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The presence of thermocapillary (Marangoni) convection in microgravity may help to
enhance the heat transfer rate of phase change materials (PCMs) in space applications. We
present a three-dimensional numerical investigation of the nonlinear dynamics of a melting
PCM placed in a cylindrical container filled with n-octadecane and surrounded by passive
air. The heat exchange between the PCM and ambient air is characterized in terms of the
Biot number, when the air temperature has a linear profile. The effect of thermocapillary
convection on heat transfer and the topology of the melting front is studied by varying the
applied temperature difference between the circular supports and the heat transfer through
the interface. The evolution of Marangoni convection during the PCM melting leads to the
appearance of hydrothermal instabilities. A new mathematical approach for the nonlinear
analysis of emerging hydrothermal waves (HTWs) is suggested. Being applied for the first
time to the examination of PCMs, this procedure allows us to explore the nature of the
coupling between HTWs and heat gain/loss through the interface, and how it changes
over time. We observe a variety of dynamics, including standing and travelling waves, and
determine their dominant and secondary azimuthal wavenumbers. Coexistence of multiple
travelling waves with different wavenumbers, rotating in the same or opposite directions,
is among the most fascinating observations.
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1. Introduction

Phase change materials (PCMs) can store and release a large amount of thermal energy
during melting or solidification, practically without changing the temperature. At present,
latent heat storage using PCMs is very promising and is used actively in industrial, medical
and domestic applications (Biwole, Eclache & Kuznik 2013; Ma et al. 2021; Hayat et al.
2022; Liu et al. 2022b). The rapid development of space technology imposes high demands
on the thermal management system used in space exploration. PCMs have been used in
manned space applications since the days of Apollo (Morea 1988), and their utilization
is growing constantly. The weight of a vehicle can be reduced greatly by temporarily
storing energy on board and releasing it when there is excess. The usage of PCMs in
spacesuits and astronaut gloves for the work outside the International Space Station has
been commercialized for ground-based applications (NASA 2012). Future programmes of
the European Space Agency aim to use the capabilities of PCMs to control temperature
and provide heat storage capacity; for example, the use of PCMs is foreseen in the Moon
Village programme (Williams et al. 2017).

Selection of a PCM for a space application among a range of possible materials
has indicated that organic PCMs made of paraffinic compounds are the most attractive
(Collette et al. 2011). After analysing nine paraffins, Collette et al. (2011) suggested that
n-octadecane is one of the best candidates, due primarily to the highest value of latent
heat, low volume change during melting, and stability of its properties. The thermal
diffusivity is another important parameter for PCM charge and discharge, as it can limit the
amount of energy that would be stored during the orbital period. Even though the thermal
conductivity of n-octadecane in a liquid state is not very high, it remains a top candidate.
This work is focused on the analysis of heat transfer enhancement in n-octadecane during
the melting phase. The Prandtl number of n-octadecane, which defines the ratio of
kinematic viscosity to thermal diffusivity, is Pr = 52.5.

In terrestrial applications, the presence of convective flows in the liquid phase helps to
solve the problem of PCM low thermal conductivity. Extensive research on the subject
since the 1980s has shown that convective motions caused by density gradients can
enhance the heat transfer rate by about an order of magnitude compared to conductive
heat transfer (Sparrow & Broadbent 1982; Jones et al. 2006; Dhaidan & Khodadadi 2015;
Madruga & Curbelo 2018; Liu et al. 2022a). However, this approach is not applicable
in microgravity. As an alternative strategy, the use of the thermocapillary effect – in
which a non-uniform temperature induces surface tension gradients that drive convective
motion – has been proposed as a source of convective heat transport in microgravity PCM
devices (Madruga & Mendoza 2017a,b). A possible improvement in heat transfer due
to thermocapillary (Marangoni) convection was verified in parabolic flight experiments
(Ezquerro et al. 2019, 2020; Salgado Sánchez et al. 2020b) and confirmed by numerical
simulations (Salgado Sánchez et al. 2020a, 2021; Šeta et al. 2021a,b, 2022).

The common shapes of the PCM containers under investigation are rectangular cavities
and squares (Madruga & Mendoza 2020; Martínez et al. 2021), spherical capsules, tubes
or cylinders (Šeta et al. 2021a,b; Varas et al. 2021), and annular cavities (Dhaidan &
Khodadadi 2015). The use of thermocapillary force implies the presence of a liquid–gas
interface; in this respect, the configuration of a liquid bridge is advantageous, since
the shape of the interface can be kept straight easily in microgravity. Literature on
liquid bridges reports evidence that when the thermal stresses exceed the critical value,
the flow undergoes a transition to oscillatory instability in the form of hydrothermal
waves. Depending on the distance from the critical point, liquid properties, geometry
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and ambient conditions, the liquid bridge system admits the coexistence of waves with
different wavenumbers (Shevtsova, Melnikov & Legros 2003; Yasnou et al. 2018), or
the emergence of two different modes with different symmetries (i.e. m = 0 and m = 1)
(Shevtsova, Melnikov & Nepomnyashchy 2009; Gaponenko et al. 2021a). The numerical
and experimental investigation of high Prandtl liquid bridges is well advanced in the
laboratory (Liang et al. 2020; Fukuda et al. 2021; Gaponenko et al. 2022; Stojanović,
Romano & Kuhlmann 2022) and in microgravity conditions (Kawamura et al. 2012;
Schwabe 2014; Yano et al. 2017, 2018; Kang et al. 2019).

The change in geometry is inherent to the melting process and solid/liquid front
evolution, and it occurs in all PCM geometries, such as rectangular cavities, trapezoidal
containers, etc. Recently, a first attempt was made to match the flow dynamics in
rectangular liquid containers with those observed during melting (Salgado Sánchez et al.
2022). Since the thermal gradients along the PCM/air interface are large, with an increase
in the PCM liquid phase, the system is prone to oscillatory instability. Accordingly,
in systems with melting/solidification, one can observe the evolution of the nonlinear
dynamics inherent in liquid bridges (Lappa & Savino 2002; Lappa 2018; Varas et al. 2021).

The flow regimes in the melting bridge analysed by Šeta et al. (2021a,b) revealed the
appearance of hydrothermal waves (HTWs) in a liquid volume of more than 80 %, except
for a narrow region of thermal stresses 27 K < �T < 35K, where this occurs in a liquid
fraction of about 65 %. The standing waves (SWs) are the first to appear (Šeta et al. 2022),
but they decay quickly in favour of travelling waves (TWs). The dynamics of the melting
bridge was explored under assumption of an adiabatic free surface. However, extensive
experimental and theoretical studies of liquid bridges (Watanabe et al. 2014; Melnikov
et al. 2015; Yano et al. 2016; Romanò & Kuhlmann 2019; Yano & Nishino 2020) have
shown that the heat transfer rate across the interface and the temperature of the surrounding
gas can significantly change the supercritical thermocapillary flow and pattern selection.
In this work, we extend the previous results on the melting bridge with a more detailed
nonlinear analysis of wave properties, and consider the effect of heat transfer across the
PCM/air interface on pattern selection and heat transfer rate.

The paper is organized as follows. The mathematical model with appropriate boundary
conditions is formulated in § 2. Section 3 is devoted to general characteristics of a
stationary flow, such as heat transfer rate and melting dynamics. Section 4 includes a
detailed analysis of an oscillatory flow and HTWs. Concluding remarks are presented in
§ 5.

2. Mathematical model

PCM is confined in a cylindrical volume of length L and radius R, as shown in the
sketch in figure 1. The aspect ratio, defined as length to radius, is kept constant, Γ =
L/R = 1, L = 10 mm and R = 10 mm. The thermophysical properties of n-octadecane, a
high Prandtl liquid, can be found in table 1. The heat influx from the hot disk initiates
the melting process. Once PCM on a free surface is melted, the temperature gradient
along the liquid part of the interface is established. The surface tension σ of a liquid is
temperature-dependent and defined as

σ = σref − σT(T − Tref ), (2.1)

where σT = (dσ/dT)Tref is the surface tension gradient coefficient, and Tref = Tm + �T/2.
The temperature gradient creates a surface tension gradient at a growing liquid/air

966 A46-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.463


B. Šeta and others

Tm

Qtop

Qbottom

Tm + �T
Tm + �T T am

b =
 T

m
 +

 �
T 

(1
 –

 z/
L)

Tm

R

Lz

y
x

Ts

(b)(a)

Figure 1. Sketches of (a) the geometry and (b) the thermal environment of a melting bridge. A cylindrical
volume filled with n-octadecane (the PCM) is held at constant cold (TM) and hot (Tm + �T) temperatures on
opposite disks (where Tm = 299.65 K is the melting temperature). The initial temperature of PCM inside the
bridge is solidus temperature Ts = 298.25 K. The linear temperature profile is set in ambient air.

Property Symbol Value

Density (kg m−3) ρ0 776
Dynamic viscosity (kg m−1 s−1) μl 0.0035
Thermal conductivity (W m−1 K−1) λl/λs 0.13/0.358
Specific heat (J kg−1 K−1) cp,l/cp,s 2196/1934
Liquidus/solidus temperature (K) Tm/Ts 299.65/298.25
Thermal diffusivity (m2 s−1) αl 7.62 × 10−8

Surface tension gradient (N m−1 K−1) σT −8.4 × 10−5

Latent heat (J kg−1) �H 243 500
Heat transfer coefficient (W m−2 K−1) h 6.5, 13, 26, 39

(Bi = 0.5, 1, 2, 3)

Table 1. Thermophysical properties of the n-octadecane according to Madruga & Mendoza (2017a). Here,
σT = (dσ/dT)Tref and αl = λl/ρlcp,l. The subscripts m, l and s stand for the melt, liquid and solid, respectively.

interface that induces a thermocapillary flow in the melted liquid and surrounding air
(although the latter is not considered). This convection provides a mechanism for heat
transport in microgravity, which modifies the melting dynamics and heat transfer via the
free surface. The phase change is investigated at several applied thermal stresses �T , and
the associated dimensionless parameter is the Marangoni number

Ma = σTL �T/μlαl. (2.2)

Since the working liquid and geometry are selected (see table 1),

Ma = 3149.6 �T. (2.3)

2.1. Governing equations
The flow dynamics of the system is described by the momentum and continuity equations
for incompressible Newtonian fluids, with sink term in the momentum equation, which
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differentiates the velocity between the solid and liquid phases. The system is considered
in the microgravity environment, thus gravity is absent (g = 0):

∂tu + (u · ∇)u = − 1
ρ0

∇p + ν ∇2u + 1
ρ0

C(1 − γ )2

γ 3 + b
u, (2.4)

∇ · u = 0, (2.5)

where u represents the velocity vector u = (u, v, w), p is the buoyant pressure (the
difference between total and hydrodynamic pressures), ρ0 is the density at a reference
temperature Tref , and ν = μl/ρ0 is the kinematic viscosity. The last term on the right-hand
side of the momentum equation (2.4) represents the Carman–Kozeny model for a moving
solid–liquid interface as a porous mushy layer where solid and liquid phases may coexist
(Egolf & Manz 1994). Thus a single momentum equation is solved for both liquid and
solid phases (the solid one is fixed in place).

The conservation of thermal energy takes into account the heat transfer and the phase
change (latent heat �H):

∂t(cpT) + u · ∇(cpT) = 1
ρ

∇2(λT) − �H
∂γ

∂t
, (2.6)

where cp and λ are the weighted specific heat and thermal conductivity of liquid, defined
as

λ = (1 − γ )λs + γ λl, (2.7)

cp = (1 − γ )cp,s + γ cp,l, (2.8)

with the subscripts l and s denoting ‘liquid’ and ‘solid’, respectively. The density across
phases is constant, which means that the volume remains constant too.

The enthalpy-porosity formula combines the momentum, continuity and energy
equations to describe the evolution of the phase change process. The important point of the
model is the definition of the liquid fraction field, γ , since it provides the coupling between
the momentum and energy equations. This field depends on temperature and is constrained
between 0 (a pure solid) and 1 (a pure liquid). In the regions where the solid and liquid
are mixed together, the so-called mushy regions, the liquid fraction is not well-defined and
should be approximated. The common approach for modelling the liquid fraction in mushy
regions is to use a linear interpolation between the solidus temperature Ts and the liquidus
temperature Tm. Thus the liquid volume fraction in the bridge, γ , is defined as

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, T ≤ Ts,

T − Ts

Tm − Ts
, Ts < T < Tm,

1, T ≥ Tm.

(2.9)

The Darcy constant C in (2.4) is set to C = 1.6 × 106 kg s m−3; see Madruga & Mendoza
(2017a). This constant depends on the material’s mushy region morphology, but generally
has a high value in the range between 103 and 109. As can be seen from (2.4), when γ → 0
(solid phase), the Darcy term tends to a very high value ensuring no-flow conditions in that
region, while when γ = 1, this term disappears. The small constant b = 10−3 is added to
this term to prevent division by zero when γ = 0; its choice is arbitrary.
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2.2. Boundary and initial conditions
The dynamic deformation of the PCM air/liquid interface is not taken into account, which
is justified by the smallness of the capillary number Ca = γ �T/σT , and is about 0.1 at
the maximum temperature gradient used in this study.

1. The PCM/gas interface r = R: the balance of viscous and thermocapillary forces
and kinematic condition for a non-deformable interface are imposed:

μ
∂u
∂n

= σT
∂T
∂τ

, un = 0, (2.10)

where ∂/∂n and ∂/∂τ are the derivatives in the normal and tangential directions.
The heat transfer through the interface is described as

∂T
∂n

= Bi (T − Tamb), Tamb = Tm + �T(1 − z/L). (2.11)

The Biot number is defined as Bi = hR/λl, where h is the heat transfer coefficient.
The idea of presenting the results in terms of the dimensionless Biot number is
substantiated as follows. Presumably, the coefficient h under microgravity conditions
is small, since there is no natural convection, and the forced convection in air,
caused by the moving interface due to the Marangoni effect, is weak (Shevtsova,
Gaponenko & Nepomnyashchy 2013). The common estimation for h in the case of
forced convection starts from 10 W m−2 K−1 (Kosky et al. 2013). Since the exact
values of h are unknown, we propose to consider the heat transfer in terms of the Biot
number, which characterizes the conduction resistance inside a body with respect
to heat convection at the surface. In this work, the Biot values have been chosen
ranging from 0.5 to 3 in order for both effects to be important. In addition, this
provides a range of h values from 6.5 to 39 W m−2 K−1 (see table 1), which is in
good agreement with the proposed estimation by Kosky et al. (2013).
The ambient temperature is set as a linear profile along the free surface. The
temperature profile in air near the interface was measured experimentally in a
somewhat similar configuration (Shevtsova, Mialdun & Mojahed 2005). The results
showed a temperature drop on the solid supports, while the rest of the interface had
a linear profile.

2. The top and bottom of the domain z = 0, z = L: no-slip impermeable boundary
conditions for velocity are imposed. The system is heated from below, and the
temperature on the upper support is equal to the melting point:

u = 0, T(z = 0) = Tm + �T, T(z = L) = Tm = 299.65 K. (2.12a–c)

3. Zero pressure gradient is considered on all the walls:

∂P/∂n = 0. (2.13)

4. Initial conditions: the melting bridge is in solid state and kept at constant solidus
temperature Ts = 298.25 K, which is 1.4 K lower than that of the upper support
(Tm). If the temperatures were equal, then the narrow zone close to the cold
wall would remain solid. In addition, the region between Tm and Ts, called the
mushy region, helps to ensure numerical stability as there are no abrupt changes
in thermophysical/transport properties.
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Mesh Number of cells Simulation time for 100 s Melting time (50 %, 99 %) Deviation (50 %, 99 %)

1 35 640 1087 (241.6 s, 1803.4 s) (−1.2 %, −4.7 %)
2 72 576 1860 (244.3 s, 1681.1 s) (−0.1 %, −2.4 %)
3 145 152 4753 (244.6 s, 1722.4 s)

Table 2. Results of the mesh convergence test for numerical simulations at �T = 25 K. The selected mesh is
mesh 2; deviations in the melting time for 50 % and 99 % liquid fractions are calculated with respect to mesh 3.

2.3. Numerical method
The model is implemented in the open source software OpenFOAM. The cylindrical
geometry of the melting bridge is discretized with a Cartesian mesh. In order to do this,
the cylindrical domain has to be split into multiple domains, avoiding singularity in the
central point of the cylinder. First, the core central part is chosen to be an octagon, as it
has relatively smooth edges and makes the mesh cylindrical-like. The choice of the way
the mesh is split plays an important role in the evolution of the flow dynamics, where, for
example, the square central core part can favour an even wavenumber of modes (Aguilar
2011; Šeta et al. 2022). Time step �t has been assigned dynamically to accomplish the
condition Co < 0.5, where Co = umax �t/�x is the Courant number, the indicator of
numerical stability, and �x is the length of the numerical cell.

2.4. Convergence of numerical solutions
The convergence of the numerical simulations is examined for three different mesh choices
in table 2. The meshes are compared and characterized by the number of cells, simulation
cost (in time for 100 s), melting time to achieve 50 % and 99 % liquid fractions, and
deviations with respect to the finest mesh used. Since one of the goals of this work is
to analyse the effect of thermocapillary convection during the PCM melting, it is natural
to use the melting time as an indicative value for checking numerical convergence.

A comparison of the interface velocity calculated at different meshes in figure 2(a)
illustrates that our mesh has a slight twisting on the cold side, which does not affect
characteristics of interest in this study such as the melting time and the oscillation
frequency. To avoid this twisting, the regularization of boundary conditions is often used
in the literature, after Wanschura et al. (1995). A close analysis leads to the conclusion that
the regularization cuts out this twisting artificially, and in the end, in both cases a similar
modification of the flow is introduced. The finest mesh does not have such a twisting, but
the calculation time is enormously large. Note that we also made simulations between our
mesh and the finest one, and the twisting was still present.

The temperature distribution along the interface on the selected mesh is smooth and
practically coincides with the finest mesh. The difference in the evolution of the melting
time can be noticed only under magnification; see figure 2(c). The level of the numerical
error for the melting time with this choice is below 2.5 %, which is coherent with typical
experimental uncertainties. The validation with the existing experiments in the literature
has been done in our previous works (Šeta et al. 2021a,b, 2022). In all the cases, mesh 2
(blue curves) is found to offer a good compromise between a reduced computational cost
and numerical accuracy.
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Figure 2. Mesh convergence test. (a) Velocity at the interface. (b) Temperatures at the interface. The
temperature scale is reduced to emphasize the difference. (c) Evolution of the liquid fraction with time. The
inset presents a magnified view to illustrate the difference between the meshes as the system approaches
complete melting. The selected mesh is in blue.

2.5. Digital signal processing
For frequency analysis, the fast Fourier transform has been calculated using a Hanning
window of 2048 points, which gave a frequency resolution of the order of 0.5 mHz. To
obtain the power spectral density evolution, records of 50 s delayed by 1 s between them
were used systematically.

3. Results: heat transfer rate and melting dynamics

3.1. Balance of heat transfer
To determine the time evolution of the heat transfer rate through the upper (cold) and lower
(hot) supports of the melting bridge, the local heat flux q = −λ ∂T/∂z is integrated over
the disk surface A:

Q = −λ
∫

A
(∂T/∂z)z=0,L dA, (3.1)

where λ is the thermal conductivity of phase in contact with the support
(λ = λs + (λl − λs)f , with λs and λl being the thermal conductivity of the solid and liquid
phases respectively, and f the liquid fraction). According to the direction of the z-axis, a
positive value of Qbottom indicates a heat flux entering the melting bridge through the hot
disk. Correspondingly, a positive value of Qtop shows a heat flux leaving through the upper
disk. Figure 3(a) presents the time evolution of Qtop and Qbottom for adiabatic conditions
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Figure 3. Heat transfer rate through the bottom, the top and the interface of the liquid bridge at �T = 25 K
when (a) Bi = 0 and (b) Bi = 3. The insets illustrate the temporal evolution of the liquid fractions f and fb
obtained by two different approaches: direct numerical simulation and (3.2). Here, Ma = 3149.6 �T .

(Bi = 0) and �T = 25 K. As can be seen, heat always enters the melting bridge through
the lower support and decreases rapidly as the melting process proceeds. At the initial
stage, heat also enters through the upper disk, since the temperature of the bulk was first
set to ∼1 K below the temperature of the cold disk, but then it reverses, and the bridge
loses heat. The unbalanced heat (Qmelt = Qbottom − Qtop) is absorbed by the PCM to melt.
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When the PCM is completely melted, the rate of heat transfer through both supports
collapses to a value 0.882 W; see figure 3(a). Comparison of this value with that expected
from a pure conductive state, Qcond = λlA �T/L = 0.102 W, shows that in the liquid
bridge, the heat transfer by the convection is 8.6 times more efficient than that provided by
the heat conduction.

The analysis of the heat transfer behaviour for the other values of �T reveals a similar
tendency, but a steady state is reached earlier as �T grows, since the PCM is melted
faster. The role of convection becomes more important as �T increases. Note that the
heat transfer rate through solid substrates in the presence of convection and in the case
of pure conduction increases with �T , but to a different extent. This leads to a growth
of the convective/conductive transfer ratio: i.e. Qbottom(t → ∞)/Qcond = 7 (�T = 18 K),
8.6 (�T = 25 K) and 9.1 (�T = 40 K). Comparing these values, one can conclude that
this ratio, which characterizes the improvement in heat transport due to convection, reaches
a plateau with an increase in �T .

To check the robustness of the calculations, the liquid fraction fb is determined from the
heat balance as

fb(τ ) =

∫ τ

0
(Qbottom − Qtop) dt∫ ∞

0
(Qbottom − Qtop) dt

. (3.2)

The comparison of the time evolution for f obtained in the course of simulations as a mean
value at a given time, and fb, is presented in the inset of figure 3(a). The figure illustrates
good agreement between the evolutions of the liquid fractions determined by different
approaches.

Under non-adiabatic conditions, the cylindrical PCM/air interface also takes part in the
energy balance; in particular, after melting of a solid phase, heat goes across the liquid/gas
interface. The heat flux through the unit of the free surface area (q) and the total heat
transfer through the interface (Qint) are written as

q = −λl ∂T/∂r|r=R = h(Tint − Tamb), Qint = −λl

∫
Al

q dA, (3.3a,b)

where h is the heat transfer coefficient at the liquid–gas interface, (Tint − Tamb) is the
difference between the interfacial and ambient temperatures, and Al is the lateral surface
area of the liquid bridge.

The heat flux through the interface is considered positive when the melting bridge
loses heat. The temporal evolution of Qint is shown in figure 3(b) for Bi = 3
(h = 39 W m−2 K−1) and �T = 25 K, in addition to Qtop and Qbottom. The rates of heat
transfer through both solid substrates behave similarly to those observed in the adiabatic
case, but in the non-adiabatic case they are not equal in the steady state. Comparison of
figures 3(a) and 3(b) shows that Qbottom (the red curve) is almost the same, while the heat
flux through the top (the blue curve) is initially higher in the non-adiabatic case. This
can be understood in a way that initially heat enters the system also through the interface,
because over most of the liquid bridge height the ambient temperature is higher than inside.
Over time, heat gain through the PCM/gas interface decreases, mainly due to the thermal
Marangoni effect, which heats and melts the solid/gas interface in tens or hundreds of
seconds. A careful inspection of figure 3(b) shows that the heat flux through the interface,
Qint, changes sign from negative to positive at t ∼ 250 s. This occurs when the free
surface becomes hotter than the ambient temperature. When the entire PCM is melted,
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Figure 4. Axial surface temperature profiles at selected times for �T = 25 K, Bi = 3. The thick straight line
represents the temperature in the ambient gas. The inset shows the comparison between the profiles for adiabatic
(dashed line) and non-adiabatic (solid line) profiles.

the heat transfer rates are Qbottom = 0.972 W, Qtop = 0.904 W and Qint = 0.083 W. Note
that Qint is only 9 % of the conductive term. In the non-adiabatic case, the heat transfer
rate through the disks is slightly higher than that corresponding to the adiabatic case
(Qbottom = Qtop = 0.882 W).

The inset of figure 3(b) presents the comparison between the evolution of the liquid
fraction obtained directly from the numerical code and that computed from the heat
balance. As in the adiabatic case, the minor differences existing between the results are
a consequence of the cumulative numerical errors.

Figure 4 shows temperature profiles along the free surface of the melting bridge at
selected times (indicated on each profile). In the earlier stages of the melting, a significant
part of the surface is colder than the melting temperature, which leads to heat gain from
the ambient gas. Later, at t ∼ 125 s, the thermal front with T = Tmelt reaches the cold
disk (z = 0.01 m), which means complete melting of the solid phase near the free surface.
This situation provides a favourable scenario for convective heat transfer through the free
surface without being limited with still unmelted solid part. The mean surface temperature
becomes higher than the mean ambient temperature, which leads to a sign change of Qint.
Reaching the steady state, the central part of the interface has a nearly uniform temperature
of about 316 K, with large gradients near both ends, which correspond to heat gain through
the hot support of the bridge and heat loss through the cold part. To better characterize the
effect of the interface temperature on the heat flux balance, the inset of figure 4 shows
a comparison between the axial temperature profiles for the non-adiabatic and adiabatic
cases. As long as there is a heat gain from the air (t < 250 s), the surface temperature
in the non-adiabatic case is higher than the temperature corresponding to Bi = 0. The
situation reverses at later times, when the bridge starts to lose heat to the air. Note that
in the adiabatic case, the thermal front moves slower than in the non-adiabatic case. As
�T increases, the general behaviour of the fluxes is preserved, but as in the adiabatic
case, the relevant parameters are slightly readjusted. For example, at �T = 40 K and
Bi = 3, Qbottom = 1.715 W and Qtop = 1.545 W; the latter is similar to that obtained for
the adiabatic case at �T = 40 K. Because of the faster dynamics of the melting, the heat
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Figure 5. (a) Mean heat transfer rate Qmean through the lower (hot) support at different stages of the melting
process (t1 = 400 s and 2000 s) as a function of �T and the Biot number. The line-connected open symbols
correspond to t1 = 400 s, and the solid symbols without a guide line correspond to t1 = 2000 s. (b) Decrease
of the complete melting time with �T at different Bi. The relation between the Marangoni number and �T is
Ma = 3149.6 �T .

flux through the interface becomes positive earlier than in the �T = 25 K case, t = 150 s
versus 250 s. In addition, Qint(t → ∞) = 0.108 W, which is significantly higher than the
value obtained for �T = 25 K.

3.2. The thermal performance of PCM
One of the most important parameters in the thermal performance of PCM is the amount
of heat that can be removed from the hot source at a given time interval. Several
approaches can be developed to quantify the efficiency of the heat removal process.
For a two-dimensional parallelepiped configuration, Martínez et al. (2021) used the
so-called enhancement factor, which is the ratio of the melting times in the adiabatic

966 A46-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.463


Effect of heat transfer across interface on melting dynamics

and non-adiabatic cases. They found that this enhancement factor increases with the Bi
number.

In order to quantify the performance of the heat extraction in liquid bridge geometry, we
propose to determine the mean heat transfer rate through the hot (lower) support during a
given time t1:

Qmean = 1
t1

∫ t1

0
Qbottom dτ. (3.4)

We analyse two values of the time interval t1. First, we set t1 = 400 s in order to study the
system in the initial phase of melting, when a significant part of the PCM is still solid. Next,
we set t1 = 2000 s to evaluate the long-term performance, i.e. to determine the amount of
heat removed from the system when the PCM is completely melted.

Here, we consider a dynamics of melting with a linear temperature profile in the ambient
gas, which changes the heat transfer and the melting process. Figure 5(a) exhibits that the
mean heat transfer rate Qmean increases considerably with �T , which is expected. The
effect of the Biot number on the heat transfer rate through the hot support is much weaker
and depends on time. The role of the Biot number at t = 2000 s is more pronounced than
at t = 400 s. It is interesting to note that the mean heat transport decreases at longer times,
reflecting the reduction of the efficiency as the PCM becomes more melted. This is clearly
seen in figure 5(a), where the solid symbols are much lower than the open ones. These
latter results suggest the advantage of removing the melting bridge from a source of heat
before the complete melting is achieved. This strategy can improve the performance of
heat removal by up to 20 %. In our opinion, this may be associated with the structure and
inclination of powerful HTWs at the final stage of melting. The connection between the
shape of liquid/solid interface interface and heat transfer at the solidification stage was
discussed by Lappa & Savino (2002).

The importance of heat transport across the PCM/air interface is nearly negligible at
�T = 18 K for all Bi, and grows with �T . The slight enhancement of Qmean with an
increase in Bi can be associated with the activation of the Marangoni convection due to
the heat transfer through the interface, which helps the conduction mechanism.

3.3. Dynamics and topology of the melting front
The overall dynamics of the melting time with Bi and �T is shown in figure 5(b). It is
seen that the melting process is slowest in the adiabatic case. Comparison of the curves
for Bi = 0 and Bi /= 0 indicates that the appearance of heat transfer through the interface
essentially decreases the melting time, but depends a little on the value of the Biot number,
at least in the explored range 1 < Bi < 3. The effect of the Biot number is most noticeable
at the smallest �T , and is practically the same for different Biot numbers when �T reaches
40 K. Our results support previously reported data by Martínez et al. (2021) for a cavity
that the Biot number accelerates the melting.

The topology of the melting front can be traced in figure 6. In the earliest times, heat
transfer is dominated by conduction, and the melting front propagates parallel to the hot
supports, and much faster at the bottom. Gradually, the thermocapillary force induces
convection in a small region near the interface. At the interface, the Marangoni flow is
directed from the hot part to the cold part, and accelerates melting in the hot corner region.
This is well illustrated by figures 6(a) and 6(c), where the melting front penetrates deeper
towards solid at the bottom at t ∼ 100 s (175 s). The thin melting zone propagates rapidly
up along the interface as it is enhanced by the convective flow caused by the surface tension
gradient due to the existing temperature difference. In a relatively short time, the melting

966 A46-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.463


B. Šeta and others
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Figure 6. Topology of the melting front at different times for Bi = 0 (white) and Bi = 3 (green) at
�T = 25 K and �T = 40 K.

front forms two directions: from the interface to the inner region, driven by the Marangoni
convection, and from the bottom to the top, driven by thermal conduction. On the short
time scale (figures 6a,c), the effect of the Biot number is insignificant (compare the white
and green curves). Slight advancement of the melting process (green curves for Bi = 3)
visible at the upper part occurs due to the enhancement of convection by the ambient gas;
see the temperature distribution in figure 4. There is no Biot effect on the melting front
in the lower part, since the thermal field is controlled by thermal conduction from the hot
support. In later times (figures 6b,d), the topology of the melting front changes. Although
the same two directions of the melting front are clearly visible, their relation to interfacial
heat transfer is different. The melting front, moving from the bottom (or top) is practically
not affected by the Biot number, as the temperature field remains to be dominated by
the hot (cold) support. Accordingly, the green and white curves have the same location
at the top and bottom. Thermocapillary convection creates a quicker heat transport than
conduction, resulting in faster progress of the solid/liquid interface perpendicular to the
free surface. The melting front, governed by Marangoni convection, is affected strongly
by heat transfer across the interface.

Figures 6(b,d) demonstrate that melting occurs faster at Bi /= 0. The reason for the
faster melting dynamics lies in the modification of the temperature profile and, more
importantly, temperature gradients on the interface. When the heat loss becomes essential
(e.g. Bi = 3), the gradients near the solid supports are getting sharper, while they are more
flat in the central part (Melnikov & Shevtsova 2014; Melnikov et al. 2015). It results in the
enhancement of convection and faster melting.
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Figure 7. Evolution of the liquid fraction with time at different Biot numbers. The crosses indicate the
beginning of the oscillatory regime: (a) �T = 25 K and (b) �T = 40 K.

4. Results: oscillatory flow

4.1. Onset time of an oscillatory flow
The difference in the evolution time of the liquid fraction at various Biot numbers appears
at rather late times when Marangoni convection develops, i.e. t > 500 s (�T = 25 K) and
t > 400 s (�T = 40 K); see figure 7. At the earlier times, a quick advance of the liquid
fraction occurs due to enhanced conductive transport within the solid phase of PCM since
the thermal conductivity of the solid phase is higher than that of the melt. With the
predominance of the PCM liquid phase, melting slows down and the role of convection
activated by the Biot number increases. The most distinct role of various Biot numbers
is observed at the moments when more than 80–90 % of PCM is melted. Approximately
at these moments, the convective flow undergoes transition from stationary to oscillatory.
The onset of oscillations is indicated by the crosses on the curves in figure 7.

The study of the oscillatory flow regimes is based on the nonlinear dynamics of the
temperature field. This is because temperature signals are more accessible in the course
of experiments in a liquid bridge. Furthermore, the dynamic characteristics of the flow
field are similar to the thermal ones. To follow the development of the oscillatory regime,
a point located on the lateral surface close to the hot support at z = 0.1L is selected. The
time signals in this point were recorded continuously with the following spectral analysis
as described in § 2.5. On the basis of the spectral analysis, the onset time of the oscillatory
regime was determined.

A summary of the data on the emergence of oscillations is presented in figure 8. In
the adiabatic case, for relatively low �T , such as �T = 18 and 25 K, the stationary flow
persists longer until oscillations occur. The opposite situation is observed at higher �T , i.e.
�T ≥ 30 K, when the Biot number delays the appearance of the oscillatory flow. It should
be noted that in this �T range, the Biot number comes into play only for sufficiently strong
heat transfer through the interface, Bi > 1.

4.2. Properties of HTWs

Above the critical �Tcr, a time-periodic three-dimensional flow F̃, at leading order, can
be represented as F̃ ≈ F0 + F, where F0 is the stationary flow, and F is the oscillatory
part. A three-dimensional oscillatory flow emerges in the form of two waves propagating
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Figure 8. Onset time of an oscillatory flow as a function of Biot number at different �T .

in opposite directions, and the solution of the linearized problem can be written as

F = a+F+ + a−F−,

where F± = F̂±(r, z) exp(imφ±iωt) + c.c.

}
(4.1)

Here, a+ and a− are the arbitrary coefficients, m is the azimuthal wavenumber, and ω =
2π/f is the angular frequency. Usually, one observes either an SW, a− = a+, or a TW,
while one of the amplitudes a± vanishes. For the sake of simplicity of the discussion,
we neglect the multiple frequencies. To examine the properties of an HTW, we follow a
recently developed methodology (Gaponenko et al. 2021b).

In the supercritical region, the time periodic solution contains the entire spectrum
of wavenumbers, −∞ < m < −∞, but only a few modes have a significant amplitude.
According to the Fourier spectra shown later, in figure 12, the solution is time-periodic,
with the form

F =
∞∑

m=−∞

∞∑
n=−∞

f̂m,n(r, z) exp(imφ + inωt), (4.2)

where f̂−m,−n = f̂ ∗
m,n, m is the wavenumber, and n is the number of the combinational

Fourier harmonic for that component with wavenumber m. Note that the wavenumber in a
cylindrical liquid bridge is an integer.

In the following, we are interested in the azimuthal wavenumber and properties such
as whether the wave is travelling or standing. To examine the properties of an HTW with
a given azimuthal number m, the perturbation quantity f̃ is decomposed into real and
imaginary parts at a fixed horizontal position. Then (4.2) is written in the suitable form

F =
∞∑

m=−∞
f̃m(r, z, t) exp(imφ). (4.3)
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For further analysis, we consider only the non-axisymmetric part of the solution, f̃ ,
which can be determined from the computed quantity F̃(r, φ, z) by subtracting the average
field as

f̃ (r, φ, z, t) = F̃(r, φ, z, t) − 1
2π

∫ 2π

0
F̃(r, φ, z) dφ. (4.4)

Then the perturbation quantity f̃ is decomposed into real and imaginary parts at fixed
horizontal position z = z̄ for each m:

Fm(t) = 1
A

∫ R

0

∫ 2π

0
f̃ (r, φ, z̄, t) e−imφ r dr dφ

=
∫

f̃ (r, φ, z̄, t) cos(mφ) r dr dφ − i
∫

f̃ (r, φ, z̄, t) sin(mφ) r dr dφ

= Re[Fm(t)] − i Im[Fm(t)], (4.5)

where f̃ can be any of V , P, T; we select f̃ to be associated with the temperature of the
liquid. For the graphical representation of Re[Fm(t)] and Im[Fm(t)], they are divided by
the cross-sectional surface area (A = πR2). The observation of the prescribed temperature
displacement with time (e.g. the position of a point on the trajectory in the phase plane) is
performed from a two-dimensional steady state. The steady state in the plot is the origin
of coordinates (point (0, 0)) where Re[Fm(t)] = Im[Fm(t)] = 0. In the case of a TW, the
trajectory during one oscillation period forms a circle centred at point (0, 0). In the case
of an SW, the trajectory appears as a straight line crossing the centre.

4.3. Hydrothermal waves at �T = 25 K
The approach presented above has been applied to the analysis of an HTW in a
liquid bridge by Gaponenko et al. (2021a,b). Recent studies of melting bridges (Šeta
et al. 2021a,b, 2022) have shown that their nonlinear flow dynamics is more complex
than in liquid bridges without melting. The evolution of the melting bridge dominant
frequency over time at different Biot numbers is shown in figure 9 at �T = 25 K. The
frequency analysis starts from the moment of emergence of oscillations and continues
until the completion of the entire melting process where the system reaches steady-state
oscillations. First inspection of figure 9 indicates that for all the Biot numbers, the main
frequency decreases continuously in time. This decrease is explained by the permanent
increase in the liquid volume during the melting process. At an earlier stage of the process,
the frequency decreases rapidly as the melting occurs rapidly; see figure 7. Over time, the
growth rate of the liquid fraction slows down and, accordingly, the frequency changes
more slowly. Sharp drops in frequency evolution are associated with changes in nonlinear
dynamics of the system, for example, with the changes in the wavenumber of an HTW.

The inset in figure 9 displays the time evolution of the temperature oscillations. Clearly,
the growth of the amplitude at onset depends on the Biot number and �T . In most of
the cases presented, the amplitude increases continuously with time, although sometimes
it decreases and even may vanish for a short period of time. The sharp changes in the
amplitude are consistent with jumps of the frequency in the main plot. The onset of
oscillatory instability is determined from the information in the insets of the temperature
oscillations.
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illustrating: (a) SW m = 1; (b) transition between dynamic states; and (c) developed TW with m = 2. (d–f )
Corresponding temperature patterns. The dark blue three-dimensional shapes illustrate the non-melted PCM.

The emergence and evolution of HTWs are closely related to the transient behaviour
of the frequency. We start the discussion about HTWs from Bi = 0. Figure 9 reveals
the birth of a frequency f ∼ 0.09 Hz at t = 1450 s, which slowly decreases until t =
1800 s. The corresponding tiny temperature oscillations are barely noticeable in the inset.
The methodology presented in § 4.2 clearly shows that these low-amplitude oscillations
correspond to an HTW with azimuthal wavenumber m = 1; see figure 10(a). In the
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(a) HTW with growing amplitude; (b) developed TW with m = 2; and (c) the final state with coexistence of
two TWs with different m, where both waves travel in the clockwise direction. (d–f ) Snapshots of temperature
field at times corresponding to (a–c), where the dark blue three-dimensional shapes illustrate the non-melted
PCM. (g–i) Details of the transition from uniform TW with m = 2 to HTW with mixed modes: m = 1 and
m = 2 with a smaller amplitude.

considered time interval, the trajectory of m = 1 is a straight line passing through the
origin of the phase plane, which is the signature of the SW. The black curve in figure 9
illustrates that later, there is a long two-step frequency drop, which lasts from t = 1800 s
until ∼ 2250 s. During this time, the SW is attenuated and a spiral wave is originated,
the development of which leads to the formation of a TW with m = 2, as can be seen in
figure 10(b). Also during this stage, the final melting of the solid PCM takes place. At
an even later time (see figure 10c), a uniform TW with m = 2 is established, which is
characterized by the trajectory in the form of a circle centred at the origin of coordinates.
Over time, the TW keeps a constant frequency and an oscillation amplitude, as follows
from figure 9. The constancy of the temperature pattern and wave properties can be
attributed to a completely melted PCM. Figures 10(d–f ) present the temperature fields
at the same times as the trajectories. The isolines in cross-sections help us to understand
the structure of HTWs, while the dark blue three-dimensional drawings show the solid
part of PCM.
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Figure 12. Fourier spectra in the time interval 2500–2900 s when �T = 25 K: (a) Bi = 0, f1 = 0.046 Hz,
f2 = 2f1, f3 = 3f1; (b) Bi = 3, f1 = 0.066 Hz, f2 = 2f1, f3 = 3f1.
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Figure 13. Evolution of the main frequency during the melting process and beyond, at �T = 40 K and
various Biot numbers. The insets illustrate the evolution of of the temperature oscillations.

Nonlinear dynamics of the system is more complicated in the non-adiabatic case. Let
us consider the behaviour of the system when Bi = 1. In order to explore the system
dynamics, one should simultaneously follow the spectral characteristics shown by the red
curve in figure 9 and the trajectories in figure 11. From the onset of an oscillatory state,
its frequency decreases continuously at a sufficiently large rate, while the amplitude of the
temperature oscillations rises. At this time, the trajectory of the HTW winds up and forms
a circle that has the features of a future TW with m = 2, as seen in figure 11(a). Later,
i.e. at t ≈ 1500 s, the decrease rate of the frequency diminishes. The phase plane exhibits
pronounced features of a TW with m = 2. However, since the frequency is not constant,
the trajectories continue winding on a circle with a little divergence in figure 11(b).
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Figure 14. Trajectories of the dynamic system at different time intervals when Bi = 3 and �T = 40 K.
(a–c) Here, t ≤ 1600 s: formation of TW, developed TW with m = 2 and flow pattern at z = 3 mm illustrating
TW rotating clockwise. (d–f ) Here, the different stages of HTWs are shown at t = 1800 s: (d) birth of m = 1;
(e) reverse of the rotation direction of the primary TW with m = 2 to counterclockwise; (f ) birth of TW with
m = 3 rotating clockwise. (g–i) Here, t = 2000 s: coexistence of three TWs with m = 1, m = 2 and m = 3.

The next big changes in the frequency behaviour are observed at the time interval
2100 < t < 2300 s. The dynamic behaviour becomes intriguing, and for clarity, the
transient regime is detailed by three graphs in the bottom row, in figures 11(g–i). At
these moments, the TW with m = 2 loses its power, the amplitude of its oscillations
decreases, and this gives a chance for the birth of a more energetic TW with m = 1.
Finally, the frequency stabilizes and the trajectories of two TWs settle in the phase plane,
the more energetic one with m = 1, and the weaker one with m = 2. Both waves travel
in the same clockwise direction. Snapshots of the temperature field in figures 11(d–f ) are
given for the same time instants as the trajectories in figures 11(a–c). They make clear
that the emergence of m = 1 and the weakening of m = 2 occur after complete melting of
PCM. The constant radii of the trajectories in figure 11(c) indicate that the amplitude and
frequency of oscillations do not change in time, and the patterns will be stable in a rotating
frame of reference, since one revolution corresponds to one oscillation period, while the
observer is in the centre of the plane, (Re(Fm), Im(Fm)) = (0, 0).
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The Fourier spectra in figure 12, characterizing the oscillatory behaviour of the system,
clearly distinguish one fundamental frequency with additional peaks corresponding to the
frequencies 2f1, 3f1, therefore the solutions are periodic in time.

Supplementary movie 1 (available at https://doi.org/10.1017/jfm.2023.463) accompanies
figure 11, showing the temporal evolution of the flow pattern and trajectories of the system
in the phase plane at �T = 25 K and Bi = 1.

4.4. Hydrothermal waves at � = 40 K
For �T = 40 K, we explore in detail the case with Bi = 3. For this, one should analyse
simultaneously the green curves in figure 13 and the whole of figure 14. The melting time
is rather fast, t ∼ 1000 s, and the oscillatory regime sets in shortly before the complete
melting, i.e. at t ≈ 900 s as seen in figure 7(b). The green curve inset in figure 13
exhibits that after a short initial time interval, the temperature oscillations retain a constant
amplitude for a long time, until t ∼ 1800 s. During the initial stage, when the amplitude
and frequency of oscillations are settling, the trajectory of the emerging TWs is an
unwinding spiral; see figure 14. With time, this spiral turns into a uniform TW with m = 2,
rotating clockwise. Later, at t ≈ 1800 s, the amplitude of oscillations decreases sharply to
almost zero, and then rapidly increases; see the green curve inset in figure 13. Usually, this
is associated with a transition between oscillatory states.

Indeed, this moment corresponds to a total change in the nonlinear dynamics of the
system. The fundamental frequency makes a couple of kinks and drops sharply. The
long-lived TW with m = 2 starts to lose power and changes the direction of rotation;
see figure 14(e). This stressful system behaviour triggers two additional HTWs, m = 1
and m = 3 as shown in figures 14(d,f ). In general, their trajectories in the phase plane
resemble a logarithmic spiral, when the distance between successive turns of the spiral
increases. However, the nature of their spiral growth is very different. Spiral-like wave
with m = 1 unwinds counterclockwise, which is consistent with the m = 2 new direction
of rotation. The less energetic m = 3 performs small coils that make up a spiral-like wave.
Furthermore, m = 3 rotates in the clockwise direction, which is opposite to m = 1 and
m = 2.

Later, at t ∼ 2000 s, the system behaviour stabilizes. The final dynamic pattern of the
system consists of three TWs, which are shown in figures 14(g–i): the most energetic TW
with m = 1 and the weakened TW with m = 2 rotate counterclockwise; the less energetic
TW with m = 3 rotates clockwise.

4.5. Summary of nonlinear dynamics of a melting bridge
Figure 15 summarizes, in terms of Biot number and time, the evolution of nonlinear
dynamics of the melting bridge at low and high thermal stresses, for �T = 25 K and
�T = 40 K. Standing waves exist only at the onset of instability and at selected Biot
numbers. Later, over time, they break up in favour of TWs. If, for a given Biot number, an
SW does not emerge at the onset of instability, then a spiral wave arises, which winds up
and leads to the formation of a TW. At earlier times, for all the studied �T , a TW appears
with a dominant azimuthal wavenumber m = 2. At low thermal stresses, �T = 25 K, only
at Bi = 1 is the primary TW accompanied by the secondary mode m = 1, and both rotate
in a clockwise direction. For other Biot numbers, TW with m = 2 is the only one that
exists during the observation time. At high thermal stresses, �T = 40 K, the primary TW
with m = 2 is accompanied later in time by one or two other TWs with m = 1 and m = 3.
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Figure 15. Summary of nonlinear dynamics of melting bridge. Emergence of HTWs in time for Bi = 0, 1,
2 and 3 for (a) �T = 25 K, and (b) �T = 40 K. TW stands for travelling wave, SW for standing wave, and
the last digit indicates the oscillatory mode m. Shaded areas indicate phases of formation of TW2 waves, and
arrows indicate time moments when wave changes the direction of rotation. Supplementary movie 2 (Bi = 1,
�T = 40) and supplementary movie 3 (Bi = 2, �T = 40) are available by clicking on the shadow regions for
the selected Bi.

The overall nonlinear dynamics becomes more complicated at high thermal stresses; over
time, the primary TW can change direction (these moments are shown by the arrows in
figure 15), and the TWs emerging later can have opposite directions of rotation.

Supplementary movie 2 (Bi = 1, �T = 40) and supplementary movie 3 (Bi = 2, �T =
40) are available by clicking on the shadow regions in figure 15 for the selected Bi, which
show the coexistence and transitions of three modes with different m and the transition
from SWs to TWs.
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5. Conclusions

This paper presents a detailed three-dimensional numerical investigation of melting
dynamics of the phase change material (PCM) n-octadecane (Pr = 52.5) subjected to
thermocapillary effects. The dynamics of phase-change transition in microgravity is
modelled using an enthalpy-porosity based formulation of the Navier–Stokes equations
coupled with the energy equation. The PCM is enclosed in a cylindrical container,
and the temperature difference �T between the lower (hot) and upper (cold) solid
supports is applied. The lateral surface is in contact with air, the temperature of which
changes linearly. As soon as a part of the lateral surface melts, the thermocapillary effect
causes convection in an initially small area. The melting process is enhanced locally
and accelerates the advancement of the solid/liquid front along the lateral boundary.
When the liquid fraction occupies ∼80–90 % of the volume (depending on �T), the flow
undergoes transition from stationary to oscillatory. The properties of emerging HTWs
in an oscillatory regime are analysed using recently suggested methodology (Gaponenko
et al. 2021a,b). The effects of heat transfer through the interface on the nonlinear dynamics
are studied at different Biot numbers.

From the results obtained, it can be concluded that thermocapillary convection allows
enhancing the heat transfer rate of n-octadecane by a factor of 7–9 compared with pure
thermal conduction when �T changes from 18 K to 40 K. This dependence is not linear,
and as �T increases further, the improvement reaches a plateau.

Curiously, heat loss through the interface increases the average heat transfer (Qmean)
through the hot support, albeit only slightly. The enhancement in Qmean with an increase
in Bi can be associated with the activation of Marangoni convection due to a change in the
interface temperature. Another interesting finding is that Qmean decreases at later times (for
example, at 400 s versus 2000 s), reflecting a decline in efficiency as the liquid fraction
increases considerably. This suggests disconnecting the PCM system from the hot source
before the PCM is completely melted.

Melting time is another important factor for PCM performance. The presence of heat
transfer through the interface essentially decreases the melting time, but depends little on
the value of the Biot number. The effect of the Biot value is most noticeable at the smallest
�T , and is almost negligible when �T reaches 40 K. An analysis of the topology of the
melting front reveals two somewhat independent mechanisms of its propagation: (a) driven
by thermal conduction, when the front is parallel to the hot/cold substrate, and (b) driven
by convection, when the front is perpendicular to the interface. The latter is affected by
the Biot number.

We have paid special attention to the nonlinear evolution of HTW by means of Fourier
analysis and building trajectories of various modes in the phase plane to identify SWs and
TWs and their azimuthal wavenumber. As a general statement, it is worth noting that TW
with m = 2 is the dominant HTW in the nonlinear dynamics of a melting bridge.

A detailed analyses of HTW properties at �T = 25 K indicates that, with the exception
of Bi = 1, an SW emerges at the onset of the oscillatory regime. However, this wave lives
for only a short time and is replaced by a TW with the azimuthal wavenumber m = 2. The
latter wave persists throughout the observation time. Again, as an exception at Bi = 1, the
m = 1 mode appears at a much later time and coexists with m = 2.

The nature of the coupling between HTW and Biot number is more complicated at high
thermal stresses. At �T = 40 K, an SW appears only at Bi = 2. In all the other cases, the
formation of HTWs begins with a spiral-like wave that unwinds clockwise and leads to the
formation of a TW with m = 2. Later, other TWs with m = 1 and m = 3 emerge, which
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affect the primary TW with m = 2. As the result of such an interplay, a TW with m = 2
can weaken (a decrease in the amplitude in the phase plane) and/or change direction of
rotation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.463.
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