients
D and E can be determined solely from the pseudo-deviations, i.e.

𝐷 = Ψ𝑛𝑒 − �̄� − �̄� · 0 · 707 − �̄� · 0 · 707, (44)

or analogously for the other quadrantal courses, where

�̄� = 1
4 (Ψ𝑛 +Ψ𝑒 +Ψ𝑠 +Ψ𝑤) , �̄� = 1

2 (Ψ𝑒 −Ψ𝑤) , �̄� = 1
2 (Ψ𝑛 −Ψ𝑠)

and
𝐸 = 1

4 (Ψ𝑛 +Ψ𝑠 −Ψ𝑒 −Ψ𝑤). (45)

The maximum error in the calculation of coefficients D and E is shown for the S/d ratio in Table 1.
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Table 1. Maximum error of coefficients D and E for the S/d ratio.

S/d 5 6 7 8 9 10 11 12
Max. error:
28 · 65 · d2/S2

1 · 146 0 · 796 0 · 585 0 · 448 0 · 354 0 · 287 0 · 237 0 · 199

These results show that coefficients D and E can be determined solely from the pseudo-deviations
but with a small error that is negligible for sufficiently high speeds, i.e. for a ratio of S/d equal to or
greater than 8, which causes an error less than 0 · 5° for each coefficient. Assuming a drift of 1 knot or
less, the minimum speed is 8 knots, and assuming a drift of 0 · 5 knots or less, the minimum speed is 4
knots. A suitable minimum speed could be 7 knots.

It should be emphasised that the method is not based on an exact calculation of the effect of the external
forces, which is variable and has no exact vector behaviour, but on determining which coefficients are
affected by this effect and which are not.

5. Verification of the method

The method was verified by performing a swing on a recreational fishing ship in the Bay of Santoña
(Cantabria, Spain). The swing was carried out on 24 May 2021 between 1255 and 1335 local time, once
the ship was inside the bay (outside the harbour and its channel). The wind was from the west, force 5–6
on the Beaufort scale, generating waves of approximately 1 · 5 m in the bay. The cloud cover was 7 oktas
stratocumulus mainly as well as clouds of greater vertical development, causing intermittent rains of
moderate intensity. The ship was navigating at about 7 knots, an adequate speed as stated in Section 4.

5.1. Equipment

An integral magnetic compass, IMC (Martínez-Lozares, 2009a, 2009b), was used to find the deviations
in real time. The true course input to the IMC was obtained from the ship’s satellite compass (Figure 3
shows the satellite compass antenna with its clover-shaped base). The compass course input to the IMC
was obtained using a magnetic sensor (Figure 4 shows the magnetic compass and the sensor being
adjusted, and Figure 5 shows the magnetic compass with the sensor already adjusted).

The IMC installed in a PC, with the inputs of both courses obtained from the magnetic compass, C,
and satellite compass, G, can be seen in Figure 6. It is observed how the position obtained from the
GPS given by the IMC is used to calculate the magnetic declination, 𝛿, with the US National Oceanic
and Atmospheric Administration (NOAA) calculator (Figure 7). The true course, the compass course
and the magnetic declination provide the deviation value at all times, i.e. Δ=G–𝛿–C.

5.2. Data collection

Using the satellite compass, the ship proceeded on the eight main true headings, i.e. N, NE, E, SE,
S, SW, W and NW. For each heading, the COG was observed and the compass course was recorded
by the IMC. The reading of the COGs followed the same technique as the observation of draughts in
wave conditions or of the compass course in gyrocompass navigation: observation of variations in data
(draught, compass course or COG in this case), estimation of an average value and, for the courses,
observation of the value of the data to be compared (gyroscopic and compass courses, or true course and
COG in this case) at different times to check the average. To facilitate the comparison of headings, the
IMC was selected in G mode, i.e. showing the true course determined by the satellite compass as main
course information. Figure 8 shows the IMC and the GPS receiver when a COG was being obtained.
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Figure 3. Ship on which the swing was carried out (the blue hull one).

Figure 4. Ship’s magnetic compass while adjusting the IMC sensor.

The deviations recorded by the IMC after the swing are shown in Figure 9. The COGs for each true
heading were

000 046 091 136 179 226 269 315 .

5.3. Data processing: obtaining coefficients from deviations

The column arithmetic in Figure 9 corresponds to the deviations calculated by direct comparison between
the true course and the compass course and taking into account the magnetic declination. The deviations
of the intermediate courses (other than the eight main courses) could have been determined when the
ship changed course during the swing, assuming there was sufficient course stabilisation or, more likely,
there were previous records. Therefore, only the deviations of the main courses are considered here.
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Figure 5. Ship’s magnetic compass with the IMC sensor already adjusted.

Figure 6. IMC with the compass course, true course obtained from the satellite compass, position
obtained from GPS and magnetic declination obtained from the NOAA calculator.

From the deviations on the cardinal courses, we obtain

(10) ⇒ 𝐵 = 1
2 (Δ𝑒 − Δ𝑤) = 1

2 (−8 · 377 − 5 · 624) = −7 · 0005◦

(11) ⇒ 𝐶 = 1
2 (Δ𝑛 − Δ𝑠) = 1

2 (−1 · 177 − 3 · 620) = −2 · 3985◦

(14) ⇒ 𝐴 = 1
4 (Δ𝑛 + Δ𝑒 + Δ𝑠 + Δ𝑤) = 1

4 (−1 · 177 − 8 · 377 + 3 · 620 + 5 · 624) = −0 · 0775◦

(15) ⇒ 𝐸 = 1
4 (Δ𝑛 + Δ𝑠 − Δ𝑒 − Δ𝑤) = 1

4 (−1 · 177 + 3 · 620 + 8 · 377 − 5 · 624) = 1 · 299◦.
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Figure 7. NOAA calculator: magnetic declination for position and date of the swing.
(Source: https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml).

Figure 8. True course and COG comparison. True course from the satellite compass is shown on the
IMC.

The column deviation corresponds to the deviations determined by the deviation equation (1), which
considers the calculated coefficients A, B, C and E and coefficient D obtained from a quadrantal deviation
that, in this case, is Δse=−4 · 279°. From expression (19), we have

Δ𝑠𝑒 = 𝐴 + 𝐵 · 0 · 707 − 𝐶 · 0 · 707 − 𝐷 ⇒ 𝐷 = 𝐴 + 𝐵 · 0 · 707 − 𝐶 · 0 · 707 − Δ𝑠𝑒

𝐷 = −0 · 0775 − 7 · 0005 · 0 · 707 + 2 · 3985 · 0 · 707 + 4 · 279 = 0 · 9479◦,
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Figure 9. Deviations recorded by the IMC after the swing.

and the mean coefficient D is

(18)–(19) + (20)–(21) ⇒ 𝐷 = 1
4 (Δ𝑛𝑒 − Δ𝑠𝑒 + Δ𝑠𝑤 − Δ𝑛𝑤)

𝐷 = 1
4 (2 · 023 + 4 · 279 + 14 · 721 − 15 · 123) = 1 · 475◦. (46)

The coefficients obtained from the deviations are

𝐴 = −0 · 0775◦ 𝐵 = −7 · 0005◦ 𝐶 = −2 · 3985◦ 𝐷 = 1 · 475◦ 𝐸 = 1 · 299◦

5.4. Data processing: obtaining coefficients from pseudo-deviations

Applying the magnetic declination, 𝛿, and the deviations, Δ, obtained from the IMC to the true courses,
TC, the compass courses, 𝜁 ′, are determined, and with them, the pseudo-deviations, i.e. Ψ=COG–𝜁 ′
(see Table 2).

From the pseudo-deviations in Table 2, we have

(44) ⇒ �̄� = 1
4 (Ψ𝑛 +Ψ𝑒 +Ψ𝑠 +Ψ𝑤)

�̄� = 1
4 (−1 · 312 − 7 · 512 + 2 · 485 + 4 · 489) = −0 · 4625◦
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Table 2. Determination of the pseudo-deviations.

N NE E SE S SW W NW

TC 000 045 090 135 180 225 270 315
–𝛿 0 · 135 0 · 135 0 · 135 0 · 135 0 · 135 0 · 135 0 · 135 0 · 135
𝜁 000 · 135 045 · 135 090 · 135 135 · 135 180 · 135 225 · 135 270 · 135 315 · 135
–Δ 1 · 177 −2 · 023 8 · 377 4 · 279 −3 · 620 −14 · 721 −5 · 624 −15 · 123
𝜁 ′ 001 · 312 43 · 112 098 · 512 139 · 414 176 · 515 210 · 414 264 · 511 300 · 012
COG 000 046 091 136 179 226 269 315
Ψ −1 · 312 2 · 888 −7 · 512 −3 · 414 2 · 485 15 · 586 4 · 489 14 · 988

Table 3. Differences between coefficients A, D and E determined from the deviations and the pseudo-
deviations.

A D E

Δ –0 · 0775 1 · 475 1 · 299
Ψ –0 · 3275 1 · 725 1 · 049
Dif 0 · 250 0 · 250 0 · 250

(39) ⇒ 𝐴 = �̄� − 𝛿 = −0 · 4625 + 0 · 135 = −0 · 3275◦

(44) ⇒ �̄� = 1
2 (Ψ𝑒 −Ψ𝑤) = 1

2 (−7 · 512 − 4 · 489) = −6 · 0005◦

(44) ⇒ �̄� = 1
2 (Ψ𝑛 −Ψ𝑠) = 1

2 (−1 · 312 − 2 · 485) = −1 · 8985◦

(45) ⇒ 𝐸 = 1
4 (Ψ𝑛 +Ψ𝑠 −Ψ𝑒 −Ψ𝑤) = 1

4 (−1 · 312 + 2 · 485 + 7 · 512 − 4 · 489) = 1 · 049◦.

Analogously to expression (46), we have

𝐷 = 1
4 (Ψ𝑛𝑒 −Ψ𝑠𝑒 +Ψ𝑠𝑤 −Ψ𝑛𝑤)

𝐷 = 1
4 (2 · 888 + 3 · 414 + 15 · 586 − 14 · 988) = 1 · 725◦. (47)

The coefficients determined from the pseudo-deviations are

𝐴 = −0 · 3275◦ 𝐷 = 1 · 725◦ 𝐸 = 1 · 049◦ �̄� = −6 · 0005◦ �̄� = −1 · 8985◦ .

5.5. Data analysis

1. Coefficients A, D and E determined from the pseudo-deviations are very similar to those obtained
from the deviations (Table 3 shows these differences in absolute value). By contrast, the differences
between coefficients B and C determined from the deviations and �̄� and �̄�, respectively, are greater
than the differences between coefficients A, D and E.

The same value of 0 · 25 is a coincidence. Note that if Dif=Ψ–Δ, the difference for coefficients A
and E is negative, while for coefficient D it is positive.
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Table 4. Differences between coefficient D determined from the deviations and the pseudo-deviations
for each quadrantal course.

NE SE SW NW

Δ 8 · 7456 0 · 9479 8 · 1534 –11 · 9469
Ψ 8 · 9351 0 · 0514 10 · 4639 –12 · 5504
Dif 0 · 1895 0 · 8965 2 · 3105 0 · 6035

2. Analogously to expression (44), we have

𝐷 = Ψ𝑛𝑒 − �̄� − �̄� · 0 · 707 − �̄� · 0 · 707 (44)
𝐷 = �̄� + �̄� · 0 · 707 − 𝐶 · 0 · 707 −Ψ𝑠𝑒 (48)
𝐷 = Ψ𝑠𝑤 − �̄� + 𝐵 · 0 · 707 + �̄� · 0 · 707 (49)
𝐷 = �̄� − �̄� · 0 · 707 + �̄� · 0 · 707 −Ψ𝑛𝑤. (50)

Thus, we can compare each coefficient D calculated from the deviations by expressions (18), (19), (20)
and (21) and from the pseudo-deviations by expressions (44), (48), (49) and (50). The deviations are
obtained from column arithmetic in Figure 9 and the pseudo-deviations from Table 2.

On the NE heading,

𝐷 = Δ𝑛𝑒 − 𝐴 − 𝐵 · 0 · 707 − 𝐶 · 0 · 707 (deviations)
𝐷 = 2 · 023 + 0 · 0775 + 7 · 0005 · 0 · 707 + 2 · 3985 · 0 · 707 = 8 · 7456◦

𝐷 = Ψ𝑛𝑒 − �̄� − �̄� · 0 · 707 − �̄� · 0 · 707 (pseudo - deviations)
𝐷 = 2 · 888 + 0 · 4625 + 6 · 0005 · 0 · 707 + 1 · 8985 · 0 · 707 = 8 · 9351◦.

Table 4 shows the values of coefficient D determined from the deviations and the pseudo-deviations
for each quadrantal course and their differences.

3. Coefficient D takes different values. As can be seen, it is similar for the opposite headings NE and
SW, i.e. about 8°, while it is different for the opposite headings SE and NW, i.e. about 1° and −12°,
respectively, and the mean coefficient D is about 1 · 5°. This is because the compass was not
adjusted and therefore, other higher order deviations, such as sextantal and octantal deviations,
which depend on the triple and quadruple of the course, respectively, occurred, in agreement with
the observations in Smith and Evans (1861). However, if coefficients B and C are reduced
beforehand, this should not happen.

5.6. Conclusion

No matter how the method is applied, the results are satisfactory, i.e. coefficients A, D and E obtained
from the deviations and pseudo-deviations are highly similar. Even when coefficient D varies with
the quadrantal course, the results from the deviations and pseudo-deviations are similar for the same
heading, except for the SW, but even in this case, the difference is not significant.

6. Complete method: obtaining residual coefficients B and C for any single heading

In addition to coefficients A, D and E, two further headings, 𝜁 ′1 and 𝜁 ′2, are necessary to obtain residual
coefficients B and C. First, their deviations, Δ1 and Δ2, must be determined. The ship must head for two
visual references with known true bearings or azimuths (for good discrimination, the angle between

https://doi.org/10.1017/S0373463323000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000176


448 Jorge Moncunill Marimón et al.

both headings must be between 60° and 120°):

(1) ⇒ Δ1 = 𝐴 + 𝐵 · sin 𝜁 ′1 + 𝐶 · cos 𝜁 ′1 + 𝐷 · sin 2𝜁 ′1 + 𝐸 · cos 2𝜁 ′1

𝐵 · sin 𝜁 ′1 + 𝐶 · cos 𝜁 ′1 = Δ1 − 𝐴 − 𝐷 · sin 2𝜁 ′1 − 𝐸 · cos 2𝜁 ′1.

Analogously,
𝐵 · sin 𝜁 ′2 + 𝐶 · cos 𝜁 ′2 = Δ2 − 𝐴 − 𝐷 · sin 2𝜁 ′2 − 𝐸 · cos 2𝜁 ′2.

Let

𝜂1 = Δ1 − 𝐴 − 𝐷 · sin 2𝜁 ′1 − 𝐸 · cos 2𝜁 ′1
𝜂2 = Δ2 − 𝐴 − 𝐷 · sin 2𝜁 ′2 − 𝐸 · cos 2𝜁 ′2,

where both 𝜂1 and 𝜂2 are known data. Thus, we have the following system of two equations:

𝐵 · sin 𝜁 ′1 + 𝐶 · cos 𝜁 ′1 = 𝜂1

𝐵 · sin 𝜁 ′2 + 𝐶 · cos 𝜁 ′2 = 𝜂2,

whose solutions are

𝐵 =
𝜂1 · cos 𝜁 ′2 − 𝜂2 · cos 𝜁 ′1

sin(𝜁 ′1 − 𝜁 ′2)
, 𝐶 =

𝜂2 · sin 𝜁 ′1 − 𝜂1 · sin 𝜁 ′2
sin(𝜁 ′1 − 𝜁 ′2)

.

By contrast, Lushnikov proposed a method in which, if coefficients A, D and E are known, only a single
heading is required (Lushnikov, 2011). In Subsection 6.2, Lushnikov’s method is applied to obtain
residual coefficients B and C.

6.1. Obtaining deviation on visual reference heading

If the ship proceeds to a shore point, its position can be determined from the chart or another source,
such as Google Maps. This position is then entered as a waypoint into the GNSS receiver, and the
function GO TO is used to obtain and compare the true course with the compass course to determine
the deviation considering the magnetic declination.

If the ship heads towards the sun, its true azimuth, Z, is the true course, and is calculated by one of
the azimuth formulae, e.g.

tan 𝑍 =
|sin LHA|

cos 𝜑 · tan Dec − sin 𝜑 · cos LHA
, (51)

where 𝜑 is the ship’s latitude; Dec is the sun’s declination, and LHA is its local hour angle.
Dec and LHA are taken from the nautical almanac and corrected as necessary, bearing in mind that

a proper sign convention must be applied in the formula. For example, 𝜑, Dec and Z are positive when
they are north and negative when they are south, and regardless of the sign convention, Z is east before
noon (LHA greater than 180°) and west after noon (LHA smaller than 180°).

The calculation of azimuths does not require great accuracy for the ship’s position and the sun’s
declination. For example, the ship’s position can be considered as that of the green light of the harbour
breakwater and the sun’s declination as that of the estimated compensation time to prepare the calculation
data. It is possible to determine LHA by considering only the UTC provided by the GNSS receiver when
the ship is heading towards the sun, time of meridian passage, MP, taken from the nautical almanac, and
longitude of the ship, L, which is positive when it is east and negative when it is west, i.e.

LHA = (UTC − MP) · 15 − 𝐿 (52)
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Note that in this expression, LHA is negative before noon but this does not affect (51), where the
numerator must be in absolute value.

6.2. Simplification of method with single visual reference: application of Lushnikov’s method

Compass needles are oriented towards the horizontal component of the magnetic field at the compass
location. The horizontal component of the earth’s magnetic flux density, H, can be found using an
earth’s magnetic field calculator, such as the NOAA calculator, or a map, such as the World Magnetic
Model (WMM). However, the total magnetic flux density at the compass location, H′, includes not only
that of the earth but also that of the ship irons, which varies with the course. Each course therefore has
a concrete H′, where the directive force (strictly speaking, magnetic flux density) towards the magnetic
north is H′ · cos Δ, but also

𝜆 · 𝐻 · (1 + sin 𝐵 · cos 𝜁 − sin𝐶 · sin 𝜁 + sin 𝐷 · cos 2𝜁 − sin 𝐸 · sin 2𝜁),
Gaztelu - Iturri Leicea (1999) and Lushnikov (2011),

where 𝜆 is the mean directive force coefficient, specific to each ship, and the sines of the approximate
coefficients B, C, D and E are the exact coefficients of the deviation equation, as indicated in Subsection
2.1. Therefore,

𝐻 ′ · cosΔ = 𝜆 · 𝐻 · (1 + sin 𝐵 · cos 𝜁 − sin𝐶 · sin 𝜁 + sin 𝐷 · cos 2𝜁 − sin 𝐸 · sin 2𝜁).

Since the approximate coefficients are small angles, their sines can be replaced by their values
multiplied by sin 1°, i.e. approximately 1/57 · 3. Hence,

𝐻 ′ · cosΔ = 𝜆 · 𝐻 · (1 + 𝐵/57 · 3 · cos 𝜁 − 𝐶/57 · 3 · sin 𝜁 + 𝐷/57 · 3 · cos 2𝜁 − 𝐸/57 · 3 · sin 2𝜁)

57 · 3 · 𝐻 ′ · cosΔ
𝜆 · 𝐻

= 57 · 3 + 𝐵 · cos 𝜁 − 𝐶 · sin 𝜁 + 𝐷 · cos 2𝜁 − 𝐸 · sin 2𝜁 . (53)

Then, if only a single visual reference is considered, we have

(1) ⇒ Δ𝑣 = 𝐴 + 𝐵 · sin 𝜁 ′𝑣 + 𝐶 · cos 𝜁 ′𝑣 + 𝐷 · sin 2𝜁 ′𝑣 + 𝐸 · cos 2𝜁 ′𝑣.

And since the magnetic and compass courses are similar,

𝐵 · sin 𝜁𝑣 + 𝐶 · cos 𝜁𝑣 = Δ𝑣 − 𝐴 − 𝐷 · sin 2𝜁𝑣 − 𝐸 · cos 2𝜁𝑣. (54)

On the other hand,

(53) ⇒ 𝐵 · cos 𝜁𝑣 − 𝐶 · sin 𝜁𝑣 = 57 · 3 ·

(
𝐻𝑣 · cosΔ𝑣

𝜆 · 𝐻
− 1

)
− 𝐷 · cos 2𝜁𝑣 + 𝐸 · sin 2𝜁𝑣, (55)

where Hv is the specific value of H′ when the ship proceeds on the magnetic course 𝜁v.
Let

Θ1 = Δ𝑣 − 𝐴 − 𝐷 · sin 2𝜁𝑣 − 𝐸 · cos 2𝜁𝑣 (56)

Θ2 = 57 · 3 ·

(
𝐻𝑣 · cosΔ𝑣

𝜆 · 𝐻
− 1

)
− 𝐷 · cos 2𝜁𝑣 + 𝐸 · sin 2𝜁𝑣. (57)
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Then, we have the following system of two equations:

(54), (56) ⇒ 𝐵 · sin 𝜁𝑣 + 𝐶 · cos 𝜁𝑣 = Θ1

(55), (57) ⇒ 𝐵 · cos 𝜁𝑣 − 𝐶 · sin 𝜁𝑣 = Θ2,

whose solutions are

𝐵 = Θ1 · sin 𝜁𝑣 + Θ2 · cos 𝜁𝑣 (58)
𝐶 = Θ1 · cos 𝜁𝑣 − Θ2 · sin 𝜁𝑣. (59)

6.3. Obtaining factor 𝚯2

Factor Θ2 has two unknown data, namely Hv and 𝜆. They can be calculated by installing devices at
the compass location, i.e. replacing the compass with devices, a difficult task for the ships for which
this work is intended. Furthermore, the process requires the ship to proceed on the four cardinal
courses, which is correspondingly time consuming (Gaztelu-Iturri Leicea, 1999; National Geospatial–
Intelligence Agency, 2004; Lushnikov, 2011).

In expression (53), coefficients D and E are known data, and coefficients B and C can be considered
�̄� and �̄�, respectively. Then,

57 · 3 · 𝐻𝑣 · cosΔ𝑣
𝜆 · 𝐻

= 57 · 3 + �̄� · cos 𝜁𝑣 − �̄� · sin 𝜁𝑣 + 𝐷 · cos 2𝜁𝑣 − 𝐸 · sin 2𝜁𝑣.

Hence,

�̄� · cos 𝜁𝑣 − �̄� · sin 𝜁𝑣 = 57 · 3 ·

(
𝐻𝑣 · cosΔ𝑣

𝜆 · 𝐻
− 1

)
− 𝐷 · cos 2𝜁𝑣 + 𝐸 · sin 2𝜁𝑣

(57) ⇒ Θ2 = �̄� · cos 𝜁𝑣 − �̄� · sin 𝜁𝑣 (60)

7. Application of complete method

The complete process to adjust the compass and create its deviation table is as follows.

7.1. Application for all cases

1. Using a GNSS receiver, the ship proceeds on COG= 90°+ 𝛿 (or 270°+ 𝛿), and with the longitudinal
magnets, the compass course is adjusted to 90° (or 270°). Next, using the GNSS receiver again, the
ship proceeds on COG= 𝛿 (or 180°+ 𝛿), and with the transversal magnets, the compass course is
adjusted to 0° (or 180°). Then, Ψe (or Ψw)= 𝛿 and Ψn (or Ψs)= 𝛿 are obtained. Note that to
determine the COG, 𝛿 can be rounded to the nearest degree because its decimals are taken into
account when calculating coefficient A.

2. Using the magnetic compass, the ship proceeds on the other two cardinal courses and a quadrantal
one, and the COGs shown by the GNSS receiver are noted down to determine the pseudo-
deviations, i.e. Ψw (or Ψe), Ψs (or Ψn) and Ψne (or Ψse, Ψsw or Ψnw). The quadrantal course does
not have to be the last one, as the position of the magnets on the third and fourth cardinal courses
does not change. To avoid the impact of errors caused by other higher-order deviations, such as
sextantal or octantal deviations, on coefficient D (Smith and Evans, 1861), we recommend choosing
the quadrantal course between the first and second cardinal courses.

3. Coefficients A, D and E are calculated using expressions (35), (44) and (45), respectively. The exact
value of 𝛿 must be inserted into expression (35).
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4. The ship proceeds to a visual reference and its deviation is calculated as described in Subsection
6.1. Residual coefficients B and C are then determined from expressions (58) and (59), respectively,
where factors Θ1 and Θ2 are determined from expressions (56) and (60), respectively. In order to
avoid the impact of errors on coefficient D, we recommend proceeding to a visual reference within
the same quadrant as the quadrantal course to calculate this coefficient. However, in line with the
recommendation in point 2, the choice of the visual reference fixes the quadrantal course and,
therefore, the two cardinal courses to which the compass courses are adjusted (point 1). It is thus
proposed that the ship proceeds on the cardinal courses that delimit the quadrant containing the
visual reference. Next, the compass is adjusted on these courses and the ship proceeds on the
quadrantal course or the visual reference course. Finally, the ship proceeds on the other course
within the quadrant, and then on the other two cardinal courses.

5. Once residual coefficients B and C are obtained, the deviation on various compass courses, typically
every 10 or 15 degrees from the north, is calculated by the deviation equation (1) with a spreadsheet.

6. The process can next be completed if no deviation exceeds 4°, whereas if a deviation exceeds 4°,
the largest value between coefficients B and C must be nullified. To increase accuracy, both
coefficients can be nullified even if no deviation exceeds 4°. The process for nullifying a coefficient
is described in point 7.

7.2. Application when deviation exceeds 4° or when greater accuracy required

7. To nullify coefficient B, we must remember that if the other coefficients were equal to zero, the
deviation would be Δe=B and the compass course would be 𝜁 ′ = 𝜁–Δe= 90°–B on the east
magnetic heading and analogously, Δw=−B and 𝜁 ′ = 𝜁–Δw= 270°+B on the west magnetic
heading. The procedure is, therefore, to proceed on one of these courses, 90°–B or 270°+B, with
the magnetic compass, observe the COG, proceed on this COG and nullify the coefficient by setting
𝜁 ′ = 90° or 270° with the longitudinal magnets. To nullify coefficient C, the procedure is to proceed
on 𝜁 ′ = 0°–C or 𝜁 ′ = 180°+C, observe the COG, proceed on this COG and nullify the coefficient by
setting 𝜁 ′ = 0° or 𝜁 ′ = 180° with the transversal magnets.

8. When a coefficient is nullified, the deviation table must be obtained as described in point 5, but
without considering this coefficient. It is important to ensure that the coefficient is nullified exactly
and is not simply reduced to avoid errors in the deviation table. If the magnetic moment of the
compensating device’s magnets cannot nullify the coefficient completely, then the procedure must
be repeated, but this is uncommon.

9. If no deviation of the table obtained in point 8 exceeds 4°, then the procedure can be completed,
while if a deviation exceeds 4°, then the other coefficient must be nullified. With the help of the
spreadsheet, we can know in advance whether only one or both coefficients must be nullified
because the deviation table can be calculated using the deviation equation with all coefficients,
without B, without C and without both B and C. Finally, if coefficients B and C are nullified but some
deviations of the table exceed 4°, these deviations cannot be reduced unless the compass is fitted in
a different location. In this case, the residual table shall be considered final, with the corresponding
exemption from compliance with ISO Standard 25862:2019, Annex G.1, if necessary.

7.3. Reliability of method

When the drift is less than one knot, we conclude that a suitable minimum speed could be 7 knots (see
Section 4). Even if the drift were one knot, the maximum error of coefficients D and E would only be
slightly greater than half a degree (0 · 585° exactly, as indicated in Table 1). Therefore, we can affirm
that the method is reliable if the drift does not exceed one knot and the vessel speed is 7 knots or more,
a speed that most vessels can reach. Then, the method may not be reliable when the drift is greater than
one knot, and usually this can occur in any of the following cases:
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1. When there is strong wind. However, with strong wind, compensation can hardly be carried out,
since the waves generated by the wind do not allow steering with the accuracy required by the
compensation process, especially in small ships, which are those the method is primarily aimed at.
Therefore, this limitation is not specific to the method, but to the compensation itself.

2. In rivers or near their mouths due to the stream of the river.
3. In areas with tidal streams, i.e. in estuaries, narrows and other confined spaces affected by tides; but

in these cases, compensation is typically carried out outside the harbour, where the ship is not in a
confined space and the tidal stream is considerably weaker, except in the case of estuaries.

In summary, the method has some limitations in rivers and confined spaces with tidal streams. Therefore,
it must be taken into account that, in some ports or areas, the method is impracticable.

8. Conclusions

A simple, rigorous method for compass adjustment on ships having only a magnetic heading indicator
is proposed. Only six headings are required to adjust the compass and create the deviation table, and
depending on the vessel, one or two more headings are needed to make proper readjustments. Similarly,
only a GNSS receiver and a visual reference are required, eliminating the need for leading lines, peloruses
or other equipment, except for support for spreadsheets, such as a mobile phone. Moreover, no current
or wind data is required, but a minimum vessel speed must be ensured, e.g. 7 knots.
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