Real Hypersurfaces in Complex Two-plane Grassmannians with Reeb Parallel Ricci Tensor in the GTW Connection

Juan de Dios Pérez, Hyunjin Lee, Young Jin Suh, and Changhwa Woo

Abstract

There are several kinds of classification problems for real hypersurfaces in complex twoplane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$. Among them, Suh classified Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with Reeb parallel Ricci tensor in Levi-Civita connection. In this paper, we introduce the notion of generalized Tanaka-Webster (GTW) Reeb parallel Ricci tensor for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Next, we give a complete classification of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with GTW Reeb parallel Ricci tensor.

Introduction

The classification of real hypersurfaces in Hermitian symmetric spaces is one of interesting parts in the field of differential geometry. Among them, we introduce a complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ defined by the set of all complex twodimensional linear subspaces in \mathbb{C}^{m+2}. It is a kind of Hermitian symmetric space of compact irreducible type with rank 2. Remarkably, the manifolds are equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} satisfying $J J_{v}=J_{v} J$ $(v=1,2,3)$, where $\left\{J_{v}\right\}_{v=1,2,3}$ is an orthonormal basis of \mathfrak{J}. When $m=1, G_{2}\left(\mathbb{C}^{3}\right)$ is isometric to the two-dimensional complex projective space $\mathbb{C} P^{2}$ with constant holomorphic sectional curvature eight. When $m=2$, we note that the isomorphism $\operatorname{Spin}(6) \simeq \operatorname{SU}(4)$ yields an isometry between $G_{2}\left(\mathbb{C}^{4}\right)$ and the real Grassmann Manifold $G_{2}^{+}\left(\mathbb{R}^{6}\right)$ of oriented two-dimensional linear subspaces in \mathbb{R}^{6}. In this paper we assume that m is not less than 3 .

Let N be a local unit normal vector field of a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Since $G_{2}\left(\mathbb{C}^{m+2}\right)$ has the Kähler structure J, we can define a Reeb vector field $\xi=-J N$ and a 1-dimensional distribution $[\xi]=\mathcal{C}^{\perp}$, where \mathcal{C} denotes the orthogonal complement in $T_{x} M, x \in M$, of the Reeb vector field ξ. The Reeb vector field ξ is said to be Hopf if \mathcal{C} (or \mathcal{C}^{\perp}) is invariant under the shape operator A of M. The 1-dimensional foliation of M by the integral curves of ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface if and only if the Hopf foliation of M is totally geodesic.

[^0]By the formulas in [11, Section 2], it can easily be seen that ξ is Hopf if and only if M is Hopf.

From the quaternionic Kähler structure \mathfrak{J} of $G_{2}\left(\mathbb{C}^{m+2}\right)$, there naturally exist almost contact 3 -structure vector fields $\xi_{v}=-J_{v} N, v=1,2,3$. Let $Q^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. It is a 3-dimensional distribution in the tangent space $T_{x} M$ of M at $x \in M$. In addition, Q stands for the orthogonal complement of Q^{\perp} in $T_{x} M$. It is the quaternionic maximal subbundle of $T_{x} M$. Thus the tangent space of M consists of the direct sum of \mathcal{Q} and Q^{\perp} as follows: $T_{x} M=Q \oplus Q^{\perp}$.

For two distributions \mathcal{C}^{\perp} and Q^{\perp} defined above, we consider two natural invariant geometric properties under the shape operator A of M, that is, $A \mathcal{C}^{\perp} \subset \mathcal{C}^{\perp}$ and $A Q^{\perp} \subset$ Q^{\perp}. In a paper due to Suh [17, Theorem 1.1] we introduce the following theorem.

Theorem A Let M be a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then both $[\xi]$ and Q^{\perp} are invariant under the shape operator of M if and only if either
(A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or
(B) m is even, say $m=2 n$, and M is an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

In case (A), we say M is of Type (A). Similarly, in case (B) we say M is of Type (B). Until now, by using Theorem A, many geometers have investigated some characterizations for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with geometric quantities, shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on. Actually, Lee and Suh [11] gave a characterization for a real hypersurface of Type (B) as follows.

Theorem B Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution Q if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right), m=2 n$. In other words, M is locally congruent to a real hypersurface of Type (B).

In particular, there are various well-known results with respect to the Ricci tensor S on Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$. From such a point of view, Suh [16] gave a characterization of a model space of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ under the condition $S \phi=\phi S$, where ϕ denotes the structure tensor field of M. In [17] and [18], he also considered the parallelism of Ricci tensor with respect to the Levi-Civita connection and gave the following theorem.

Theorem C ([18]) Let M be a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$ with nonvanishing geodesic Reeb flow. If the Ricci tensor is Reeb parallel, $\nabla_{\xi} S=0$. Then M is locally congruent to one of the following:
(i) a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius $r \neq \frac{\pi}{4 \sqrt{2}}$,
(ii) a tube over a totally geodesic $\mathbb{H} P^{n}, m=2 n$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius r such that

$$
\cot ^{2}(2 r)=\frac{1}{2 m-1}
$$

and ξ-parallel eigenspaces $T_{\cot r}$ and $T_{\tan r}$.

Now we introduce another connection different from the Levi-Civita one, called the generalized Tanaka-Webster (GTW) connection $\widehat{\nabla}^{(k)}$ on M given by

$$
\widehat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+\widehat{F}_{X}^{(k)} Y,
$$

where k is a non-zero real number (see $[1,2,5]$) and

$$
\widehat{F}_{X}^{(k)} Y=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y
$$

The operator $\widehat{F}^{(k)}$ is a skew-symmetric $(1,1)$ type tensor, that is,

$$
g\left(\widehat{F}_{X}^{(k)} Y, Z\right)=-g\left(Y, \widehat{F}_{X}^{(k)} Z\right)
$$

for all tangent vector fields X, Y, and Z on M and is said to be a Tanaka-Webster (or k-th-Cho) operator with respect to X. Recently, in [5] Jeong, Kimura, Lee, and Suh defined the notion of Reeb parallel shape operator with GTW connection, $\widehat{\nabla}_{\xi}^{(k)} A=0$, for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ and gave the following theorem.

Theorem $D \quad$ Let M be a connected orientable Hopfhypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$. If the shape operator A is generalized Tanaka-Webster Reeb parallel, then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Motivated by these works, in this paper we consider the notion of Reeb parallelism for the Ricci tensor S with respect to the GTW connection on a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. The Ricci tensor S is said to be generalized Tanaka-Webster Reeb parallel (GTW Reeb parallel) if the covariant derivative in GTW connection $\widehat{\nabla}^{(k)}$ of S along the Reeb direction vanishes, that is, $\left(\widehat{\nabla}_{\xi}^{(k)} S\right) Y=0$. In terms of this condition, we assert the following theorem.

Theorem 1 Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with $\alpha \neq 2 k$. The Ricci tensor S on M is GTW Reeb parallel if and only if M is locally congruent to one of the following:
(i) a tube over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius r such that

$$
r \neq \frac{1}{2 \sqrt{2}} \cot ^{-1}\left(\frac{k}{\sqrt{2}}\right),
$$

or
(ii) a tube over a totally geodesic $\mathbb{H} P^{n}, m=2 n$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius r such that

$$
r=\frac{1}{2} \cot ^{-1}\left(\frac{-k}{4(2 n-1)}\right) .
$$

When we consider the notion of GTW parallel Ricci tensor, that is, $\left(\widehat{\nabla}_{X}^{(k)} S\right)=0$ for arbitrary tangent vector field X on M, by Theorem 1 we can assert the following theorem.

Theorem 2 There does not exist any Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$ with $\alpha \neq 2 k$, satisfying $\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=0$ for any tangent vector fields X and Y on M.

On the other hand, in [6] Jeong, Lee, and Suh gave a characterization of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with $\nabla A=\widehat{\nabla}^{(k)} A$. So naturally we consider that $\nabla S=$ $\widehat{\nabla}^{(k)} S$, that is, the covariant derivative of the Ricci tensor S coincides with the derivative of S in the GTW connection. This is equivalent to the fact that the Ricci tensor S commutes with the Tanaka-Webster operator $\widehat{F}_{X}^{(k)}$, that is, $S \cdot \widehat{F}_{X}^{(k)}=\widehat{F}_{X}^{(k)} \cdot S$. It means that any eigenspace of the Ricci tensor S is invariant under the Tanaka-Webster operator $\widehat{F}_{X}^{(k)}$. In terms of this condition, we assert the following theorem.

Theorem 3 There does not exist any Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$, satisfying $\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=\left(\nabla_{X} S\right) Y$ for any tangent vector fields X and Y on M.

In order to get our results, in Section 1 we will give the fundamental formulas related to the Reeb parallel Ricci tensor. In Section 2, we want to give a complete proof of Theorem 1 for $\alpha=g(A \xi, \xi) \neq 2 k$. In Sections 3 and 4 we give complete proofs of Theorem 2 and 3 , respectively.

1 Basic Formulas for Ricci Tensor in $G_{2}\left(\mathbb{C}^{m+2}\right)$

In this paper, we refer the reader to $[3,4,7-9,12,13,15,16,19-22]$ for Riemannian geometric structures of Hermitian symmetric spaces and its geometric quantities. Hereafter, let us denote by M a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, and let S denote the Ricci tensor of M. From [14], the Ricci tensor S of a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$, is given by

$$
\begin{align*}
S X= & (4 m+7) X-3 \eta(X) \xi+h A X-A^{2} X \tag{1.1}\\
& +\sum_{v=1}^{3}\left\{-3 \eta_{v}(X) \xi_{v}+\eta_{v}(\xi) \phi_{v} \phi X-\eta_{v}(\phi X) \phi_{v} \xi-\eta(X) \eta_{v}(\xi) \xi_{v}\right\}
\end{align*}
$$

where h denotes the trace of the shape operator A, that is, $h=\operatorname{Tr} A$. Then the derivative of the Ricci tensor S becomes

$$
\begin{align*}
\left(\nabla_{X} S\right) Y= & -3 g(\phi A X, Y) \xi-3 \eta(Y) \phi A X \tag{1.2}\\
& +(X h) A Y+h\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y-A\left(\nabla_{X} A\right) Y \\
& -3 \sum_{v=1}^{3}\left\{g\left(\phi_{v} A X, Y\right) \xi_{v}+\eta_{v}(Y) \phi_{v} A X\right\} \\
+ & \sum_{v=1}^{3}\left\{2 \eta_{v}(\phi A X) \phi_{v} \phi Y+g\left(A X, \phi_{v} \phi Y\right) \phi_{v} \xi-\eta(Y) \eta_{v}(A X) \phi_{v} \xi\right. \\
& \left.\quad+\eta_{v}(\phi Y) \eta(A X) \xi_{v}-\eta_{v}(\phi Y) \phi_{v} \phi A X-2 \eta(Y) \eta_{v}(\phi A X) \xi_{v}\right\}
\end{align*}
$$

for any tangent vector fields X and Y on M.

In particular, substituting $X=\xi$ into (1.2) and using the condition that M is Hopf, that is, $A \xi=\alpha \xi$, we get

$$
\begin{aligned}
\left(\nabla_{\xi} S\right) Y= & 4 \alpha \sum_{v=1}^{3}\left\{\eta_{v}(\phi Y) \xi_{v}-\eta_{v}(Y) \phi_{v} \xi\right\}+(\xi h) A Y \\
& +h\left(\nabla_{\xi} A\right) Y-\left(\nabla_{\xi} A\right) A Y-A\left(\nabla_{\xi} A\right) Y .
\end{aligned}
$$

Moreover, by the definition of GTW connection $\widehat{\nabla}^{(k)}$ the covariant derivative of S with respect to the GTW connection becomes

$$
\begin{align*}
\left(\widehat{\nabla}_{X}^{(k)} S\right) Y= & \widehat{\nabla}_{X}^{(k)}(S Y)-S\left(\widehat{\nabla}_{X}^{(k)} Y\right) \tag{1.3}\\
= & \nabla_{X}(S Y)+g(\phi A X, S Y) \xi-\eta(S Y) \phi A X-k \eta(X) \phi S Y \\
& -S \nabla_{X} Y-g(\phi A X, Y) S \xi+\eta(Y) S \phi A X+k \eta(X) S \phi Y .
\end{align*}
$$

It yields
(1.4) $\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=-3 g(\phi A X, Y) \xi-3 \eta(Y) \phi A X$

$$
+(X h) A Y+h\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y-A\left(\nabla_{X} A\right) Y
$$

$$
+g(\phi A X, S Y) \xi-\eta(S Y) \phi A X-k \eta(X) \phi S Y
$$

$$
-g(\phi A X, Y) S \xi+\eta(Y) S \phi A X+k \eta(X) S \phi Y
$$

$$
-3 \sum_{v=1}^{3}\left\{g\left(\phi_{v} A X, Y\right) \xi_{v}+\eta_{v}(Y) \phi_{v} A X\right\}
$$

$$
+\sum_{v=1}^{3}\left\{2 \eta_{v}(\phi A X) \phi_{v} \phi Y+g\left(A X, \phi_{v} \phi Y\right) \phi_{\nu} \xi-\eta(Y) \eta_{v}(A X) \phi_{\nu} \xi\right.
$$

$$
\left.+\eta_{v}(\phi Y) \eta(A X) \xi_{v}-\eta_{v}(\phi Y) \phi_{v} \phi A X-2 \eta(Y) \eta_{v}(\phi A X) \xi_{v}\right\} .
$$

From now on, we assume that M is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with GTW Reeb parallel Ricci tensor, that is, S satisfies:

$$
\begin{equation*}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X=0 \tag{C-1}
\end{equation*}
$$

By (1.3), it becomes

$$
\begin{align*}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X= & \widehat{\nabla}_{\xi}^{(k)}(S X)-S\left(\widehat{\nabla}_{\xi}^{(k)} X\right) \tag{1.5}\\
= & \nabla_{\xi}(S X)+g(\phi A \xi, S X) \xi-\eta(S X) \phi A \xi-k \eta(\xi) \phi S X \\
& \quad-S\left(\nabla_{\xi} X\right)-g(\phi A \xi, X) S \xi+\eta(X) S \phi A \xi+k \eta(\xi) S \phi X \\
= & \left(\nabla_{\xi} S\right) X-k \phi S X+k S \phi X .
\end{align*}
$$

Thus, condition (C-1) is equivalent to $\left(\nabla_{\xi} S\right) X=k \phi S X-k S \phi X$, which yields

$$
\begin{align*}
& 4(k-\alpha) \sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \xi_{v}-\eta_{v}(X) \phi_{v} \xi\right\} \tag{1.6}\\
& =(\xi h) A X+h\left(\nabla_{\xi} A\right) X-\left(\nabla_{\xi} A\right) A X-A\left(\nabla_{\xi} A\right) X-k h \phi A X \\
& \quad+k \phi A^{2} X+k h A \phi X-k A^{2} \phi X
\end{align*}
$$

from (1.1), (1.2), and [10, Section 2].

Using these equations, we prove that ξ belongs to either \mathcal{Q} or Q^{\perp}, as follows.
Lemma 1.1 Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. If M has a $G T W$ Reeb parallel Ricci tensor, then ξ belongs to either the distribution Q or the distribution Q^{\perp}.

Proof In order to prove this lemma, we put

$$
\begin{equation*}
\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1} \tag{1.7}
\end{equation*}
$$

for some unit vectors $X_{0} \in Q$ and $\xi_{1} \in Q^{\perp}$. Putting $X=\xi$ in (1.6), by (1.7) and basic formulas in [10, Section 2], it follows that

$$
\begin{equation*}
4(\alpha-k) \eta_{1}(\xi) \phi_{1} \xi=\alpha(\xi h) \xi-h(\xi \alpha) \xi-2 \alpha(\xi \alpha) \xi \tag{1.8}
\end{equation*}
$$

where we have used $\left(\nabla_{\xi} A\right) \xi=(\xi \alpha) \xi$ and $\left(\nabla_{\xi} A\right) A \xi=\alpha(\xi \alpha) \xi$.
Taking the inner product of (1.8) with $\phi_{1} \xi$, we have

$$
4(\alpha-k) \eta_{1}(\xi) \eta^{2}\left(X_{0}\right)=0
$$

because of $\eta^{2}\left(X_{0}\right)+\eta^{2}\left(\xi_{1}\right)=1$. From this, we have the following three cases.
Case 1: $\alpha=k$. From the definition of GTW connection we see that α must be a non-zero real number. By virtue of $Y \alpha=(\xi \alpha) \eta(Y)-4 \sum_{v=1}^{3} \eta_{v}(\xi) \eta_{v}(\phi Y)$ in [10, Lemma A], the Reeb vector field ξ belongs to either \mathcal{Q} or Q^{\perp}.
Case 2: $\eta\left(\xi_{1}\right)=0$. By the notation (1.7), we see that ξ belongs to Q.
Case 3: $\eta\left(X_{0}\right)=0$. This case implies that ξ belongs to Q^{\perp} from (1.7).
Accordingly, summing up these cases, the proof of our Lemma is completed.

2 Proof of Theorem 1

Hereafter, let M be a Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with GTW Reeb parallel Ricci tensor. Then by Lemma 1.1 we divide our consideration in two cases depending on whether ξ belongs to Q^{\perp} or Q.

First of all, if we assume $\xi \in \mathcal{Q}$, then a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with GTW Reeb parallel Ricci tensor, and $\alpha=g(A \xi, \xi) \neq 2 k$ is locally congruent to a real hypersurface of Type (B) by virtue of Theorem B given in the introduction.

Next let us consider the case, $\xi \in \mathbb{Q}^{\perp}$. Accordingly, we can put $\xi=\xi_{1}$. Since M is a Hopf hypersurface with GTW Reeb parallel Ricci tensor, equation (1.6) becomes

$$
\begin{align*}
& (\xi h) A X+h\left(\nabla_{\xi} A\right) X-\left(\nabla_{\xi} A\right) A X-A\left(\nabla_{\xi} A\right) X= \tag{2.1}\\
& \quad k\left(h \phi A X-\phi A^{2} X-h A \phi X+A^{2} \phi X\right) .
\end{align*}
$$

From the Codazzi equation [10, Section 2] and differentiating $A \xi=\alpha \xi$, we obtain

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) X & =\left(\nabla_{X} A\right) \xi+\phi X+\phi_{1} X+2 \eta_{3}(X) \xi_{2}-2 \eta_{2}(X) \xi_{3} \\
& =(X \alpha) \xi+\alpha \phi A X-A \phi A X+\phi X+\phi_{1} X+2 \eta_{3}(X) \xi_{2}-2 \eta_{2}(X) \xi_{3}
\end{aligned}
$$

Using the equation from [10, Lemma 2.1] and the previous one, we get

$$
\left(\nabla_{\xi} A\right) X=\frac{\alpha}{2} \phi A X-\frac{\alpha}{2} A \phi X+(\xi \alpha) \eta(X) \xi
$$

Therefore, (2.1) can be written as

$$
\begin{equation*}
(\xi h) A X+\widetilde{\kappa} h \phi A X-\widetilde{\kappa} h A \phi X+(h-2 \alpha)(\xi \alpha) \eta(X) \xi-\widetilde{\kappa} \phi A^{2} X+\widetilde{\kappa} A^{2} \phi X=0 \tag{2.2}
\end{equation*}
$$

where $\tilde{\kappa}=\left(\frac{\alpha}{2}-k\right)$.
Since $\widetilde{\kappa} \neq 0$ is equivalent to the given condition $\alpha \neq 2 k$, (2.2) yields

$$
\begin{equation*}
\frac{(\xi h)}{\widetilde{\kappa}} A X+h \phi A X-h A \phi X+\frac{(h-2 \alpha)}{\widetilde{\kappa}}(\xi \alpha) \eta(X) \xi-\phi A^{2} X+A^{2} \phi X=0 \tag{2.3}
\end{equation*}
$$

Now we consider the case $\xi h=0$. Then (2.3) can be reduced to

$$
\begin{equation*}
h \phi A X-h A \phi X+\frac{(h-2 \alpha)}{\widetilde{\kappa}}(\xi \alpha) \eta(X) \xi-\phi A^{2} X+A^{2} \phi X=0 \tag{2.4}
\end{equation*}
$$

Taking the inner product of (2.4) with ξ, we have $\frac{(h-2 \alpha)}{\widetilde{\kappa}}(\xi \alpha) \eta(X)=0$. Thus, (2.4) becomes

$$
\begin{equation*}
h \phi A X-\phi A^{2} X-h A \phi X+A^{2} \phi X=0 \tag{2.5}
\end{equation*}
$$

On the other hand, from equation (1.1) we calculate

$$
S \phi X-\phi S X=h A \phi X-A^{2} \phi X-h \phi A X+\phi A^{2} X
$$

Then by (2.5) it follows that $S \phi X=\phi S X$ for any tangent vector field X on M. Hence, by Suh [16] we assert that M satisfying our assumptions must be a model space of Type (A).

We now assume $\xi h \neq 0$. Putting $\sigma=\frac{(\xi h)}{\widetilde{\kappa}}(\neq 0)$ and $\tau=\frac{(h-2 \alpha)}{\widetilde{\kappa}}(\xi \alpha)$, equation (2.3) becomes

$$
\begin{equation*}
\sigma A X+h \phi A X-h A \phi X+\tau \eta(X) \xi-\phi A^{2} X+A^{2} \phi X=0 \tag{2.6}
\end{equation*}
$$

Applying ϕ to (2.6) and replacing X by ϕX in (2.6), respectively, we get the following two equations:

$$
\begin{aligned}
& \sigma \phi A X-h A X+h \alpha \eta(X) \xi-h \phi A \phi X+A^{2} X-\alpha^{2} \eta(X) \xi+\phi A^{2} \phi X=0 \\
& \sigma A \phi X+h \phi A \phi X+h A X-h \alpha \eta(X) \xi-\phi A^{2} \phi X-A^{2} X+\alpha^{2} \eta(X) \xi=0
\end{aligned}
$$

Summing up the above two equations, we obtain $\phi A+A \phi=0$. Thus, equation (2.6) implies

$$
\sigma A X+2 h \phi A X+\tau \eta(X) \xi=0
$$

Let the orthogonal projection of X onto the distribution $\mathcal{C}=\{X \in T M \mid X \perp \xi\}$ be denoted $X_{\mathcal{C}}$. Inserting this into the previous equation yields $\sigma A X_{\mathcal{C}}+2 h \phi A X_{\mathcal{C}}=0$. In addition, applying ϕ to this equation, it follows that $\sigma \phi A X_{\mathcal{C}}-2 h A X_{\mathcal{C}}=0$. Thus, we obtain

$$
\left(\begin{array}{cc}
\sigma & 2 h \\
-2 h & \sigma
\end{array}\right)\binom{A X_{\mathcal{C}}}{\phi A X_{\mathcal{C}}}=\binom{0}{0}
$$

The determinant of the square matrix of order 2 , that is, $\sigma^{2}+4 h^{2} \geq \sigma^{2} \neq 0$, so we get $A X_{\mathcal{C}}=0$ for any $X_{\mathcal{C}} \in \mathcal{C}$. Substituting $X_{\mathcal{C}}$ as ξ_{2} and ξ_{3} implies that $A \xi_{2}=0$ and $A \xi_{3}=0$, respectively. Hence, we can assert that the distribution Q^{\perp} is invariant under the shape operator, that is, M is a Q^{\perp}-invariant real hypersurface. Thus, by virtue of Theorem A, we conclude that with our assumptions M must be a model space of Type (A).

Summing up these discussions, we conclude that if a Hopf hypersurface M in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, satisfies (C-1), and $\alpha \neq 2 k$, then M is of Type (A) or (B).

Now, let us check whether the Ricci tensor S of a model space of Type (A) (or of Type $(B))$ satisfies the Reeb parallelism with respect to $\widehat{\nabla}^{(k)}$ by using the principal curvature vectors and their corresponding principal curvature values for each eigenspace with respect to the shape operator A given in [10, Proposition A] (resp. [10, Proposition B]).

Let us denote by M_{A} a model space of Type (A). From now on, using the equations (1.1), (1.2), and [10, Proposition A], let us check whether or not the Ricci tensor S satisfies (1.6), which is equivalent to our condition (C-1) for each eigenspace T_{α}, T_{β}, T_{λ}, and T_{μ} on $T_{x} M_{A}, x \in M_{A}$. In order to do this, we find one equation related to S from (1.6) using the property of $M_{A}, \xi=\xi_{1}$ as follows:

$$
\begin{align*}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X= & -h\left(\nabla_{\xi} A\right) X+\left(\nabla_{\xi} A\right) A X+A\left(\nabla_{\xi} A\right) X+k h \phi A X \tag{2.7}\\
& -k \phi A^{2} X-k h A \phi X+k A^{2} \phi X
\end{align*}
$$

since $h=\alpha+2 \beta+2(m-2) \lambda$ is a constant.
Case A-1: $X=\xi\left(=\xi_{1}\right) \in T_{\alpha}$. Since $\left(\nabla_{\xi} A\right) \xi=0$, we see that $\left(\widehat{\nabla}_{\xi}^{(k)} S\right) \xi=0$ from the equation (2.7). It means that the Ricci tensor S becomes GTW Reeb parallel on T_{α}.
Case A-2: $X \in T_{\beta}=\operatorname{Span}\left\{\xi_{2}, \xi_{3}\right\}$. For $\xi_{\mu} \in T_{\beta}, \mu=2$, 3 we have

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) \xi_{\mu}= & \beta\left(\nabla_{\xi} \xi_{\mu}\right)-A\left(\nabla_{\xi} \xi_{\mu}\right) \\
= & \beta q_{\mu+2}(\xi) \xi_{\mu+1}-\beta q_{\mu+1}(\xi) \xi_{\mu+2}+\alpha \beta \phi_{\mu} \xi \\
& -q_{\mu+2}(\xi) A \xi_{\mu+1}+q_{\mu+1}(\xi) A \xi_{\mu+2}-\alpha A \phi_{\mu} \xi
\end{aligned}
$$

which yields that $\left(\nabla_{\xi} A\right) \xi_{2}=0$ and $\left(\nabla_{\xi} A\right) \xi_{3}=0$. Therefore, from equation (2.7) we obtain, respectively,

$$
\begin{aligned}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) \xi_{2} & =k h \phi A \xi_{2}-k \phi A^{2} \xi_{2}-k h A \phi \xi_{2}+k A^{2} \phi \xi_{2} \\
& =\left(-k h \beta+k \beta^{2}+k h \beta-k \beta^{2}\right) \xi_{3}=0
\end{aligned}
$$

and $\left(\widehat{\nabla}_{\xi}^{(k)} S\right) \xi_{3}=0$ by similar methods. So, we assert that the Ricci tensor S of M_{A} is Reeb parallel on T_{β}.

By the structure of a tangent vector space $T_{x} M_{A}$ at $x \in M_{A}$, we see that the distribution \mathcal{Q} is composed of two eigenspaces T_{λ} and T_{μ}. On the distribution $\mathcal{Q}=T_{\lambda} \oplus T_{\mu}$ we obtain

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) X=\alpha \phi A X-A \phi A X+\phi X+\phi_{1} X \tag{2.8}
\end{equation*}
$$

by virtue of the Codazzi equation [10, Section 2]. Using this equation we consider the following two cases.
Case A-3: $X \in T_{\lambda}=\left\{X \mid X \in Q, J X=J_{1} X\right\}$. We naturally see that if $X \in T_{\lambda}$, then $\phi X=\phi_{1} X$. Moreover, the vector ϕX also belongs to the eigenspace T_{λ} for any $X \in T_{\lambda}$, that is, $\phi T_{\lambda} \subset T_{\lambda}$. From these and (2.8), we obtain

$$
\left(\nabla_{\xi} A\right) X=\left(\alpha \lambda-\lambda^{2}+2\right) \phi X, \quad \text { for } X \in T_{\lambda}
$$

From these facts and (2.7), we obtain

$$
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X=\left(\alpha \lambda-\lambda^{2}+2\right)(2 \alpha-h) \phi X
$$

which implies that the Ricci tensor S must be Reeb parallel for $\widehat{\nabla}^{(k)}$ on T_{λ}, since $\alpha \lambda-\lambda^{2}+2=0$.

Case A-4: $X \in T_{\mu}=\left\{X \mid X \in \mathcal{Q}, J X=-J_{1} X\right\}$. If $X \in T_{\mu}$, then $\phi X=-\phi_{1} X, \phi T_{\mu} \subset T_{\mu}$ and $\mu=0$. So, from (2.8), we obtain $\left(\nabla_{\xi} A\right) X=0$, moreover $\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X=0$ for any $X \in T_{\mu}$.

Summing up all of the cases mentioned above, we can assert that the Ricci tensor S of a real hypersurface M_{A} in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is GTW Reeb parallel.

Now let us consider our problem for a model space of Type (B), which will be denoted by M_{B}. In order to do this, let us calculate the fundamental equation related to the covariant derivative of the Ricci tensor S of M_{B} along the direction of ξ in GTW connection. On $T_{x} M_{B}, x \in M_{B}$, since $\xi \in \mathcal{Q}$ and $h=\operatorname{Tr}(A)=\alpha+(4 n-1) \beta$ is a constant, equation (1.6) is reduced to

$$
\begin{aligned}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X= & 4(k-\alpha) \sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \xi_{v}-\eta_{v}(X) \phi_{v} \xi\right\} \\
& -h\left(\nabla_{\xi} A\right) X+\left(\nabla_{\xi} A\right) A X+A\left(\nabla_{\xi} A\right) X \\
& +k h \phi A X-k \phi A^{2} X-k h A \phi X+k A^{2} \phi X .
\end{aligned}
$$

Moreover, by the equation of Codazzi and [10, Proposition B] we obtain that for any $X \in T_{x} M_{B}$,

$$
\begin{aligned}
\left(\nabla_{\xi} A\right) X & =\alpha \phi A X-A \phi A X+\phi X-\sum_{v=1}^{3}\left\{\eta_{v}(X) \phi_{\nu} \xi+3 g\left(\phi_{\nu} \xi, X\right) \xi_{\nu}\right\} \\
& = \begin{cases}0 & \text { if } X \in T_{\alpha}, \\
\alpha \beta \phi \xi_{\ell} & \text { if } X \in T_{\beta}=\operatorname{Span}\left\{\xi_{\ell} \mid \ell=1,2,3\right\}, \\
-4 \xi_{\ell} & \text { if } X \in T_{\gamma}=\operatorname{Span}\left\{\phi \xi_{\ell} \mid \ell=1,2,3\right\}, \\
(\alpha \lambda+2) \phi X & \text { if } X \in T_{\lambda}, \\
(\alpha \mu+2) \phi X & \text { if } X \in T_{\mu} .\end{cases}
\end{aligned}
$$

From these two equations, it follows that

$$
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X= \begin{cases}0 & \text { if } X=\xi \in T_{\alpha} \tag{2.9}\\ (\alpha-k)\left(4-h \beta+\beta^{2}\right) \phi \xi_{\ell} & \text { if } X=\xi_{\ell} \in T_{\beta} \\ (4(\alpha-k)+(h-\beta)(4+k \beta)) \xi_{\ell} & \text { if } X=\phi \xi_{\ell} \in T_{\gamma}, \\ (h-\beta)(k \lambda-k \mu-\alpha \lambda-2) \phi X & \text { if } X \in T_{\lambda}, \\ (h-\beta)(k \mu-k \lambda-\alpha \mu-2) \phi X & \text { if } X \in T_{\mu}\end{cases}
$$

So, we see that M_{B} has Reeb parallel GTW Ricci tensor, when α and h satisfy the conditions $\alpha=k$ and $h-\beta=0$, which means $r=1 / 2 \cot ^{-1}(-k / 4(2 n-1))$. Moreover, this radius r satisfies our condition $\alpha \neq 2 k$.

Hence summing up these considerations, we give a complete proof of Theorem 1 in the introduction.

For the case $\alpha=2 k$, the Reeb vector field ξ of a Hopf hypersurface M with GTW Reeb parallel Ricci tensor belongs to either Q or Q^{\perp}. So, for the case $\xi \in Q^{\perp}$, equation (2.2) becomes $\xi h=0$; that is, the trace h of the shape operator A is constant along ξ.

For the case $\xi \in \mathcal{Q}$, it is a well-known fact that a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$ must be a model space M_{B} of Type (B) (see [11]). On the other hand, from (2.9) and $\alpha=2 k$, the GTW covariant derivative of the Ricci tensor S of M_{B} along the direction of ξ is given by

$$
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X= \begin{cases}0 & \text { if } X=\xi \in T_{\alpha} \\ k\left(4-h \beta+\beta^{2}\right) \phi \xi_{\ell} & \text { if } X=\xi_{\ell} \in T_{\beta} \\ (4 k+(h-\beta)(4+k \beta)) \xi_{\ell} & \text { if } X=\phi \xi_{\ell} \in T_{\gamma} \\ -(h-\beta)(k \beta+2) \phi X & \text { if } X \in T_{\lambda} \\ -(h-\beta)(k \beta+2) \phi X & \text { if } X \in T_{\mu}\end{cases}
$$

Actually, since $\alpha=2 k$, we naturally have $k \beta+2=0$. It follows that the Ricci tensor S is GTW Reeb parallel on T_{λ} and T_{μ}. In order to be the GTW Reeb parallel Ricci tensor on the other eigenspaces T_{β} and T_{γ}, we should have the following two equations:

$$
4-h \beta+\beta^{2}=0 \quad \text { and } \quad 4 k+(h-\beta)(4+k \beta)=0
$$

Combining these two equations, we have $2 k+h-\beta=0$. Since

$$
h=\alpha+3 \beta+(4 n-4)(\lambda+\mu)=\alpha+(4 n-1) \beta \quad \text { and } \quad \alpha=2 k,
$$

it follows that $\alpha=-(2 n-1) \beta$. By virtue of [10, Proposition B], $\alpha=-2 \tan (2 r)$ and $\beta=2 \cot (2 r)$, where $r \in(0, \pi / 4)$, we obtain $\tan (2 r)=\sqrt{2 n-1}$. From such assertions, we conclude that a model space of Type (B) has GTW Reeb parallel Ricci tensor for special radius r such that $r=\frac{1}{2} \tan ^{-1}(\sqrt{2 n-1})$.

From the above, we have the following. Let M be a real hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with GTW Reeb parallel Ricci tensor for $\alpha=2 k$. If the Reeb vector field ξ belongs to the distribution Q, then M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}, m=2 n$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with radius r such that $r=\frac{1}{2} \tan ^{-1} \sqrt{2 n-1}$.

3 Proof of Theorem 2

Bear in mind that the notion of GTW parallel Ricci tensor is stronger than GTW Reeb parallel Ricci tensor, and in the previous section, we got that a Hopf hypersurface M in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3,(\alpha \neq 2 k)$ satisfying GTW Reeb parallel Ricci tensor, then M is locally congruent to of Type M_{A} or Type M_{B}.

Hereafter, let us check whether the Ricci tensor S of a model space M_{A} (or M_{B}) satisfies the parallelism with respect to $\widehat{\nabla}^{(k)}$ by using the principal curvature vectors and their corresponding principal curvature values for each eigenspace with respect to the shape operator A given in [10, Proposition A] (or [10, Proposition B], respectively).

Suppose that M is of Type (A). Remember that $A \xi=\alpha \xi, A \xi_{2}=\beta \xi_{2}, A \xi_{3}=\beta \xi_{3}$, with $\alpha=\sqrt{8} \cot (\sqrt{8} r)$ and $\beta=\sqrt{2} \cot (\sqrt{2} r)$. Take $Y=\xi, X=\xi_{2}$ in (1.4). We have

$$
\begin{aligned}
& 4 \beta \xi_{3}+h \nabla_{\xi_{2}} \alpha \xi-h A \phi A \xi_{2}-\nabla_{\xi_{2}} \alpha^{2} \xi+A^{2} \phi A \xi_{2}= \\
& \beta\left\{g\left(\xi_{3}, S \xi\right) \xi-\eta(S \xi) \xi_{3}+S \xi_{3}\right\} .
\end{aligned}
$$

Since the Reeb function α is constant, $S \xi=\left(4 m+h \alpha-\alpha^{2}\right) \xi$, and

$$
S \xi_{3}=\left(4 m+6+h \beta-\beta^{2}\right) \xi_{3},
$$

from (1.4) we arrive at $\beta \xi_{3}=0$, which is impossible. Thus, M_{A} does not have GTW parallel Ricci tensor.

In the case of M_{B}, if we take $X=\xi_{1}, Y=\xi$ in (1.4) and bear in mind that $S \xi=$ $\left(4 m+4+h \alpha-\alpha^{2}\right) \xi$ and $S \phi_{1} \xi=(4 m+8) \phi_{1} \xi$, we obtain $\alpha h=0$, where $\alpha=-2 \tan (2 r)$. As $\alpha \neq 0$ we must have $h=0$. With similar computations, we obtain $6 \beta \xi_{3}=0$, for $\beta=2 \cot (2 r)$, when $X=\xi_{1}, Y=\xi_{2}$ in (1.4). As this is impossible, M_{B} does not have a GTW parallel Ricci tensor, and this completes the proof of Theorem 2.

4 Proof of Theorem 3

Recently, in [6] Jeong, Lee, and Suh gave a characterization of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with $\widehat{\nabla}^{(k)} A=\nabla A$. So naturally we consider that $\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=\left(\nabla_{X} S\right) Y$; that is, the parallel Ricci tensor in GTW connection coincides with the parallel Ricci tensor in Levi-Civita connection. As a special case, we restrict $X=\xi$ as follows:

$$
\begin{equation*}
\left(\widehat{\nabla}_{\xi}^{(k)} S\right) X=\left(\nabla_{\xi} S\right) X \tag{C-2}
\end{equation*}
$$

for any tangent vector field X on M.
By virtue of equation (1.5) and being Hopf, condition (C-2) is equivalent to $S \phi=$ ϕS; thus, we have the following remark [16].

Remark 4.1 Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then $\widehat{\nabla}_{\xi}^{(k)} S=\nabla{ }_{\xi} S$ if and only if M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

By Remark 4.1, if a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfies $\widehat{\nabla}^{(k)} S=\nabla S$, then naturally (C-2) holds on M. So M is of Type (A), that is, M_{A}. Now let us check whether a model space M_{A} satisfies our condition

$$
\begin{equation*}
\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=\left(\nabla_{X} S\right) Y \tag{C-3}
\end{equation*}
$$

for any tangent vector fields $X, Y \in T_{x} M_{A}, x \in M_{A}$. In order to do this, we assume that the Ricci tensor S of M_{A} satisfies (C-3). That is, we have

$$
\begin{align*}
0= & \left(\widehat{\nabla}_{X}^{(k)} S\right) Y-\left(\nabla_{X} S\right) Y \tag{4.1}\\
= & g(\phi A X, S Y) \xi-\eta(S Y) \phi A X-k \eta(X) \phi S Y \\
& -g(\phi A X, Y) S \xi+\eta(Y) S \phi A X+k \eta(X) S \phi Y
\end{align*}
$$

for any $X, Y \in T_{x} M_{A}$.
Since $T_{x} M_{A}=T_{\alpha} \oplus T_{\beta} \oplus T_{\lambda} \oplus T_{\gamma}$, equation (4.1) holds for $X \in T_{\beta}$ and $Y \in T_{\alpha}$. For the sake of convenience we put $X=\xi_{2} \in T_{\beta}$ and $Y=\xi \in T_{\alpha}$. Since $S \xi=\delta \xi$ and
$S \xi_{3}=\sigma \xi_{3}$ where $\delta=\left(4 m+h \alpha-\alpha^{2}\right)$ and $\sigma=\left(4 m+6+h \beta-\beta^{2}\right)$, equation (4.1) reduces to $\beta(\delta-\sigma) \xi_{3}=0$. By [10, Proposition A], since the principal curvature $\beta=\sqrt{2} \cot (\sqrt{2} r)$ for $r \in(0, \pi / \sqrt{8})$ is non-zero, it follows that $\delta-\sigma=0$. In other words, by [10, Proposition B] we obtain

$$
\begin{aligned}
-(\delta-\sigma) & =6-\alpha \beta+\beta^{2}+(2 m-2) \beta \lambda-(2 m-2) \alpha \lambda \\
& =8-4(m-1) \tan ^{2}(\sqrt{2} r)
\end{aligned}
$$

which gives us

$$
\begin{equation*}
\tan ^{2}(\sqrt{2} r)=\frac{2}{m-1} \tag{4.2}
\end{equation*}
$$

In addition, since (4.1) holds for $X \in T_{\lambda}$ and $Y=\xi$, we obtain

$$
0=\left(\widehat{\nabla}_{X}^{(k)} S\right) \xi-\left(\nabla_{X} S\right) \xi=\lambda(\tau-\delta) \phi X
$$

where in the second equality we have used $\phi X \in T_{\lambda}$ and $S X=\left(4 m+6+h \lambda-\lambda^{2}\right) X=\tau X$ for any $X \in T_{\lambda}$. As $\lambda=-\sqrt{2} \tan (\sqrt{2} r)$ where $r \in(0, \pi / \sqrt{8})$ is non-zero, we have also $\tau-\delta=0$. By a straightforward calculation, it is

$$
\tau-\delta=6+h \lambda-\lambda^{2}-h \alpha+\alpha^{2}=4 m-4 \cot ^{2}(\sqrt{2} r)=0
$$

From (4.2), it becomes $2 m+2=0$, which gives us a contradiction. Accordingly, it completes the proof of Theorem 3 given in the introduction.

References

[1] J. T. Cho, CR structures on real hypersurfaces of a complex space form. Publ. Math. Debrecen 54(1999), no. 3-4, 473-487.
[2] \longrightarrow Levi-parallel hypersurfaces in a complex space form. Tsukuba J. Math. 30(2006), no. 2, 329-343.
[3] J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds. Differential Geom. Appl. 35(2014), 266-273. http://dx.doi.org/10.1016/j.difgeo.2014.05.002
[4] J. T. Cho and M. Kon, The Tanaka-Webster connection and real hypersurfaces in a complex space form. Kodai Math. J. 34(2011), no. 3, 474-484. http://dx.doi.org/10.2996/kmj/1320935554
[5] I. Jeong, M. Kimura, H. Lee, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster Reeb parallel shape operator. Monatsh. Math. 171(2013), no. 3-4, 357-376. http://dx.doi.org/10.1007/s00605-013-0475-4
[6] I. Jeong, H. Lee, and Y. J. Suh, Levi-Civita and generalized Tanaka-Webster covariant derivatives for real hypersurfaces in complex two-plane Grassmannians. Ann. Mat. Pura Appl. 194(2015), no. 3, 919-930. http://dx.doi.org/10.1007/s10231-014-0405-7
[7] I. Jeong, C. J. G. Machado, J. D. Pérez, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with \mathcal{D}^{\perp}-parallel structure Jacobi operator. Internat J. Math. 22(2011), no. 5, 655-673. http://dx.doi.org/10.1142/S0129167X11006957
[8] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in $P^{n}(\mathbb{C})$. Math. Ann. 276(1987), no. 3, 487-497. http://dx.doi.org/10.1007/BF01450843
[9] M. Kon, On a Hopf hypersurface of a complex space form. Differential Geom. Appl. 28(2010), no. 3, 295-300. http://dx.doi.org/10.1016/j.difgeo.2009.10.012
[10] H. Lee, Y. S. Choi, and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator. Bull. Malays. Math. Soc. 38(2015), no. 2, 617-634. http://dx.doi.org/10.1007/s40840-014-0039-3
[11] H. Lee and Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47(2010), no. 3, 551-561. http://dx.doi.org/10.4134/BKMS.2010.47.3.551
[12] C. J. G. Machado, J. D. Pérez, and Y. J. Suh, Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians. Acta Math. Sin. 31(2015), no. 1, 111-122. http://dx.doi.org/10.1007/s10114-015-1765-7
[13] E. Pak, Y. J. Suh, and C. Woo, Restricted Ricci conditions for real hypersurfaces in complex two-plane Grassmannians. Houston J. Math. 41(2015), no. 3 767-783.
[14] J. D. Pérez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44(2007), 211-235. http://dx.doi.org/10.4134/JKMS.2007.44.1.211
[15] J. D. Pérez and Y. J. Suh, and Y. Watanabe, Generalized Einstein real hypersurfaces in complex two-plane Grassmannians. J. Geom. Phys. 60(2010), 1806-1818. http://dx.doi.org/10.1016/j.geomphys.2010.06.017
[16] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor. J. Geom. Phys. 60(2010), 1792-1805. http://dx.doi.org/10.1016/j.geomphys.2010.06.007
[17] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Roy. Soc. Edinburgh Sect. A. 142(2012), 1309-1324. http://dx.doi.org/10.1017/S0308210510001472
[18] , Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor. J. Geom. Phys. 64(2013), 1-11. http://dx.doi.org/10.1016/j.geomphys.2012.10.005
[19] , Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100(2013), no. 1, 16-33. http://dx.doi.org/10.1016/j.matpur.2012.10.010
\qquad Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. in Appl. Math. 50(2013), no. 4, 645-659. http://dx.doi.org/10.1016/j.aam.2013.01.001
[21] , Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field. Adv. in Appl. Math. 55(2014), 131-145. http://dx.doi.org/10.1016/j.aam.2014.01.005
[22] , Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. in Math. 281(2015), 886-905. http://dx.doi.org/10.1016/j.aim.2015.05.012

Departamento de Geometria y Topologia, Universidad de Granada, 18071-Granada, Spain e-mail: jdperez@ugr.es
Research Institute of Real and Complex Manifold, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail: Ihjibis@hanmail.net
Department of Mathematics and Research Institute of Real and Complex Manifold, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail: yjsuh@knu.ac.kr
Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail: legalgwch@naver.com

[^0]: Received by the editors December 11, 2015.
 Published electronically June 24, 2016.
 This work was supported by Grant Proj. No. NRF-2015-R1A2A1A-01002459. Author J. D. is partially supported by MCT-FEDER Grant MTM2013-47828-C2-1-P, and Author C. W. supported by NRF Grant funded by the Korean Government (NRF-2013-Fostering Core Leaders of Future Basic Science Program).

 AMS subject classification: 53C40, 53C15.
 Keywords: complex two-plane Grassmannian, real hypersurface, Hopf hypersurface, generalized Tanaka-Webster connection, parallelism, Reeb parallelism, Ricci tensor.

