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LETTER TO THE EDITOR

Dear Editor,

A formula for tail probabilities of Cox distributions

1. Introduction and results

A Cox distribution with n > 0 phases can be defined as the time until absorption into state 0,

starting from state n, of the Markov process depicted in Figure 1. The process remains in

state k, 1 ≤ k ≤ n, an exponentially distributed amount of time with parameter µk . Upon

departure from state k the process moves to state 0 with probability αk and moves to state k − 1

with probability ᾱk = 1 − αk . To avoid trivial situations we assume that αk < 1 for all k.

Cox distributions are useful when approximating general nonnegative distributions using

exponential phases. It has been shown that the class of Cox distributions is dense in the class

of all nonnegative distributions [3].

Define Yk as the time until absorption in 0 starting from state k, and let Fk = 1 − F̄k be the

distribution function of Yk .

Theorem 1. Let all µk , 1 ≤ k ≤ n, be different. Then F̄k for k = 1, . . . , n is given by

F̄k(t) =

k
∑

i=1

ci,ke−µi t

for all t ≥ 0, where

ci,k =
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⎩

1 if i = k = 1,

µkci,k−1ᾱk

µk − µi

if k > 1, i < k,

1 −

k−1
∑

j=1

cj,k otherwise, i.e. if i = k > 1.

Theorem 1 is a special case of Theorem 2 below, which deals with the case of general param-

eter values. We formulate Theorem 1 because of its simplicity and relevance for applications.

Before continuing with Theorem 2, we introduce some additional notation.

Define:

m(j) = #{i | µi = µj , 1 ≤ i < j},

that is, the number of times that µj occurs in µ1, . . . , µj−1;

h(j, k) =

{

min
i

{µi = µj , j < i ≤ k} if such an i exists,

0 otherwise,
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Figure 1: A Cox distribution with n phases.

that is, the lowest higher-numbered phase with the same parameter in the Cox distribution with

k phases;

n(j) =

{

max
i

{µi = µj , 1 ≤ i < j} if m(j) > 0,

0 otherwise,

that is, the highest lower-numbered phase in the Cox distribution with the same parameter;

l(k) = min
i

{µi = µk, 1 ≤ i ≤ k},

that is, the lowest numbered phase with parameter µk .

For convenience we also take c0,k = 0 for all k.

Theorem 2. For arbitrary µk > 0, F̄k for k = 1, . . . , n is given by

F̄k(t) =

k
∑

i=1

ci,kt
m(i)e−µi t (1)

for all t ≥ 0, where

ci,k =
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⎩

1 if i = k = 1,

µkci,k−1ᾱk − ch(i,k),k(m(i) + 1)

µk − µi

if µi �= µk,

µkcn(i),k−1ᾱk

m(i)
if µi = µk, m(i) > 0, k > 1,

1 −
∑

1≤j<k:m(j)=0,j �=i

cj,k otherwise, i.e. if µi = µk, m(i) = 0, k > 1.

Proof. We extend the proof of Riordan [2, pp. 110–111], who treated a special case of

Theorem 1 (see Section 3 below). From properties of the exponential distribution, we find that,

for small h > 0,

Fk(t + h) = µkh(αk + ᾱkFk−1(t)) + (1 − µkh)Fk(t) + o(h),

where o(h) has the usual meaning that limh→0 o(h)h−1 = 0. Rewriting and taking the limit as

h → 0 gives

F̄ ′
k(t) = µk(ᾱkF̄k−1(t) − F̄k(t))

for k > 0. Substituting in (1) leads to

k
∑

i=1

ci,k

[

m(i)tm(i)−1e−µi t −µi t
m(i)e−µi t

]

=

k−1
∑

i=1

µkᾱkci,k−1t
m(i)e−µi t −

k
∑

i=1

µkci,kt
m(i)e−µi t .
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Equating coefficients of tme−µt for equal m and µ leads to the given expressions for ci,k when

µi �= µk and when µi = µk , m(i) > 0. The expression when µi = µk , m(i) = 0 follows

since F̄k(0) = 1.

2. Numerical considerations

Calculating the coefficients directly using (1) can lead to numerical problems. For example,

if t > 1 and many phases have the same parameter, then, for large i, ci,k will approach 0

and tm(i) will get very big, leading to numerical instabilities. In this case it is better to scale

the parameters such that t can be omitted, i.e. µi should be replaced by tµi . This has been

done in the algorithm below. Likewise we should be careful when µi ≈ µj for certain i, j ;

taking them equal might give a very good approximation while avoiding numerical difficulties.

Finally, when F̄k(t) gets close to 1, numerical problems can occur when computing F̄k+n(t).

If αk = 0 for all k, then F̄k(t) is increasing in k. For this reason F̄k+n(t) should be set equal to

1 if F̄k(t) ≈ 1 in this case.

Algorithm to compute FK(t):

for j, k = 1 to K do calculate m(j), h(j, k), n(j)

c1,1 = 1

for k = 2 to K do

c0,k = 0

for i = k downto 1 do

if µi �= µk , then ci,k =
tµkci,k−1ᾱk − ch(i,k),k(m(i) + 1)

t (µk − µi)

elseif m(i) > 0, then ci,k =
tµkcn(i),k−1ᾱk

m(i)
endif

endfor

cl(k),k = 1 −
∑

1≤j<k:m(j)=0,j �=l(k)

cj,k

endfor

FK(t) = 1 −

K
∑

i=1

ci,ke−µi t

3. Special cases

If µi = µ for all i then we obviously get a gamma distribution; in this case c1,k = 1 for all

k and ci,k = µci−1,k−1/(i − 1), implying that ci,k = µi−1/(i − 1)! in case 1 < i ≤ k. These

are indeed the coefficients of the gamma distribution.

Riordan [2, pp. 110–111] (see [1] for a discussion and other references) derived a closed-form

expression for
∑∞

k=0 pkF̄k(t) for the special case µi = C + i. However, it is computationally

more efficient to compute the coefficients recursively using Theorem 1, instead of using

Riordan’s closed-form solution.

The current result can be very useful for the calculation of waiting-time distributions in

nonstandard queueing systems, such as queues with abandonments where the abandonment

rate depends on the position of the customer.
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