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Abstract

In this paper we describe the groups admitting a covering with Hall subgroups. We also determine the
groups with a 7t\ -Hall subgroup, where it\ is the connected component of the prime graph, containing the
prime 2.

2000 Mathematics subject classification: primary 20D20, 20D25.

1. Introduction

In this paper we study the Hall coverings, defined as follows. A Hall covering of a
finite group G is a set Jif = [Hu H2, ..., Hr] of proper Hall subgroups of G such
that:

(a) U=i#.-
(b) either \H,\ = \Hj | or (|//,|, \H} I) = 1 for ij = 1, . . . , r.

If the elements of JF all have order a prime power, then J4? is called a Sylow cover-
ing ofG. The finite groups G with a Sylow covering have been studied independently
by Higman [10] and Zacher [27, 28] in the case in which G is soluble, by Suzuki [25]
in the case of a simple group G and by Brandl [2] in the general situation. This last
paper has a missing case, which we consider here.

We want to study the groups which admit a Hall covering. It is clear that if a
group G admits a Hall covering, then its prime graph is not connected. We shall also
see that if G admits a Hall covering, than G has a 7rrHall subgroup, where nx is the
connected component of the prime graph of G containing the prime 2.
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It is well known that G is a soluble group if and only if G has a 7r-Hall subgroup
for any set of primes n. If G is not soluble, the existence of some Hall subgroups have
been proved in several papers (see, for example, [9, 23, 8]). We prove the following
theorem on the existence of a jri-Hall subgroup. We suppose that the group G is not
soluble and that G is not a Frobenius group. In fact if G is a non-soluble Frobenius
group, the Frobenius complement is isomorphic to a direct product of SL(2, 5) with a
{2, 3, 5}'-group with cyclic Sylow subgroups. The Frobenius complements are n\ -Hall
subgroups and they are all conjugate (see [12, page 387]).

THEOREM A. Let G be a non-soluble group in which the prime graph is not con-
nected. Suppose further that G is not a Frobenius group. Then G has a n\ -Hall
subgroup if and only if G/ Fit(G) is one of the groups in Table 1.

We also classify the groups which admit a 7r-Hall subgroup for any connected
subset n of n(G) (see Corollary 3.6).

We prove the following theorem, describing the finite groups admitting a Hall
covering.

THEOREM B. Let G be a group in which the prime graph is not connected. Then
G admits a Hall covering if and only if either

(i) G is a Frobenius or a 2-Frobenius group or
(ii) G/ Fit(G) is isomorphic to one of the following groups: PSL(2, q), PSL(3, 4),

PSL(3, q) with (3, q - 1) = 1, Sz{q), A7, M22, M{q).

Another class of groups related to groups admitting Hall coverings is the class of
groups with a partition (see [22, Section 3.5]) and the CN-groups, that is groups in
which the centralizer of any non trivial element is nilpotent (see [7, Chapter 10]). We
shall see how these groups are strictly related to nilpotent Hall coverings.

The results of this paper depend upon the classification.

2. Notation and preliminary results

All the groups considered in this paper are finite. If G is a group we denote by n (G)
the set of prime divisors of \G\. If 34? is a Hall covering of the group G, we define
n(jT) = {n(Hj) \ i = 1, 2 , . . . , r); then n(Jif) = {ou CT2, . . . , as) with a, n 07 = 0
if i ^ j (and obviously s < r). We suppose that if i < j , then min CT, < min CT; (in
particular if 2 e n(G) then 2 e a,).

If G is a group, we define its prime graph P(G) = F as follows: the set of vertices
of F is 7r(G) and two vertices p and q are connected (p ~ q) if and only if there exists
in G an element of order pq. Let it\, TT2, . •., n, be the connected components of V
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and let t(G) = t be the number of such connected components; we suppose 2 e n\, if
2 6 7r(C). Then n(G) is the disjoint union of the 7T,, i = 1, 2 , . . . , ?. Moreover, if G
admits a Hall covering Jf, then any element of n(Jif) is a disjoint union of certain
connected components of T(G), in particular, 2 < s < t.

If #1 and "tfz are two classes of groups, a group G is ifi-by-"^ if G has a normal
subgroup A/1 with N e if, and G/N € ^2-

We denote by Fit(G) the Fitting subgroup of G, that is, the maximal normal
nilpotent subgroup of G.

A group G is an almost simple group if there exists a simple non-abelian group S
such that S < G < Aut(S).

Let p be an odd prime and q = p 2 f . We denote by M(q) the non split extension
of PSL{2, q), with \M(q) : PSL(2, q)\=2.

A proper subgroup H of G is isolated (in G) if

(a) HDHg = l for any # £ Wc(#) ;
(b) CG(/i) < / / for any 1 ^ /i € H.

' The notation for the simple groups follows the one of [5]. For the rest, the notation
will be standard (see, for example, [7] and [12]).

A group is called 2-Frobenius if it has two normal subgroups N, K, with N < K,
such that K and G/N are Frobenius groups.

The following results were proved in an unpublished paper of Gruenberg and Kegel,
but they can be found in [26]

PROPOSITION 2.1 ([26]). / / G is a group whose prime graph has more than one
connected component, then G has one of the following structures:

(a) G is a Frobenius or a 2-Frobenius group.
(b) G is simple.
(c) G is simple by Tt\.
(d) G is it\ by simple by ii\.

Moreover, if G is not soluble and Jij is a component ofF(G) with i > 1, then G has
an isolated nrHall subgroup.

COROLLARY 2.2. If G is a soluble group with a Hall covering, then \n(Jf?)\ =2 =
t(G) and G is a Frobenius or a 2-Frobenius group.

It is well known that G is soluble if and only if G has a 7r-Hall subgroup for any
n c 7r(G); moreover any two of them are conjugate. If we want to consider the
general case, we first have to deal with the existence of 7r,(G)-Hall subgroups of G.
We recall the following:

PROPOSITION 2.3 ([8]). If G has a it-Hall subgroup with 2 <£ n, then the n-Hall
subgroups are all conjugate.
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Therefore by Proposition 2.1 and Proposition 2.3, we know that if t(G) > 2, then
there exists a 7r,-Hall subgroup for any i > 2 and these are all conjugate.

We want to examine now the groups which admit a 7Ti-Hall subgroup.

3. JTi-Hall subgroups

By the preceding remarks, we can assume that

(*) G is a non-soluble group in which the prime graph is not connected
and G is not a Frobenius group.

The aim of this section is to prove the following:

PROPOSITION 3.1. Let G be a group satisfying (*). Then G has a n\-Hall subgroup
if and only if G/ Fit(G) is one of the groups of Table 1.

We begin with some general remarks.

LEMMA 3.2. Let G be a group satisfying (*).

(i) IfR is the maximal normal soluble subgroup ofG, then R = Fit(G) = Oni (G)
and G/ Fit(G) is isomorphic to an almost simple group. Moreover if S is the only
simple non-abelian section of G, we have 7r,(G) = 7r,(5),/or j > 2.

(ii) G has a nx -Hall subgroup if and only if G/ Fit( G) has a it\-Hall subgroup.

PROOF, (i) It can be easily deduced by the results in the paper [26].
(ii) Let F = Fit(G). If G = G/F has a 7r,(G)-Hall subgroup H, then of course H

is a 7r1(G)-Hall subgroup of G, since n{H) c Tt\{G).
Let now H be a 7r, (G)-Hall subgroup of G, then F < H. Otherwise FH > H and

FH is also a ^(O-subgroup of G, contradicting the maximality of H. Therefore
H/F is a 7r,(G/F)-Hall subgroup of G/F. •

The aim of the following sections is therefore to prove:

PROPOSITION 3.3. If G is an almost simple group, then G has a n\-Hall subgroup
if and only if G is one of the groups of Table 1.

In Tables 1 and 2, we suppose that r is an odd prime number, p is a prime number,
q = pf and P is a Sylow p -subgroup of G. We use the notation of the Atlas [5].

We denote by H a 7Ti(G)-HaIl subgroup of G and we write in the third column
the structure of a representative of the conjugacy classes of the nt (G)-Hall subgroups
of G. In the last column we write some remarks concerning H. We also recall that
A5 = PSL(2, 4) = PSL(2, 5) and A5 = ^5^(2, 9).
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If G is PSL(n, q), we denote by Pv, Pnt the maximal parabolic subgroups of type
Pj, with J respectively I~I \ {1} and n \ {n}, as described in Remark 1 in Section 4.

We observe that the following groups admit also a 7T-Hall subgroup, with n a set
of primes strictly containing it\.

3.1. Simple groups If G admits a Hall covering, then the number t (G) of connected
components of the prime graph P(G) is greater than or equal to 2. We first suppose
t{G) = 2, and therefore jr, = CT, for i — 1,2.

We recall that a group is said to be factorizable by two proper subgroups A and B
if G = AB = BA.

LEMMA 3.4. Let G be a finite group with t{G) = 2. //"G to a nx -Hall subgroup A,

then G is factorizable by A and another proper subgroup B such that {\A\, \B\) = 1.

PROOF. If G has a 7Ti-Hall subgroup A, then by Proposition 2.1, G has also a jr2-Hall
subgroup B. Then (|A|, \B\) = 1 and \G\ = |A||fi|, and therefore G = AB. •

Let now G be a simple group. Then by Lemma 3.4, G is factorizable by two
proper subgroups A and B and we can assume A to be a jzvHall subgroup and B a
7r2-Hall subgroup. We can therefore conclude by [1, Theorem 1.1] that G is one of
the following:

(i) Ar, with r > 5 a prime and r — 2 not a prime, then A = Ar_\\
(ii) P5L(r, q), with r an odd prime such that (r, q — I) = 1 and either G =

PSL(5, 2) and | B | = 5-31 or A is a maximal parabolic subgroup such that PSL(r— 1, q)
is involved in A.

We observe that in the case PSL(5, 2) with |B| = 5-31, A is not a n^ -Hall subgroup
because 5 e ^ .

We now suppose that G is a simple non-abelian group with t{G) > 3. We consider
separately the case in which G is a sporadic or an alternating group and the case in
which G is a simple group of Lie type. In the following we look for 7r-Hall subgroups
of G, with n a set of primes in n(G) containing n\. We use the results in [26], without
further reference.

Alternating groups Since A5 ~ PSL(2, 5) and A6 ~ PSL(2, 9), it is enough to
consider A r with r > 7, r and r — 2 primes. The maximal subgroups of the alternating
groups have been classified (see for example [6, Theorem 5.2A]). The only cases in
which Ar (r > 2, r and r — 2 primes) admits a [r — 2, r}'-Hall subgroup H is for
r — 7. In fact, by point (i) of [6, Theorem 5.2A], we should have

H 5- 04r-3 x A3)(x), with* of order 2

but if r > 7, then (Ar_3 x A3)(x) has index greater than r(r — 2) in Ar.
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TABLE 1.

G

An

Ar

Mil

A/22

A/23

J\
PSL(2, q)

PSL(2, q)

PSL(2, q)

PSL(2, q)

PSL(2, q)

PSL(2, q)

PSLQ, q)

PSL(r, q)

Sziq)
Si

Sr

PSL{2,q)(ot)
q=2»

M(q)
PSL(r,q){a)

(/-, q - 1) = 1

Conditions

r — 2 not a prime

q = 1 (4),
q£ 13,25,61
q = - 1 (4),

q £ 11,23,59

q = 11, 13

g=23,25

q = 59,61

(r, q - 1) = 1

q=2-> ,f odd

r — 2 not a prime
a field automorphism

|a | = 2m

a field automorphism
|cr| = rm

H
(A4 x A3).2

Ar-l
32 : Qs.2

2 4 : A 6

PSL(3, 4) : 22

2 4 :A 7

2 x A 5

P

D,-i

D12

A4

©24

54,2 classes

As, 2 classes

P

Pv
Pr'
P

s6
Sr-l

NC(P)

PAa)

Remarks
soluble
simple
soluble

nilpotent

soluble

soluble

soluble
soluble
soluble
soluble
soluble
simple

nilpotent

nilpotent
almost simple
almost simple

soluble

soluble

TABLE 2.

G

A7

Mu

M2i

PSL(3,q),q = 22

PSL(2,q),q = 2"

PSL(2,1)

PSL(2, 11)
Sz(q)

TC

n-i U (5}
7r ,U{l l )

{2.3}
n(q(q-l))

7T(q2-l)
n(q2 - 1)

n(q(q - 1))

^•-Hall subgroup

A6

A/10 = M(9)

Mn
NC(P)

NG(P)
54

A5,2 classes

NC(P)

Remarks
simple

almost simple
simple
soluble
soluble
soluble
simple
soluble
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Sporadic groups Let G be a sporadic group and h = \G\/\G\ni. If G has a 7r-Hall
subgroup, with n\ c n c n(G), then it must have a maximal subgroup of order
dividing h. Then using the Tables in [26] and the Atlas [5], it is easy to check that the
following groups do not have maximal subgroups dividing h: M^, J-$, J*, HS, Suz,
O'N, Ly, Co2, F23, Th. For the other sporadic groups we use the following arguments.

Let X2 be the non principal character of minimal degree of F^. Then deg(x2) =
8671. Since 17 • 23 • 29 = 11339 (and any other character of F'u has greater degree),
then F^ hasn't subgroups whose index divides 17 • 23 • 29.

Let X2 be the non principal character of minimal degree of M. Then deg(x2) >
41 •59 • 71 and therefore M hasn't subgroups whose index divides 41•59 • 71.

Let Xi be the non principal character of minimal degree of BM. Then deg(x2) >
31 • 47 and therefore BM hasn't subgroups whose index divides 31 • 47.

Simple groups of Lie type We now consider a finite simple group of Lie type
defined over a field with q = pf elements. We recall that a Singer cycle of PSL(n, q)
is an element of order (q" — l)/(q — 1)(«, q — 1).

If G is a simple group of Lie type with t(G) > 3, then G is one of the following
(see [13, 14, 26]): PSL{2,q), PSL(3,4), E7(2), £7(3), E%{q), F4(q) with q even,
G2(q) with q = 0 (3), PSU(6, 2), Sz(q), 2Dp{3) with p = 2" + 1, n > 2, 2E6(2),
2F4(q), Ree(q).

We first observe that if G is PSL(2, 2"), PSL(3, 4) or Sz(q), then nx(G) = {2}.
Therefore a 7Ti-Hall subgroup is in fact a Sylow 2-subgroup. Also for PSL(2, q), q
odd, it is easy to see that a 7Ti-Hall subgroup exists and they are all conjugate.

We begin with an easy remark, which allows us to understand the structure of the
maximal parabolic subgroups of a finite group of Lie type.

REMARK 1. Let J be a subset of the set n of fundamental roots of the finite group
of Lie type G and 4>y be the set of roots which are integral combinations of roots in
J. Let Lj be the subgroup of G generated by H and the root subgroups Xr, for all
r e <t>j. Then Pj = UJLJ, Lj C\ Uj = 1 and Uj is an unipotent subgroup, by [4,
Theorem 8.5.2]. If Pj is a maximal parabolic subgroup, then J = Fl \ {/}, for some
fundamental root i. Since H normalises any Xr, we have Lj — (Xr : r € <t>J)Hl,
where //, is the subgroup of G generated by /i,(A), X e K* (see [4, page 98]). We call
Mj = (Xr : r g 4>y).

We begin with a case by case analysis.
Let G be one of the groups listed in Table 3. We suppose that there exists K a

7r-Hall subgroup of G, with nx c jr. We want to prove that K cannot be contained in
any maximal subgroup of G, and therefore G does not admit any 7^-Hall subgroup.
We use the Theorem of [17], observing that \K\ > qk(G), where qk(G> is as defined in
[17, Table 1], and also in our Table 2. If M is a maximal subgroup of G containing K,
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TABLE 3.

[8]

G
E7(q)
Es(q)

G2(q)
2E6(q)

qk(G)

qM

quo

q24

q6

q"

h(G)
q'+l

(912-D2

(q6 ~ I)2

(<72-D2

(q6 ~ I)2

then

(1) M contains a p-Sylow subgroup of G (q = pf),
(2) \M\> qk{G\
(3) \M\ is divisible by h(G), where h(G) is an integer, as listed in Table 2.

By [17, Theorem], M is either a parabolic subgroup or M is as in [17, Table 1]. The
groups listed in [17, Table 1] do not contain a p-Sylow subgroup of G. Moreover, if
we consider the maximal parabolic subgroups of G, we can easily check that no one
of them has order divisible by h{G). We conclude that G does not admit a 7r-Hall
subgroup.

PSU(6, 2) It can be checked in the Atlas [5] that there is no 7r-Hall subgroup, for
7T; c n.

2Dn(3) It can be proved that if K is a maximal subgroup containing a 3-Sylow
subgroup, then AT is a parabolic subgroup (by [16] and some easy calculations). If we
denote by i the ith node in the Dynkin diagram, then the isomorphism classes of the
maximal parabolic subgroups are

J = n \ {1}

J = n \ { n - 3 )

J = n \ [n - 2}

j = n\[n- 1}

Mj = Ai-X(q) x 2£>n_,(<7), for 1 < i < n - 4,

Mj = AH.t(q) x %(<?),

Since the p'-part of the order of the maximal parabolic subgroup Pj is (q — l)|My|,
it can be easily seen that q"~x — 1 does not divide the order of any maximal parabolic
subgroup of G, while q"~l — 1 should divide the order of a 7r-Hall subgroup of G,
Ti\ C n.

2 F*(q) We know from [19], that the only maximal subgroups containing ap-Sylow
subgroup of G are the maximal parabolic subgroups, and no one of these is divisible
by qb + 1, which should divide the order of a 7r-Hall subgroup of G, 7T| C n.

2Gi_{q) We know from [15], that the only maximal subgroups containing a p-Sylow
subgroup of G are the maximal parabolic subgroups, and no one of these is divisible
by q1 + 1, which should divide the order of a 7r-Hall subgroup of G, n\ c n.
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3.2. Almost simple groups The connected components of the prime graph of almost
simple groups have been calculated in [18]. We therefore refer to [18], without further
reference.

For the sporadic groups we refer again to [5]. For the alternating groups, it is easy
to observe that if G = Sr is the symmetric group over r elements, with r an odd
prime, r > 7, then the stabiliser of an element is isomorphic to 5r_i and it is a 7i"i-Hall
subgroup. Moreover the 7Ti-Hall subgroups are all conjugate.

If 5 = PSL{2, q) and G contains a diagonal automorphism, then n (q2 -1 ) C7r,(G)
and PGL(2, q) does not contain subgroups of order (divisible by) q1 — 1.

If G contains a field automorphism or of order not a power of 2 and q ^ 2 or 3, then
V(G) is connected. If |a| = 2 and G = S{a), then 7r,(G) = n(q(q - 1)). If q is odd,
then there is no 7Ti(G)-Hall subgroup in G, since there isn't a 7ri(G)-Hall subgroup
in S. If q is even, let B be the subgroup of S of the upper triangular matrices. We
observe that B is fixed by a and therefore B = B{a) is a 7Ti-Hall subgroup of G.
Moreover the 7rrHall subgroups of G are all conjugate.

If/ is an odd prime and q — 2f or q = ?/, then7r,(G) = n(f q(q + l)/(2, q- 1)).
If K is a 7Ti(G)-Hall subgroup of G, then K D S is a subgroup of 5 of order
q(q + l)/(2, q+ 1), which does not exist.

If q is odd and a square, that is q — q\, for some q0 = p", then there exists a
non-split extension M{q) of PSL(2, q) of order 2, with T{M{q)) = V(S). We observe
that the order of a 7Ti-Hall subgroup of G should be 2(q — 1) and therefore a 7Ti-Hall
subgroup of 5 is NS(H) = /V the normaliser of the diagonal group H. We also
observe that H, and therefore N, is fixed by any automorphism of S. Then G has a
7Ti-Hall subgroup.

If S = Sz(q) with q = 2f, and G is a subgroup of its automorphism group,
then F(G) is always connected, except when / is a prime and G = S{a), with a
a field automorphism of order / . In this case n\(G) — n(2f (q + y/2q + 1)) or
TT,(G) = TT(2/(<7 - JTq + 1)) depending if / = 1, 7 (8) o r / = 3, 5 (8). In both
cases there should exists a n(2(q ± y/2q + 1)-Hall subgroup of 5 and this is not
possible in any of the two cases (see [12] or [25]).

If 5 = PSL(3, 4), it is easy to check (see [5]) that there is no 7r1-Hall subgroup for
any of the extensions.

If 5 S PSL(r, q) with (r, q — 1) = 1 and q = pf, p a prime, then Aut(S) =
S({<p, r)), where <p is a field automorphism of order/, and r is the graph automorphism
of order 2 of 5.

If G contains a graph automorphism and t(G) = 2, then there is no 7T|(G)-Hall
subgroup in G. In fact, no ixx (S)-Hall subgroup of G is fixed by a, which interchanges
the two conjugacy classes of parabolic subgroups.

If G contains a field automorphism of order a prime different from r, then F(G) is
connected. If G = S(a) with a a field automorphism of order r, then n\ (G) = nx (S)
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and CS(CK) = PGL(3, q0) if ql = q. We observe that there exists a 71 -̂Hall subgroup
Pi of G, which is an extension of Pi, a 7Ti-Hall subgroup of S.

By the proof of Proposition 3.1 and Proposition 3.3, we also get the following
corollaries.

COROLLARY 3.5. Let G be a group and n be a set of primes such that 7Ti C n C
n{G). Then

(i) G has a it -Hall subgroup if and only if G has a Tt\ -Hall subgroup;
(ii) if 7i\ C n and G satisfies (*), then G/Fit(G) is isomorphic to one of the

groups in Table 2.

Let G be a group and n be a set of primes in 7r(G). We say that n is connected if
and only if there exists i = 1 , . . . , t{G) such that n c nt.

COROLLARY 3.6. Let G be a group satisfying (*). Then G has a n-Hall subgroup,
for any connected subset it ofn(G) if and only if G/ Fit(G) is isomorphic to one of
the following groups: PSL(2, q), Sz(q), PSL(3, 3), PSL(3, 4), A-,, Mn, PSL(2, 2")(a)
with \a\ =2m, M(q).

PROOF. It is enough to examine the non-soluble groups H in Table 1. If G is a
sporadic, alternating or symmetric group, then, for example, there does not exist a
{2, 5}-Hall subgroup of G (for the symmetric groups see [9]). If G = PSL(r, q),
with q = pf, then there does not exist a {p, f}-Hall subgroup for any prime t such
that (r, q(q - 1)) = 1, except for PSL(3, 2) = PSL(2, 7), PSL(5, 2) for which the
statement holds with t — 7, and PSL(3, 3), where a 7Ti-Hall subgroup is in fact a
{2, 3}-Hall subgroup (see [23, Theorem 2.3.2]). •

4. Hall coverings

In this section we want to prove the following:

THEOREM 4.1. Let G be a group satisfying (*). Then G admits a Hall covering
if and only if G/Fit(G) is isomorphic to one of the following groups: PSL(2, q),
PSL(3, 4), PSL(7>, q) with (3, q - 1) = 1, Sz(q), A-,, M22, M(q).

We begin with a lemma which allows us to reduce to the case of an almost simple
group.

LEMMA 4.2. Let G be a group satisfying (*). Then G has a Hall covering if and
only if G/ Fit(G) has a Hall covering.
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PROOF. This is Lemma 3.5 (ii). •

We have proved in the preceding sections that if a group G has a Hall cover, then
G has a ^-Hal l subgroup (see Corollary 3.5). It is therefore enough to examine the
almost simple groups G belonging to Table 1.

Alternating groups Since A5 — PSL(2, 5), we suppose r > 7. Then the element
(12) (34) (5 • • • r) of order 2(r — 4) fixes no point and therefore it cannot be contained
in a subgroup of Ar isomorphic to Ar_\. Therefore A, (r > 7 a prime) does not admit
Hall coverings with s = 2.

It is easy to see that A7 admits a Hall covering with t = s = 3.

Sporadic groups M\\ contains elements of order 6 but no subgroups of index 55
or 5 or 11 contains such elements.

M22 does not contain subgroups of index 5-7, 5-11 or 5 -7 -11 (see [5]). It can be
easily seen that the {5, 7}'-Hall subgroups, together with the 5-Sylow and the 7-Sylow
subgroups are a Hall covering of M21 with t = s = 3.

M23 contains elements of order 15, while none of its {2, 3, 5, 7}-subgroups contain
elements of order 15. Therefore M23 does not admit Hall coverings.

7i contains elements of order 15 but the only 7r-Hall subgroups with {3, 5} c n,
are isomorphic to A5 x C with C a cyclic group of order 2.

PSL(2, q) It is well known that PSL(2, q) is a group with a partition and it admits a
covering with n,-Hall subgroups, for/ = 1, 2, 3 (see [12]). Moreoverif3 < q ^ 1(4),
then the Borel subgroup of order q(q — l) / (2 , q — 1) is a n(q(q — 1))-Hall subgroup.
Then, in this case, it also admits a partition with n{{q + l ) / (2 , q — 1))-Hall and
n{q(q — 1))-Hall subgroups. A subgroup containing a p-Sylow subgroup of G must
be contained in a Borel subgroup, then the only other possibility is to have a n (q2 — 1)-
Hall subgroup. We are then in the case of G factorizable again and the only case we
have to consider is PSL(2, 11), with A = A5 as a {2, 3, 5}-Hall subgroup. But there
is an element of order 6 in PSL(2, 11), which is not contained in any {2, 3, 5}-Hall
subgroup.

PSL(3, 4) In this case every 7r, contains only a prime, and therefore there is a
covering with the Sylow subgroups. We recall that \G\ = 26 • 32 • 5 • 7. Moreover a
2-Sylow subgroup must be contained in a parabolic subgroup. By the remark at the
beginning of the proof, there exists three conjugacy classes of parabolic subgroups:
one of order 26 • 3, which is not a {2, 3}-Hall, and two of order 26 • 3 • 5. Moreover
the only subgroups containing a Singer cycle are those of order 21. Therefore the
only possibility is a Hall covering with O\ = it\ = {2} and Oz = n^ = {7}. If H is
a {3, 5}-Hall subgroup, then H should be contained in a maximal subgroup M with
M = A6 (see [5]). But A6 hasn't a {3, 5}-Hall subgroup.
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PSL(r, q) If G = PSL(r, q), then M — Py or M = Pf is a maximal parabolic
subgroup, and also a 7T|-Hall subgroup of G. Then |M| = qr~l(q — l)\SL(r — 1, q)\,
since (r, g — 1) = 1. Then M is a o^-Hall subgroup and B = (xr) is a cr2 = 7T2-Hall
subgroup of G, where xr is a Singer cycle of order (qr — l)/(q — 1). Moreover any
ax -Hall subgroup is contained in a maximal subgroup and the only maximal subgroups
with order divisible by |G|ff, are those isomorphic to M (see [20]). It can be proved
(see [3, Proposition 3.3]) that if r > 5, there exists an element x in PSL(r, q) of order

q-\ q-\

Moreover b does not divide the following products

Y\ M' - 1) for 1 <ji < r - 1,
1 = 1 .V 1 = 1 J

and b does not divide qr — 1. But then x does not belong neither to a 7Ti-Hall subgroup
nor to a 7r2-Hall subgroup. Therefore, also in this case, G cannot have a Hall covering.

If r = 3, then there are two coverings: with the conjugates of a Singer cycle and
with one of the two classes of maximal parabolic subgroups of G:

JCX = { P i ( x 3 > « \ g e G ] , Jf2 = { P « , < J C 3 > * \ g e G } .

This is proved in [3, Proposition 4.1 and Corollary 4.2].

Sz(q) By [ 12, Theorem 3.10, cap XI], the Suzuki groups admits a partition with nr

Hall subgroups. Moreover, G admits a n{ U 7r2-Hall subgroup, which is a Frobenius
group of order q2(q — 1). Therefore, there are two kinds of coverings with Hall
subgroups:

(i) 7 ^ , 7 ^ , 7r3,7r4;

(ii) 7Ti U 7T2, 7T3, 7T4.

Almost simple groups Let G be an almost simple group which admits a Hall
covering.

We recall that n(G/S) c TT(G), by [26, Theorem A (d)]. Therefore if 3tf =
{//,, //2, . . . , / / r ) is a Hall covering of G, then J ^ = {//, n S, //2 n S, . . . , // r n 5} is
a Hall covering of S. We only have to consider the almost simple non simple groups,
that is groups G such that S < G < Aut(S), with 5 a simple non-abelian group
admitting a Hall covering.

If G = 57, then n{(G) = {2, 3, 5} and the only subgroup of index 7 of Si is
isomorphic to 56. But S6 does not contain elements of order 10, as a (2, 3, 5}-Hall
subgroup of 57 should.
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PSL{2, q) < G < Aut(PSL(2, q)) We first consider the case in which G =
PSL(2,2n){a) and a is a field automorphism of order 2. We recall that Cs(ct) =
PSL(2, <7o), where q\ = q, while CB(ot) = Bo of order qo(qo - 1). Therefore there
exists an element x e Cs(a) of order (q0 + 1) such that x • a has order 2(q0 + 1 ) and is
not contained in S. This element is not contained in any of the conjugate of B, since
there is no element of such order in B, with B the jri-Hall subgroup of G previously
described.

If G = M(q), then by the preceding Proposition, we have TV, a jr rHall subgroup
of G. We observe that any element of G is contained in one of the 7r,-Hall subgroups,
and therefore we have the following covering:

(UgN
g)U(UgP

8)U(Ugf
g),

P is a p-Sylow subgroup of G, and T is a (Singer) cycle of order (q + l ) /2 .

PSL(3, q){a) By Proposition 3.1, there exists a ^-Hal l subgroup Pv. But there
exists an element of order 3(q — 1) which is not contained in Pv. The same is true if
we consider the other class Py of 7Ti-Hall subgroups of S.

5. Further remarks

As already mentioned, the class of C/V-groups is related to the groups admitting
a Hall covering. It is not difficult to verify that if a group G admits a nilpotent
Hall covering (that is a Hall covering in which all the subgroups of the covering are
nilpotent) then G is a CN-group. It is also true that if G is a CN-group, then G admits
a nilpotent Hall covering, using, for example, [7, Theorem 14.1.7].

We recall that the simple groups with a partition have been classified by Suzuki
(see, for example, [22, Section 3.5]): they are PSL(2,p"), p" > 3 and Sz(22n+l).
They all admit a Hall covering, while the only simple C/V-group without a partition is

PSL(3,4).
The soluble CN -groups are known (see [7, Theorem 14.1.5]), while Suzuki proved

that a simple C/V-group is isomorphic to one of the following list (see [12, Re-
mark XI.3.12.a]):

(i) PSL(2, 2") with n > 1;
(ii) PSL(2, p) with p Mersenne or Fermat prime;

(iii) PSL(2,9);

(iv) PSLOA);
(v) 5z(22n+l) withn > 1.

In the same paper [24, Theorem 4], Suzuki proved that a non-soluble CA'-group is
a C/r-group, that is a group of even order in which thecentralizerof any involution is
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a 2-group. From the results of Higman [11], Suzuki [24] and Martineau [21], we also
get:

THEOREM 5.1. Let G be a non-soluble CN-group, then either

(1) G is isomorphic to simple groups on Suzuki's list or
(2) G is isomorphic to M (9) or
(3) G has a non trivial normal 2-subgroup N and G/N is isomorphic to PSL(2, 2")

or to Sz(22n+i). Moreover, N is an elementary abelian group.

REMARK 2. The group M(9) is a CN -group and it also admits a Sylow covering.
This case was missing in the paper [2] on the non-soluble groups in which any element
has order a power of a prime.

We note that we do not use character theory to prove Theorem 5.1, as it is done in
[2]. We use a more elementary fact, which can be found in [11].

LEMMA 5.2 ([11, Theorem 8.1]). Let H be a group with a normal 2-subgroup T
such that H /T is dihedral of order 6. Let h be an element ofH of order 3 acting fixed
point free on T, and let R be a Sylow 2-subgroup of H. Then

(i) T is of class at most 2;
(ii) if | T\ > 4, the class of T is less than the class of any other subgroup of R of

index 2.

PROOF OF THEOREM 5.1. Let G be a non-soluble CN-group, then G has a nilpotent
Hall covering. If G is simple, then G is in the Suzuki list. If G is almost simple, then
applying Theorem 4.1 we get that G is isomorphic to M (9) (see also [24, Theorem 3]).

By the above mentioned results of Suzuki, it is sufficient to prove the theorem for
C/r-groups.

Let now N be the maxima! normal soluble subgroup of G; then, if G = G/N we
have Z(G) = 1 and Oz (G) = 1. We suppose N ^ I and, by Lemma 3.2 (i), we know
that N = Fit(G). We first prove that N is a 2-group. In fact N is nilpotent and we
can therefore assume that it is an r-group. If r ^ 2 then any Sylow 2-subgroup S of
G = G/N acts fixed point free over N. Then 5 is a cyclic or a generalized quaternion
group (see [7, 10.3.1]). In the first case G has a normal 2-complement; in the second
case by the Brauer-Suzuki Theorem (see [7, Chapter 12] and recall that O2(G) = 1)
we get Z(G) ^ 1. In both cases we get a contradiction. Therefore N is a 2-group.

Since G is a C/7-group, any Sylow 2'-subgroup of G acts fixed point free over
N, and it is therefore cyclic. This implies that G is isomorphic to PSL(2, 2"), Sz(q)
or PSL(2, p) with p a Fermat or Mersenne prime and p > 5. If G is isomorphic
to PSL(2, p) with p Fermat or Mersenne prime and p > 5, a Sylow 2-subgroup S
of G is dihedral of order at least 8. If T is an elementary abelian 2-subgroup of G,
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then |7 | = 4 and H = Nc(T) is isomorphic to 54. We can apply lemma 5.2 to the
preimages H and 7 of H and 7 in G and /? a Sylow 2-subgroup of H. In particular
7 has class 2, otherwise 7 < CG(A0 < N.

Let 7* be an elementary abelian subgroup of order 4 of H, distinct from 7. If 7*
is the preimage of 7* in G, then 7 and 7* are isomorphic. But 7* is a subgroup of
index 2 of R and therefore, by Lemma 5.2, 7* has class strictly less than the one of 7.

The actions of H = PSL(2, 2") = SL(2, 2") or H = Sz(22n+1) over an elementary
abelian group Af are described respectively in [11, Theorem 8.2], and in the main
theorem of [21]. The semidirect product G = NH obtained by these actions is a
C/7-group. •

References

[1] Z. Arad and E. Fisman, 'On finite factorizable groups', J. Algebra 86 (1984), 522-548.
[21 R. Brandl, 'Finite groups all of whose elements are of prime power order', Boll. Un. Mat. hal. A

(5) 18 (1981), 491-493.
[3] D. Bubboloni and M. S. Lucido, 'Coverings of linear groups', Comm. Algebra 30 (2002), 2143-

2159.
[4] R. W. Carter, Simple groups of Lie type (J. Wiley, London, 1972).
[5] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of finite groups (Clarendon Press,

Oxford, 1985).
[6] J. D. Dixon and B. Mortimer, Permutation groups (Springer, New York, 1996).
[7] D. Gorenstein, Finite groups (Harper & Row, New York, 1968).
[8] F. Gross, 'Conjugacy of odd order Hall subgroups', Bull. LondonMath. Soc. 19 (1987), 311-319.
[9] P. Hall, 'Theorems like Sylow's', Proc. London Math. Soc. (3) 6 (1956), 286-304.

[10] G. Higman, 'Finite groups in which every element has prime power order', / London Math. Soc.
32(1957), 335-342.

[11] , Odd characterisations of finite simple groups. Lectures at The University of Michigan
(Summer semester, 1968).

[12] B. Huppert and N. Blackburn, Finite groups III (Springer, Berlin, 1982).
[13] N. Iiyori and H. Yamaki, 'Prime graph components of the simple groups of Lie type over the field

of even characteristic', / Algebra 155 (1993), 335-343.
[14] A. S. Kondrat'ev, 'Prime graph components of finite simple groups', Mat. Sb. 180 (1989), 787-797;

English translation: Math, of the USSR 67 (1990), 235-247.
[15] V. M. Levchuk and Ya. N. Nuzhin, 'The structure of Ree groups', Algebra i Logika 24 (1985),

26-41; English translation: Algebra and Logic 24 (1985), 16-26.
[16] M. W. Liebeck, 'On the orders of maximal subgroups of the finite classical groups', Proc. London

Math. Soc. (3) 50 (1985), 426-446.
[17] M. W. Liebeck and J. Saxl, 'On the orders of maximal subgroups of the finite exceptional groups

of Lie type', Proc. London Math. Soc. (3) 55 (1987), 299-330.
[18] M. S. Lucido, 'Prime graph components of finite almost simple groups', Rend. Sem. Mat. Univ.

Padova 102 (1999), 1-22. ('Addendum . . . ', Rend. Sem. Mat. Univ. Padova 107 (2002), 1-2.)
[19] G. Malle, 'The maximal subgroups of 2F4(g2) ' , / Algebra 139 (1991), 52-69.
[20] G. Malle, J. Saxl and T. Weigel, 'Generation of classical groups', Geom. Dedkata 49 (1994),

85-116.

https://doi.org/10.1017/S1446788700015524 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015524


16 Enrico Jabara and Maria Silvia Lucido [16]

[21] P. Martineau, 'On 2-modular representations of the Suzuki groups', Amer. J. Math. 94 (1972),
55-72.

[22] R. Schmidt, Subgroup lattices of groups (De Gruyter, Berlin, 1994).
[23] E. L. Spitznagel, Jr., 'Hall subgroups of certain families of finite groups', Math. Z. 97 (1967),

259-290.
[24] M. Suzuki, 'Finite groups with nilpotent centralizer', Trans. Amer. Math. Soc. 99 (1961), 425-470.
[25] , 'On a class of doubly transitive groups', Ann. of Math. (2)75(1962), 105-145.
[26] J. S. Williams, 'Prime graph components of finite groups', J. Algebra 69 (1981), 487-513.
[27] G. Zacher, 'Sull' ordine di un gruppo finito risolubile somma dei sottogruppi di sylow', Atti Ace.

Naz. Lincei (8) 20 (1956), 171-174.
[28] , 'Sui gruppi finiti somma dei loro sottogruppi di Sylow', Rend. Sem. Mat. Univ. Padova 27

(1957), 267-275.

Dipartimento di Matematica Applicata
e Informatica
Universita "Ca' Foscari" di Venezia
Via Torino 155
31073 Venezia Mestre
Italy
e-mail: jabara@dsi.unive.it

Dipartimento di Matematica
e Informatica

Universita di Udine
Via delle Scienze 208

1-33100 Udine
Italy

e-mail: mslucido@dimi.uniud.it

https://doi.org/10.1017/S1446788700015524 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015524

