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STATISTICAL CONTROL IN HAEMATOLOGY

BY H. 0. LANCASTER, M.B., B.S., B.A.

From the School of Public Health and Tropical Medicine, Sydney

(With 1 Figure in the Text)

§1. INTRODUCTORY

The possibilities of statistical control in bacteriology are now widely appreciated,
but there has been no systematic attempt to apply the same statistical techniques
to the similar problems of counting in haematology. Since Plum (1936) has
described the evolution of the blood-counting apparatus and a very comprehensive
review of the applications of statistics to bacteriology has been given by Eisenhart
& Wilson (1943), chief consideration will here be given to the special problems
arising in haematology because of certain departures from the ideal conditions
usually presumed to hold in the derivation of the Poisson law. After a brief
historical review of the chief contributions to the theory of blood counting, this
paper contains a discussion of the adequacy of the Poisson law for the distribution
of cells in the haemocytometer chamber and the measurement of the goodness of
fit by the %2 test in large samples. In counting the red cells a fundamental condition
necessary for the derivation of the Poisson law does not hold. It is, however, shown
that allowance can be made for this 'crowding effect', and reasons are given for
believing that the effect is not likely to invalidate the methods of 'statistical
control', introduced. Illustrative examples from the author's own counts are
treated by these methods. The results of the application of statistical control to the
work of technicians are then described.

§2. HISTORICAL

Poisson (1837), the celebrated French mathematician, first used the distribution
that goes by his name to describe the frequency of occurrence of rare events.
Abbe (1878) derived the same law for the distribution of the cells over the squares
of a haemocytometer chamber. He did not give any experimental verification of
the theory as he was more interested in the accuracy of his pipettes and haemo-
cytometer from the volumetric point of view. Lyon & Thoma (1881) supplied an
experimental verification, but statistical techniques at the time were too
undeveloped to make the verification completely convincing, as there were no
criteria to judge whether divergences of the observed results from the theoretical
could be explained as due merely to random fluctuations. It seems that all these
experimental results were unknown to Bortkiewicz (1898), whose much-quoted
example of the numbers of fatalities from the kick of a horse in the different army
corps of the Prussian army is rather artificial.
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'Student' (1907) wished to estimate the error of his counts of yeast cells and
also to find the most efficient dilution for obtaining pure subcultures from a single
cell. Numerous authors have since pointed out that he was unaware of the previous
work in the field and did not use the term ' Poisson distribution' when describing
his results. The importance of his work was recognized by Goodall (1908) in a very
favourable review notice, but for many years the possibilities of a statistical
approach to the problem of blood counting were overlooked. Although Lucy
Whitaker (1914) warmly attacked Student's paper, to which attack Student (1919)
later replied, the fundamental importance of the Poisson distribution became
generally recognized, especially in the field of counting, in bacteriology, largely as
a result of Student's paper. In fact, R. A. Fisher now rates it as the most important
discrete distribution in biological work. Fisher, Thornton & MacKenzie (1922;
Fisher, 1948) supplied useful methods by which the consistency of a small number
of parallel counts could be tested, which are, essentially, new applications of the
X2 test for goodness of fit. At the same time they introduced the concept of' statistical
control' of laboratory work. These methods of control appear never to have been
applied to the counting of blood cells. Besides being a convenient check on current
laboratory work, Fisher showed that the methods could be used to test the con-
sistency of published data and gave examples of agreement in the count of parallel
bacterial plates that were so close that the results could only have occurred with
excessive rarity under conditions of strictly random sampling and were, therefore,
suspect. Finally, a very full and authoritative review of the statistical problems of
bacteriology with a complete bibliography may be found in the paper of Eisenhart
& Wilson (1943). Recently Berkson and his co-workers have shown by photo-
graphic methods that many individuals systematically count too low and have
attempted to have the over-strict criteria of a 'good count' modified so that
technicians may avoid the temptation to count erroneously in order to bring the
dispersion within pre-conceived bounds (Berkson, Magath & Hum, 1935, 1939;
Magath, Berkson & Hum, 1936).

§3. LARGE SAMPLE THEORY: THE POISSON DISTRIBUTION

If it can be assumed that: (i) complete mixing has been attained, (ii) there is no
cohesion between cells, and (iii) the fact of one cell falling on to a square of
a haemocytometer chamber does not affect the chances of another doing so, then
we may expect that the probability of any given square receiving i cells will be

ft = e-V/*!, (1)
where /i is the mean number of cells which fall on a square. A proof of this formula
will be found in Yule & Kendall (1950). The large sample theory follows directly
from this. If we know the true value of ju, then we may calculate the expected
frequencies of the numbers of squares of the haemocytometer containing no cell,
one cell, two cells and so on. A test of goodness of fit follows immediately, since the
expected values can all be specified. But we usually do not know the true value /i,
so we estimate it from the data by the observed mean and perform the x2 test for
goodness of fit with the degrees of freedom two less than the number of classes.
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Example. The number of cells on the squares of a Neubauer haemocytometer
chamber were counted, with the results set out in Table 1.

Table 1. A test of the goodness of fit of the Poisson distribution to
an observed red cell count by means of x2

No. of
jells on
e square

0
1
2
3
4
5
6
7
8
9

10
11

Total

Observed
frequency

11
36
76
80
74
58
38
17

6
3
0
1

400

Expected
frequency

10-740
38-851
70-273
84-737
76-634
55-445
33-429
17-275

7-812
3-140]
1-136-4-804
0-528J

400000

Observed —
expected

0-260
-2-851

5-727
-4-737
-2-634

2-555
4-571

-0-275
-1-812
-0-804

0-000

Contribution
t o * 2

0-006
0-209
0-467
0-265
0-091
0-118
0-625
0-004
0-420
0135

2-340

Mean number of cells per square = 3-6175.
Variance = 3-5308.
X2 for 8 degrees of freedom = 2-340, P = 0-97.

The test of goodness of fit shows that the Poisson law describes the distribution
in this case adequately. In fact, the x2 of 2-34 for 8 degrees of freedom would be
exceeded by chance in some 97 % of cases. (This count was a selected example and
so this excellent fit need not cause surprise.)

An outstanding feature of the Poisson is that the variance has an expectation
equal to the mean. The significance of the difference of the observed variance from
its expected value can be tested by a well-known use of x2- We take

-Y>x, (2)

or ^2= (n—1) (estimated variance)/(mean). (3)

For counts over 400 squares,

^2 = 399 (estimated variance)/(mean). (4)
In the example shown in Table 1, the mean and variance are 3-6175 and 3-5308.

X% is 389-4 with 399 degrees of freedom, quite close to the expected value of 399.
The deviation of the variance in this case from its expectation is readily explained
by 'sampling error'.

§4. EXPERIMENTAL OBSERVATIONS OF THE CROWDING EFFECT AND
THE DIMINISHED VARIANCE DUE TO CROWDING

It is to be noted that, in the above example, the mean is relatively low, for the
normal red cell count results in a mean of 7 or 8 cells per small haemocytometer
square. Berkson et al. (1935), working at an average cell density of 5-7 cells per
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square, were able to demonstrate a constant crowding effect which resulted in
a deficiency of squares with very high or very low cell counts, due to an exchange
of red cells between the squares, the cells being crowded off the squares with a high
count on to the neighbouring squares. The assumption made by these authors, that
the variance is likely to be a constant proportion of the theoretical value, cannot be
accepted without qualification, though their estimate that the variance was 85 %
of the mean was a reasonable figure at the cell density at which they were working.
On the theoretical grounds discussed in a later paragraph, it seems evident that the
variance would be more closely represented by a quadratic function of the mean
than by a linear function, the coefficient of the term in the square of the mean being
small and negative, so that the variance approximates closely to the mean when
the mean is low, but falls away from it as the mean rises. From a consideration of
32 counts of the whole 400 small squares of the haemocytometer chamber, two
regression lines relating the variance to the observed mean have been determined,
first using a formula of the type

2', (5)

where m is the observed mean; and secondly using a formula

v = m — bm2. (6)

The appropriate equations, fitted by the method of least squares, were

v = 0-999474m-0-020457m2, (7)

and i> = ra-0-020534m2. (8)

Equations (7) and (8) give practically identical values for the expected value of the
variance. Equation (8) is to be preferred because of its greater simplicity. The
value of b, empirically obtained, agrees roughly with that of the theoretical dis-
cussion given later in this paper.

Using (8), the expected variance has been computed for each of the counts in
Table 2 and for each of the counts of Berkson et al. (1935), shown in Table 3. In
both cases the counts have been rearranged in order of increasing mean. The
regression formulae, (7) and (8), fit the series of the author's counts well. This can be
seen by the generally small value of the differences between the observed and the
expected variances in the fifth column of Table 2. For the series of Berkson et al.
the agreement is fair, but the fit would have been closer with a larger value of b.
In Table 3 the expected variance was computed with a value of b obtained by the
method of least squares from Berkson's data,

« = m-0-026324m2. (9)

The residual sums of squares about the regression line (or the sum of the deviations
from the regression line taken with a positive sign) are not greatly reduced by the
use of this new regression formula.

Table 4 shows the expected variance, as given by (8), for selected values of the
mean.
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,ble 2. A

No. of
count

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31
32

comparison of the observed variance with the calculated, using the
regression formula

Mean
0-31
0-32
0-35
0-37
0-71
0-72
0-80
0-84
0-86
0-88
0-93
1-21
1-42
1-63
1-69
1-78
1-93
2-35
2-45
2-87
2-92
3-62
5-36
5-47
5-50
6-61
6-69
6-70
7 1 9
7-31
8-04
8-05

°f (8) for the author's own counts

Observed
variance

0-31
0-36
0-36
0-36
0-74
0-65
0-79
0-86
0-82
0-87
0-86
1 1 6
1-43
1-69
1-69
1-48
2-09
1-92
2-35
2-85
2-47
3-53
4-35
5-05
5-60
5-10
5-47
5-83
6-63
6 0 1

6-70
6-84

Expected
variance

0-31
0-32
0-35
0-37
0-70
0-71
0-79
0-83
0-84
0-86
0-91
1-18
1-38
1-57
1-63
1-71
1-85
2-24
2-33
2-70
2-74
3-35
4-77
4-86
4-88
5-71
5-77
5-78
6 1 3
6-22
6-72
6-72

Difference:
observed —

expected variance
0

+ 0-04
+ 0-01
-0-01
+ 0-04
-0-06

0
+ 0-03
-0-02
+ 001
-0-05
-0-02
+ 0-05
+ 0-12
+ 0-06
-0-23
+ 0-24
-0-32
+ 0-02
+ 0-15
-0-27
+ 0-18
-0-42
+ 0-19
+ 0-72
-0-61
-0-30
+ 0-05
+ 0-50
-0-21
-0-02
+ 0-12

Table 3. The counts of Berkson, Magath & Hum (1935), rearranged
in order of increasing mean

Four hundred small squares counted. The expected variances have been computed from
the regression equations (8) and (9).

served
nean
5-09
5-31
5-49
5-75
6-03
6-04
6-31
6-49
6-75
6-77

S d

Sjdj
S d 2

Observed
variance

4-37
4-75
4-62
4-37
5-95
5-38
4-80
5-38
5-71
5-20

Expected
variance

by (8)
4-56
4-73
4-87
5-07
5-28
5-29
5-49
5-62
5-81
5-83

Observed —
expected

variance (8)
-0-19
+ 0-02
-0-25
-0-70
+ 0-67
+ 0-09
-0-69
-0-24
-0-10
-0-63

-2-02
3-58
1-99

Expected
variance
by (9)

4-41
4-57
4-70
4-88
5-07
5-08
5-26
5-38
5-55
5-66

Observed —
expected

variance (9)
-0-04
+ 0-18
-0-08
-0-51
+ 0-88
+ 0-30
-0-46

0-00
+ 0-16
-0-46

0-03
3-07
1-61
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Table 4. Some tabulated values of the expected variance
computed by equation (8)

Expected Expected
Mean

0-5
1-0
1-5
2-0
2-5
3-0
3-5
4-0

variance
0-49
0-98
1-45
1-92
2-37
2-81
3-25
3-67

Mean
4-5
5-0
5-5
6 0
6-5
7-0
7-5
8-0

variance
4-08
4-48
4-88
5-26
5-63
5-99
6-35
6-69

§5. SYSTEMATIC CHANGES IN THE OBSERVED FREQUENCIES AS
SHOWN BY THE x2 TEST FOR GOODNESS OF FIT

If x2 be computed as in the example of Table 1, the fit is usually found to be good
for low values of the mean, say four red cells per small haemocytometer square,
but a systematic departure from theory occurs with higher values of the mean;
there are then fewer squares than expected containing numbers of cells differing
widely from the mean. There is naturally a complementary excess of squares
containing approximately the same number of cells as the mean; thus there is
a smaller variance than that given by the Poisson law. In such a case the differences
between observed and expected frequencies would show systematic effects. There
would be an excess of minus signs at both ends of column (4) in a table such as
Table 1 and an undue number of plus signs in the middle of the range. Further, the
contributions to Y2—and hence the total x2 of column (5)—would be too large in
general. Berkson (1938) has drawn attention to the relative insensitivity of x2>
used in the classical test of goodness of fit (as in Table 1), to this ' crowding effect'.

§6. A THEORETICAL CONSIDERATION OF 'CROWDING' IN
RED CELL COUNTING

In bacteriology the bacteria are so small that the presence of one in a certain
volume of fluid does not affect the probability of another being present in the
same volume to any appreciable degree. There may be differences in the op-
portunity of developing a colony or there may be a difficulty in counting the
colonies which develop, since overlap of colonies may occur in the plate poured if
the inoculum be too heavy and spreading inefficient. But in other applications of
the Poisson law to practical problems, the effect of crowding may be more apparent.
Garwood (1948) has discussed the problem of overlap in bombing, and Armitage
(1949) a similar problem of overlap in counting dust particles, in which case only
one of two particles falling together can be counted. Our problem is different from
that of either of these authors since the overlapping observation (i.e. the blood cell)
is not lost but tends to move from a crowded square to one less crowded, and so
contributes doubly to the reduction of the variance below the theoretical value
specified by the Poisson law.
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§7. MATHEMATICAL DISCUSSION OF 'CROWDING'

Suppose that there are a number of smooth circular disks (the red cells) of radius
r which readily slip over one another but which do not slip on the surface of the
haemocytometer. It will be assumed that when one disk has fallen to the surface
of the haemocytometer and another falls directly on to it the second moves away
from the first along the line of centres until the two are just in contact, both flat
on the surface; further, that the surface is divided up by parallel lines a distance
h apart and that h is greater than 2r.

The problem is now: given that all positions of the centre of the lower disk
within a square are equally likely, what is the probability of a second disk slipping
over the ' northern' boundary of the square if it comes in contact with the lower
cell ? Once we have determined the probability of the upper cell in contact with
a lower passing over the 'northern' boundary of the square, we can find the
approximate probability of any cell passing out of a haemocytometer square if it
comes in contact with a lower cell as it settles down on to the haemocytometer.
After obtaining this probability, an attempt will be made to relate it to the diminu-
tion of the observed variance. The area between the lines bounding the square to
north and south is called a strip.

It may be assumed without loss of generality that the first disk has its centre
always along a fixed line perpendicular to the boundary. As a convention, a cell
is considered to be within the strip if it is intersected by the ' northern' boundary,
and outside the strip unless it is entirely within the 'southern'.

Fig. 1 shows the centre, C, of the lower cell internal to the northern boundary
(case 1), and external to the northern boundary (case 2). The 'critical' area is
shaded. If the centre of the upper cell falls into this critical shaded area, it will be
initially 'within' the strip but will pass out of it over the northern boundary.
Suppose now that C is at a distance s north of the northern boundary. The area
shaded is then

(r-s) 7{4r2 - (r - s)2}.

Since all values of s are equally likely for all positions of C from ( — h + r) to r, the
expectation of the shaded area is given by

E (critical area) = I (r-

= (
Joo

= 8r3/3A. (10)
Each square of a haemocytometer has four edges to which a similar reasoning,

with modifications necessary because of the convention noted above, can be
applied. For the square, the expectation of the total critical area is approximately
four times that which we have calculated for the northern boundary of a strip of
the same width. If then A is the probability of an upper cell coming in contact with
a lower and passing over a boundary of the square, it is given by the ratio of the
expectation of the critical area to the area of the square

(11)
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It is important to note that if r is small relatively to h, then A is inversely pro-
portional to h3, since r is a constant when consideration is limited to the discussion
of red cells.

In our case, with the red cells counted on the small squares of the haemocytometer,

A = j jmm. = 50/«, r=4fi. (12)
So

A = 32r3/3A3 = 0-00546. (13)

We have now to relate A to the fall in the variance due to the crowding effect.
The effect of the crowding on the variance may be calculated as follows: let A be
the probability of the upper cell passing over the boundary of the small squares
(^o mm. side) after coming in contact with another specified cell. The distribution
of the cells in the fluid over the squares before the cells settle will be given by the
Poisson formula

Pi = e-mmiji\. (14)

Fig. 1. The critical area. Under the assumptions made in. the text, if the centre C" of any cell
falls within the large circle, it will be in contact with the 'lower' cell with centre C. The
'northern' boundary has been drawn heavily. At a distance r north of the boundary is
a faintly drawn line, such that if the centre of a cell is to the north it will be considered
external to the 'strip' by the blood-counting conventions. If the centre of the upper cell
falls in the cross-hatched area, the upper cell will pass over the northern boundary.

After crowding, squares with^' cells initially will have an expectation of the loss of
cells. The expectation of the number of cells exchanged will be

S j ( j - (15)

As an approximation it is assumed:
(i) That each square receives cells independently of the number it already

contains, so that each square receives an expectation of ra2A cells.
(ii) That only one cell is lost or gained by each square and that this occurs with

a frequency equal to the expectation.
Squares finally containing j cells will be composed of four groups:
(i) Those originally containing j cells which neither lost nor gained any cell.
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(ii) Those originally containing j cells which have lost one cell and regained one.
(iii) Those which originally had (j—1) cells and gained one cell,
(iv) Those which originally had (j +1) and lost one cell. We suppose that these

four groups have frequencies,
Fn, Fjt, Fi3, Fjt.

Then the variance of the number of the cells on the squares of the haemocytometer
after rearrangement is given by

v= 2 ifFfl-m*, (16)

3 = 0 i = l

since the mean of the distribution is unchanged.

But J ^ = (l-Am»){l-j(j-l)A}P,, (17)
Fja=j{j-l)AP}\m*, (18)
Fp =Am*Pj_1{l - (j- 1) (j - 2)A}, (19)

F.h = Pj+i(l -Am2) (j+l)jA. (20)

Neglecting terms containing the square of A and using (15), the contribution to the
variance of the squares containing j cells will be

But the sum of these quantities is readily evaluated if we neglect the terms con-
taining A2 and notice that

(21)

Hence, v = m — 2Xm2 (22)

gives an approximation to the relation between the variance after rearrangement
and the mean. For red cell counting on the small squares, we have already found
a value of A, namely 0-00546. The theoretical regression equation is therefore

given by w = m-0-01092m2. (23)

The coefficient of m2 is about half that experimentally determined and so the
theory must be regarded as giving a not unreasonable account of the settling of the
cells and the diminished variance, considering the approximations involved.

If, for a square of k x -^ mm. side, A' be defined as the probability that a cell
will fall on another given cell placed at random in the square and pass over
a boundary, and m'( = Jc2m) as the expected mean, then

3, (24)

and the variance v' is given by

(25)
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So that «/m=l-2Am, (26)

but v'jm' = 1 - 2\mjlc. (27)

Berkson and his collaborators are therefore open to criticism in using the same
ratio between variance and mean for the small haemocytometer squares and for
groups of them. An alternative derivation of an equation equivalent to (27) is
given in the Appendix to this paper. Equat ion (27) also suggests t ha t the diminu-
tion in the variance between sets of sixteen small squares is not likely to be more
than 2 %.

On the basis of Berkson's empirical result t ha t the diminution in variance for
single squares is about 15 % , the diminution for sets of sixteen small squares will
be about 4 % (see Appendix, p . 417). This discrepancy between the two values was
to be expected in view of the discrepancy between the coefficients of m2 in (9) and
(23). The use of x2 in the next section, as a measure of dispersion in sets of counts
from groups of sixteen small squares will therefore not be appreciably invalidated
by the crowding effect. I t will be neglected in the following discussion of the test
of consistency of parallel counts, on the understanding t ha t the counts are from
areas of sixteen small haemocytometer squares.

§8. THE TEST OF CONSISTENCY OF PARALLEL COUNTS

The test of the goodness of fit by the large sample methods of § 3 are in any case
time-consuming and break down if only the counts from a few areas are available.
An alternative test due to R. A. Fisher (Fisher et at., 1922; Fisher, 1948) is available.
Suppose n parallel counts have been made and the counts are given individually
by xi, where i can take the values 1, 2, 3 , . . ., n. The test of consistency of results
is to take , -%;>/- , o o l

X2 = Z(xi-x)2lx, (28)
with (n— 1) degrees of freedom. Under the conditions (i), (ii) and (iii) of §3 above,
the x2 obtained will be exceeded by chance in a certain proportion of cases, which
is the probability of x2 derived from the tables. We then expect to find that a x2

giving a probability of say 0-1 will be exceeded in 10 % of the tests, whereas
a x2 givmg a probability of 0-3 will be exceeded in 30 % of the tests, and so on.
Thus the probability range may be split up in any arbitrary fashion to obtain an
expected frequency for x2 between the limits of any division. For example, in
20 % of the cases we expect x2 to correspond to a probability between 0-1 and 0-3.

Example. In a set of five counts of red cells each over the area of sixteen small
squares of a Neubauer haemocytometer, the following counts were obtained:
40, 49, 31, 40 and 37. x2 (given by (28) with 4 degrees of freedom) is equal to
4-2944. By consulting the tabulated values of x2, in the tables of Fisher & Yates,
for example, we find that this value of x2 has a probability between 0-3 and 0-5 and
so this set of counts would be referred to this class in the ' control chart'.

In Table 5 are summarized the results of the author's own red cell counts,
treated by the methods described. A convenient set of probability classes is
indicated—0-0-0-1, 0-9-1-0, and 0-1 (0-2) 0-9. In the second column are shown the
corresponding values of x2- In the third and fourth columns are given the observed
and expected frequencies. In Table 6 are given the author's findings for white cell
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Table 5. The red cell counts of the author treated by the x2 test

Probability
class

1-0-0-9
0-9-0-7
0-7-0-5
0-5-0-3
0-3-01
0-1-0-0

Total

Values of x
defining the

probability class
0-1-064

1-064-2-195
2-195-3-357
3-357-4-878
4-878-7-779
7-779-

Observed
frequency

6
15
14
13
14

2

64

Expected
frequency

6-4
12-8
12-8
12-8
12-8

6-4

64-0

Sets of five parallel red blood cell counts have been collected into classes according to the
probability resulting from the x2 test used as a measure of dispersion.

The resultant x2 n a s 4 degrees of freedom. 1-064 is the 0-9 or 90 % point for x2 with 4 D.F.

Table 6. The white cell counts of the author, treated by the x2 test

Probability
class

1-0-0-9
0-9-0-7
0-7-0-5
0-5-0-3
0-3-0-1
0-1-0-0

Total

Values of x2

0-0-584
0-584-1-424
1-424-2-366
2-366-3-665
3-665-6-251
6-251-

Observed
frequency

2
5
8
3
5
1

24

Expected
frequency

2-4
4-8
4-8
4-8
4-8
2-4

24-0

Sets of four parallel white blood counts have been collected into classes according to the
probability resulting from the x2 test used as a measure of dispersion.

counting. The observed frequencies of the probability classes from both the red
and the white cell counts are in accord with expectations. There is, therefore, no
evidence to assert that the experimental techniques of mixing and spreading on the
haemocytometer chamber or counting were unsatisfactory. In these two tables,
there are tabulated only sets of counts with the same number of parallel counts.
This is an unnecessary restriction, since the boundaries of the probability classes
are independent of the number of replicates. It is therefore legitimate to use the
results from experiments in which the numbers of replicates vary from experiment
to experiment. The different types of cell counts should of course be kept separate;
there should be one control chart for red cells, another for white cells. An unpub-
lished random sampling experiment by the author indicates that the %2 test gives
satisfactory classification of the counts with a mean as low as five cells if the
number of parallel counts are four. Therefore, the great majority of the white cell
counts and all the red cell counts likely to be met with in clinical practice can be
included in the control chart.

The^2 variable, though continuous, is used to approximate to a discrete variable.
It might be supposed therefore that some irregularities would occur. This has not
been found to be so, except for duplicate counts, where there does not seem to be
any suitable adjustment that will give the expected numbers in both the terminal
classes. The technique is unsuitable for such cases.
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There is an alternative method of assessing control, which in general is not so
valuable as the method outlined above, but it is of some value in the last-mentioned
case. The additive property of x2 may be used. The x2 for each experiment and the
corresponding number of degrees of freedom may both be summed over' a series of
experiments. If this gives an unduly high value for x2, it indicates that the agree-
ment between parallel plates is unduly poor and an experimental reason for this
should be sought. On the other hand, an unduly low x2 suggests that parallel
counts are not all independent because the observer may, consciously or otherwise,
have allowed a knowledge of the previous counts to affect his count of the later
replicates. This occurs frequently; examples are given below.

§9. THE VALUE OF STATISTICAL CONTROL IN THE LABORATORY

Berkson has commented on the unsatisfactory nature of the criteria used for
a 'good' count. The most common type of criterion in red cell counting is that the
range of the five parallel counts of sixteen small haemocytometer squares must not
exceed some arbitrary number. This range is usually laid down regardless of the
mean of the counts. It would be possible, of course, to devise a method of statistical
control using the range and mean, but we have not done so for three reasons:

First, it is difficult to see what adjustments are necessary to allow for continuity
in such a measure as the range divided by the estimated standard deviation.

Secondly, the method uses only the two extreme observations and so does not
take note of all the available information.

Thirdly, the method is more susceptible to manipulation, conscious or un-
conscious, on the part of the technician than the x2 test.

Further, the x2 test is a constant reminder that the accuracy of the counts
measured by the coefficient of variation is directly proportional to the square root
of the number of cells counted. For the coefficient of variation is 100/̂ /m. The
attempt to discourage the spuriously close agreement which is often given between
counts by technicians, is by no means academic. For, far from increasing accuracy,
the conscious choice of squares or areas to be counted may reduce it as follows. If
the technician sees two areas in good apparent agreement and then seeks other
areas not widely different, he is in effect basing his count on the first two areas.
Further, if the technique is good, there is no justification for believing that the
difference between the observed and true mean of a set of parallel counts is corre-
lated to any appreciable extent with the variance. It is better practice to lay down
beforehand which areas will be examined.

The spuriously low variances obtained by conscious choice of squares lead to
a further fallacy. Counts made on the same individual at different times or on
different individuals are compared by means of a <-test or similar techniques which
make use of these spurious observed variances. It is therefore asserted that there
is a significant difference when such may not be the case.

These methods of control would also be useful in an investigation into the
literature of haemocytometer counts, with the object of examining the internal
consistency of the counts made by various authors.

J. Hygiene 28
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§10. SOME ILLUSTRATIVE EXAMPLES OF STATISTICAL CONTROL

In Table 7 are given the results obtained by two medical graduates not yet
specially trained in haematology. The few counts (white cell counts) from Dr H. are
in general agreement with the theory. Dr M.'s red cell counts are in good agreement
with the theory, but there is a slight excess of white cell counts in the probability
class 0-1 to 0-0, showing that there is a relatively large dispersion in too many of
his counts.

Table 7. Statistical control applied to the counts of two observers,
medical graduates

Probability
class

1-0-0-9
0-9-0-7
0-7-0-5
0-5-0-3
0-3-0-1
0-1-0-0

Total

DrH.
(white blood
cell counts)

0
2
2
1
4
1

10

DrM.
(white blood
cell counts)

7
9

11
13
13
13

66

DrM.
(red blood

cell counts)
15
16
15
16
22
16

100

Expected
percentage

10
10
20
20
20
10

100

Table 8. Statistical control applied to observers, experienced technical
assistants, A and B

Red White blood White blood White blood
blood cell cell counts, cell counts, cell counts, Red blood Red blood
count of of A of A of A cell counts cell counts

Probability technician October January February (1st series) of (2nd series)
A 1947 1948 1948 technician B ofB

1-0-0-9
0-9-0-7
0-7-0-5
0-5-0-3
0-3-0-1
0-1-0-0

Total
number of
counts

To ta l %%

Degrees of

15
23
24
11
18

9

100

360-96

400

8
6

12
20
20
34

100

542-04

300

3
17
14
19
25
22

100

42318

300

8
17
19
14
33

9

100

336-42

300

24
25
24
25

2
—

100

173-28

400

13
31
22
20

7
7

100

316-82

400
freedom

In table 8 the results from two experienced technicians are examined in some
detail. The distribution of A's fed cell counts evidently differs from the theoretical
only by sampling errors. All the x2 values have been totalled to give a total of
361-0 for 400 degrees of freedom, in excellent agreement with the theory. The
white cell counts were not done so well however. In his first hundred white cell
counts there is an excessive number (34 instead of 10) of sets of counts in the class
with probability 0-1 to 0-0. Investigation showed that the acetic acid mixture was
not sufficiently strong to haemolyse completely the red cells and that clumps of
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white cells were often present on the haemocytometer slide. The next set of white
counts by the same observer, A, is better, but it was not till after a further
strengthening of the white cell fluid to obtain complete haemolysis that satisfactory
results, in accord with theory, were obtained. The total x2 f° r these 100 sets of
white cell counts has 300 degrees of freedom, and there has been a fall in %2 from
the unduly high figure of 542 to 336. This last figure is quite in keeping with the
theory as can be inferred from Table 9.

Table 9. Significance levels of x2 appropriate to red and white cell
counting, and of the ratio of variance to mean

Probability of
the value of

X2 or the ratio
being exceeded

by chance

0-995
0-975
0-025
0-005

399 degrees of
freedom, or

single count of
400 squares

X2

329-1
345-1
455-8
474-6

Variance
/Mean

0-825
0-865
1-142
1-189

255 degrees of
freedom, or

single count of
256 squares

A
\

Variance
X1 /Mean

199-7 0-783
212-2 0-832
300-6 1-179
315-9 1-239

63 degrees of
freedom, or

single count of
64 squares

599 degrees of
freedom, or

single count of
600 squares

X*
37-0
42-5
86-3
94-6

Variance
/Mean

0-588
0-675
1-370
1-502

r
512-7
532-6
668-2
690-9

These figures have been computed using Fisher's approximation, that
a normal deviate with unit standard deviation.

Variance
/Mean
0-856
0-889
1116
1153

/(2m- 1) is

Observer B usually picked his areas to avoid excessive dispersion. This is quite
apparent in his first series and somewhat less so in his second series, for which he
had been instructed not to select areas at the time of the count but to count on
areas fixed beforehand. Even his second series has a total %2 significantly low at
the 0-995 level of significance. It may be thought that this observer, by zealous
shaking or some other device, had reduced his variance and that the Poisson law
does not hold in his counts. But in a series of 25 white cell counts with complete
enumeration of the cells in each of the 64 small squares, he gave variances completely
in agreement with the Poisson. In two other white cell counts, with a high mean,
he obtained an excessively high dispersion, evidently owing to an inability to
count the number of white cells accurately on a square with more than, say, 15 cells
present. The crowding effect in white cell counting is trivial.

SUMMARY

The value of ' statistical control' in haematology has been demonstrated. After
a short historical survey of the chief contributions to the theory of the technique
of counting and of the application of the Poisson distribution in biology, the
statistical theory of the distribution of cells in the haemocytometer is briefly
described and examples are given of large sample methods of testing goodness of
fit. Some of the author's counts are considered.

In the red cell counts a ' crowding' effect is noted by which the variance between
the counts on the individual squares on the haemocytometer is reduced. This
effect is trivial in white cell counting owing to the small proportion of the area

28-2
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occupied, but is important in reducing the variance between the numbers of red
cells on individual small haemocytometer squares. A quadratic function ade-
quately describes the regression of the variance on the mean for fixed size of
haemocytometer square, for the usual range of red cell density. This function,
calculated on the basis of the author's own counts also describes Berkson's findings
on crowding adequately and is not, considering the approximations involved,
inconsistent with the theoretical discussion on crowding. Reasons are given for
believing that the crowding effect is only trivial if blocks of 16 squares are com-
pared in red cell counting.

The methods of statistical control, suggested by R. A. Fisher's work, are
introduced. It is shown that they give satisfactory results when applied to some
of the author's own counts. The methods are used to discuss the consistency of the
counts of certain medical graduates and technicians. The methods are suitable for
a review of the literature with the object of examining the internal consistency of
the counts made by various authors.

APPENDIX

The variance of the number of cells falling on to a block of squares
(Alternative treatment)

Equations (26) and (27) show that for constant values of the size and density of
blood cells and the size of the small haemocytometer squares, the ratio between
variance and mean of a series of counts depends on the number of small squares
over which each count is made. In view of the approximations in the argument of
§7 it is of some interest to derive this result by an alternative method. In the
present argument only the empirical result of §4 is used, that the variance is
related to the mean by the quadratic expression (6), no assumption being made
about the value of the coefficient b.

Since the cells slip from a crowded square onto adjacent squares, the numbers of
cells on adjacent squares are correlated. We suppose that this correlation is
represented by the coefficient, p. It is supposed that there is no transfer from
a square to one diagonally adjacent and that there is no correlation between
squares not in contact. Let the variance after reduction by the crowding effect when
the cell density is m per square be o~2.

It is easily seen that there are 2k(k— 1) pairs of correlated variables, where the
variables are the numbers of cells per square. The variance of the total number of
cells on a block of k2 squares is therefore given by

V(k2) = {k2 + ik(k-l)p}(T2. (29)

When n is indefinitely large, there is an area not including a margin of width,
say, two red cell diameters, from which no cells are lost or exchanged with neigh-
bouring blocks. From the marginal strip there may be some exchange with
neighbouring blocks. The dimensions of the inner area are of order k2 and of the
strip, k. Thus the ratio of the expected variance allowing for crowding to that
given by the Poisson distribution approaches unity as n becomes indefinitely large.
As k-*oo, therefore, V(k*)\{k2m)->\. (30)
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Equating the two limiting values of V(k2) as fc->oo,
(31)

4/3 = mja2 — 1,

p = i{m/<7*-l}. (32)

The value of p from (32) may be substituted in (29), so that, for finite n,

-l) (m/cr2-l)}o-2

m. (33)

Using the empirical regression equation (6),

V{k2)l(k2m) = {ka2 + k(k-l) m}\k2m
= {k(m-bm2) + k(k-l) m\\k2m
- 1 - bm\k. (34)

This corresponds to the result (27) in which b = 2A. The case where k = 4 is of special

interest to us. If the variance of the cells per square is 85 % of the theoretical

Poisson variance at a certain cell density, then bm = 0-15 and bm/k is 0-04; thus the

variance of blocks of 16, or 42, squares is reduced only by 4 % below the theoretical

Poisson value.
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