ON A THEOREM OF BAER AND HIGMAN

SEÁN TOBIN

1. Introduction

1.1 Baer has shown (1) that if the fact that the exponent of a group is m (that is, m is the least common multiple of the periods of the elements) implies a limitation on the class of the group, then m must be a prime. Graham Higman has extended this result by proving (3) that for any given integer M there are at most a finite number of prime powers q other than primes, such that the fact that a group has exponent q implies a limitation on the class of the M th derived subgroup. In fact, given arbitrary positive integers M and N, he produces, by an intricate construction, a finite group G having derived length $M+2$ and prime-power exponent p^{r}, such that the class of the M th derived subgroup of G exceeds N, where

$$
p^{r}-1>(p-1) A(M)
$$

and $A(M)$ is an integer-valued function:

$$
A(0)=1, \quad A(1)=3, \quad A(2)=13, \ldots
$$

The case $M=0$ is Baer's result.
1.2 In this paper we consider those prime powers p^{r} for which

$$
p^{r}-1=(p-1) A(M)
$$

in the special cases $M=0$ and $M=1$, that is, $r=1$ and $p=r=2$ respectively. We show that no result similar to that of Higman can be obtained in these cases; indeed, an upper bound is given for the class of the M th derived subgroup in terms of the derived length.

Specifically, the final results are as follows:
Theorem 1. If a finitely generated group G has exponent 4 and ϕ-length λ, then the class of $\phi(G)$ is at least $2^{\lambda-2}$ and at most $5^{\lambda-2}$.

The meaning of $\phi(G)$ and ϕ-length of G is explained in §2.1.
Theorem 2. If a finitely generated group G has prime exponent p and derived length d, then the class of G is at least 2^{d-1} and at most p^{d-1}.

[^0]A well-known result due to Hall (2) gives $2^{\lambda-2}$ and 2^{d-1}, respectively, as the lower bounds; we shall be concerned here with the upper bounds. The interest of these results lies, of course, not so much in the bounds given for the class, which are presumably far from best possible if λ and d are large, as in the fact that bounds exist which are independent of the number of generators of the groups in question.

We may mention also an auxiliary theorem which is of interest in itself.
Theorem 5.2. If, for a finitely generated group G with prime-power exponent p^{r}, there exists a positive integer s such that

$$
H_{s+1}(G) \subseteq D_{2}(G)
$$

then

$$
H_{q s+1}(G) \subseteq H_{q+1}(D(G)), \quad q=1,2,3, \ldots
$$

Here $H_{i}(G)$ and $D_{2}(G)$ are members of the lower central series and the derived series (§2) of G, respectively.

2. Definitions

2.1 The Frattini subgroup $\phi(G)$ of a group G is defined to be the intersection of all the maximal subgroups of G; if P is a p-group (by which we mean that the order of P is a power of a prime p) it is known (2) that $\phi(P)=D(P) \cup P^{p}$ where $D(P)$ is the commutator subgroup and P^{p} the subgroup generated by the p th powers of all elements in P.

The Frattini series is defined inductively:

$$
\phi_{0}(G)=G, \quad \phi_{i+1}(G)=\phi\left(\phi_{i}(G)\right), \quad i \geqslant 0
$$

If this series terminates with the identity (as it certainly does for a finite group), so that $\phi_{j-1}(G) \neq\{1\}$ but $\phi_{i}(G)=\{1\}$ whenever $i \geqslant j$, we shall say that the ϕ-length of G is j.

The derived series of a group G is defined inductively:

$$
D_{0}(G)=G ; \quad D_{i+1}(G)=D\left(D_{i}(G)\right), \quad i \geqslant 0
$$

If N is a normal subgroup of a p-group P, such that $\phi_{i}(P) \supseteq N$, it is easily seen that $\phi_{i}(P / N)=\phi_{i}(P) / N$.

Since $u^{-1} v^{-1} u v=\left(u^{-1}\right)^{2}\left(u v^{-1}\right)^{2} v^{2}$, we see that if P is a 2 -group, then $P^{2} \supseteq D(P)$ and $\phi(P)=P^{2}$. If, in addition, P is generated by elements which all have period 2, then $D(P) \supseteq P^{2}$, and consequently $\phi(P)=D(P)=P^{2}$.

Again, if P is a 2 -group with n independent generators, $P / \phi(P)$ is elementary abelian with order 2^{n}; thus every factor-group $\phi_{i}(P) / \phi_{i+1}(P)$ in the ϕ-chain of P is an elementary abelian 2 -group (i.e., the direct product of cycles of order 2).
2.2 Square brackets will be used to denote commutation:

$$
[x, y]=x^{-1} y^{-1} x y .
$$

If $x_{1}, x_{2}, x_{3}, \ldots$ are arbitrary elements in a group, the (complex) commutators in the x_{i} are defined inductively by the rules
(i) x_{i} is a commutator;
(ii) if c and d are commutators in these elements, so also is $[c, d]$. In particular, a left-normed (or simple) n-fold commutator is defined:

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left[\left[x_{1}, x_{2}, \ldots, x_{n-1}\right], x_{n}\right] \quad(n>2)
$$

The weight of a commutator in the element x_{i} is defined by
(i) the weight of x_{j} in x_{i} is 1 if $i=j, 0$ if $i \neq j$.
(ii) the weight of $[c, d]$ in x_{i} is the sum of the weights of c and d in x_{i}.

The weight of a commutator is the sum of its weights in the components x_{i}. We recall the commutator identity

$$
[x, y z]=[x, z][x, y][x, y, z]
$$

The lower central series of a group G is defined inductively

$$
H_{1}(G)=G ; \quad H_{i+1}(G)=\left[H_{i}(G), G\right], \quad i \geqslant 1 .
$$

(That is, H_{i+1} is the subgroup generated by the set of all commutators of the form [h_{i}, g] with h_{i} in H_{i} and g in G.) A discussion of the properties of this series, and its connection with the class of G, may be found in (2).

3. A certain group with exponent 4

3.1 Let G be a 2 -group with ϕ-length 3 . Let $H=\phi_{2}(G)$, and let $K \simeq G / H$. It is clear that the exponent of G must be 8 or 4 , and the exponent of K is 4 . Both H and $\phi(K)$ are non-trivial elementary abelian 2-groups, and $\phi(K) \simeq$ $\phi(G) / H$. We use 1 to represent the unit element of G or K according to context.
In this section we show that the requirement that G have exponent 4 introduces a certain relation into the group ring of K over the field of two elements; and in §3.2 we show that this relation yields an upper bound for the class of $\phi(G)$.

For each element k in K we choose, in the corresponding coset of G / H, a coset representative g_{k} in G. If x, y are any elements of K, the element $h(x, y)$ in H is determined by the equation

$$
g_{x} g_{y}=g_{z} h(x, y) \quad \text { where } z=x y
$$

The element g_{k} induces an automorphism of H which depends only on k; if h is any element of H we denote its image by

$$
h^{k}=g_{k}^{-1} h g_{k} .
$$

The automorphisms k belong to the ring θ of endomorphisms of H, and θ has characteristic 2 . Since $\left(h^{x}\right)^{y}=h^{2}$, where x, y and z have the meanings already assigned, the subring of θ generated by the set $\{k: k \in K\}$ is a homomorphic image of the group ring of K over the field of two elements (0,1).

Any element g of G can be written uniquely in the form $g=g_{k} h$ with k in K and h in H. Then

$$
g^{4}=g_{1} h\left(k^{2}, k^{2}\right) h(k, k)^{(1+k)^{2}} h^{(1+k)^{3}} .
$$

We choose $g_{1}=1$; and now in order that G itself may have exponent 4 it is necessary and sufficient that
(i) $h^{(1+k)^{3}}=1$ for all choices of h in H and k in K and
(ii) $h\left(k^{2}, k^{2}\right) h(k, k)^{(1+k)^{2}}=1$ for all choices of k in K.

We shall consider condition (i), which is more amenable to treatment than (ii). Since

$$
h^{(1+k)}=h g_{k}^{-1} h g_{k}=\left[h, g_{k}\right],
$$

what relation (i) says, in effect, is that

$$
[h, u, v, w]=1
$$

for any element h in H, whenever the elements u, v, w all lie in the same coset of G modulo H.
3.2 Thus we consider the group ring of K over the field of two elements $(0,1)$, with the relation $(1+k)^{3}=0$ for all elements k in K.

We use the notation $K_{i}=1+k_{i}$ for elements k_{i} in K; throughout what follows we shall not use k without a subscript to represent an element of K. To avoid repetition, we make the following convention:
k_{1} is an arbitrary element of K
$k_{2}=k_{1}{ }^{2}$
k_{3}, k_{5}, k_{7} are arbitrary elements of $\phi(K)$
$k_{4}=\left[k_{1}, k_{3}\right], \quad k_{6}=\left[k_{1}, k_{5}\right], \quad k_{8}=\left[k_{1}, k_{7}\right]$.
Thus $K_{i}{ }^{2}=0$ and $K_{i} K_{j}=K_{j} K_{i}$ when i and j lie between 2 and 8 inclusive.
The relation in the group ring may now be written

$$
K_{1} K_{2}=0
$$

If we replace k_{1} here by $k_{1} k_{3}$, then k_{2} is replaced by $\left(k_{1} k_{3}\right)^{2}=k_{2} k_{4}$,
K_{1} becomes $1+k_{1} k_{3}=1+\left(1+K_{1}\right)\left(1+K_{3}\right)=K_{1}+K_{3}+K_{1} K_{3}$, and the relation gives
3.22

$$
\left(K_{1}+K_{3}+K_{1} K_{3}\right)\left(K_{2}+K_{4}+K_{2} K_{4}\right)=0
$$

Post-multiplication by K_{4} gives $\left(K_{1}+K_{3}+K_{1} K_{3}\right) K_{2} K_{4}=0$; then postmultiplication by K_{3} gives
3.23

$$
K_{1} K_{3}\left(K_{2}+K_{4}\right)=0
$$

This leaves $\left(K_{1}+K_{3}\right)\left(K_{2}+K_{4}\right)=0$, but $K_{1} K_{2}=0$, thus finally

$$
K_{1} K_{4}+K_{3}\left(K_{2}+K_{4}\right)=0
$$

Using 3.23, premultiplication by K_{1} gives
3.25

$$
K_{2} K_{4}=0
$$

In 3.24 , replace k_{3} by $k_{3} k_{5}$, then k_{4} is replaced by $\left[k_{1}, k_{3} k_{5}\right]=k_{4} k_{6}$. Thus

$$
\begin{aligned}
& 3.26 K_{3} K_{6}+K_{4} K_{5}+\left(K_{1}+K_{3}+K_{5}+K_{3} K_{5}\right) K_{4} K_{6} \\
& \quad+K_{3} K_{5}\left(K_{2}+K_{4}+K_{6}+K_{4} K_{6}\right)=0 .
\end{aligned}
$$

If we substitute for k_{5} the particular value $k_{5}=\left[k_{1}, k_{\beta}\right]$ where k_{β} is an arbitrary element in $\phi(K)$, then

$$
k_{6}=\left[k_{\beta}, k_{1}, k_{1}\right]=\left[k_{\beta}, k_{1}{ }^{2}\right]=1
$$

and $K_{2} K_{5}=0$ by 3.25 , thus

$$
K_{4} K_{5}+K_{3} K_{4} K_{5}=0, \quad \text { which implies } K_{4} K_{5}=0
$$

Consequently, in equation 3.26 , where k_{5} is again an arbitrary element of $\phi(K)$, we have
3.27

$$
K_{4} K_{6}=0
$$

and 3.26 reduces to
3.28

$$
K_{3} K_{6}+K_{4} K_{5}+K_{2} K_{3} K_{5}=0
$$

Again, in 3.28 replace k_{5} by $k_{5} k_{7}$ and k_{6} by $k_{6} k_{8}$. Then, since $K_{6} K_{8}=0$ by 3.27

$$
K_{3}\left(K_{6}+K_{8}\right)+K_{4}\left(K_{5}+K_{7}+K_{5} K_{7}\right)+K_{2} K_{3}\left(K_{5}+K_{7}+K_{5} K_{7}\right)=0
$$

Using 3.28 this simplifies to

$$
K_{4} K_{5} K_{7}=K_{2} K_{3} K_{5} K_{7}
$$

On multiplying 3.28 by K_{7} and using this, we obtain $K_{3} K_{6} K_{7}=0$, which is equivalent to saying $K_{4} K_{5} K_{7}=0$. Consequently
3.29

$$
K_{2} K_{3} K_{5} K_{7}=0 .
$$

Now if we take any element k_{9} in $\phi(K)$, then
$K_{9}=K_{11}{ }^{2}+K_{12}{ }^{2}+\ldots+K_{1 \xi}{ }^{2}+$ (products of two or more of these squares) where $k_{11}, k_{12}, \ldots, k_{1 \xi}$ are certain elements of K. Thus 3.29 implies that

$$
K_{3} K_{5} K_{7} K_{9}=0
$$

for all choices of four elements $k_{3}, k_{5}, k_{7}, k_{9}$ in $\phi(K)$.
In the group G this means that for arbitrary elements w, x, y, z in $\phi(G)$ and h in $H,[h, w, x, y, z]=1$. Thus we have proved

Theorem 3.2. If G is a finite group with exponent 4 and ϕ-length 3 , then the class of $\phi(G)$ is at most 5 .
3.3 Let G be a finitely generated group with exponent 4: such a group is finite (5), hence a 2 -group. Thus $\phi\left(G / \phi_{3}(G)\right)=\phi(G) / \phi_{3}(G)$ and the derived series of $\phi(G)$ coincides with its Frattini series. Thus from Theorem 3.2 we obtain, using the notation previously explained,

Corollary 3.3. If G is a finitely generated group with exponent 4,

$$
H_{6}(\phi(G)) \subseteq D_{2}(\phi(G))
$$

4. A similar result

Meier-Wunderli has shown, in (4), that a finitely generated metabelian group with prime exponent p has class at most p. This may be stated as follows:

Theorem 4.1 (Meier-Wunderli). If G is a finitely generated group with prime exponent p,

$$
H_{p+1}(G) \subseteq D_{2}(G)
$$

This result bears an obvious resemblance to Corollary 3.3 ; they will be extended simultaneously by means of the theorems given in the next section.

5. Some theorems on commutators

5.1 Lemma. Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary elements of an arbitrary group G; let c be a commutator of positive weight in each of the $x_{i}(i=1,2, \ldots, n)$ and let the equation

$$
c=d_{1} d_{2} \ldots d_{\alpha}
$$

where the d_{j} are also commutators in $x_{1}, x_{2}, \ldots, x_{n}$, be an identity in the group variables x_{i}. Then there is an equation

$$
c=b_{1} b_{2} \ldots b_{\beta}
$$

also true for all $x_{1}, x_{2}, \ldots, x_{n}$ in G, where the b 's are commutators in the elements $d_{1}, d_{2}, \ldots, d_{\alpha}$ such that every b is of positive weight in each of $x_{1}, x_{2}, \ldots, x_{n}$.

Proof. This can be proved by induction on n, being trivially true for $n=1$. Thus we may suppose that each d_{j} is of positive weight in each of x_{1}, \ldots, x_{n-1}. We may further suppose that the commutators of zero weight in x_{n} are those in an initial segment $d_{1} d_{2} \ldots d_{\xi}$. For if this is not so, then using the relation $y x=x y[y, x]$ we can bring them to the left of the expression one at a time, by a process which terminates, since the new commutators $[y, x]$ introduced have positive weight in x_{n}.

When this has been done, let $x_{n}=1$. Then every commutator of positive weight in x_{n} reduces to the identity, while those of zero weight in x_{n} are not affected. Thus for all $x_{1}, x_{2}, \ldots, x_{n}$ in G

$$
1=d_{1} d_{2} \ldots d_{\xi}
$$

Hence also, for all $x_{1}, x_{2}, \ldots, x_{n}$ in G

$$
c=d_{\xi+1} d_{\xi+2} \ldots d_{\alpha}
$$

which is the expression required.
5.2 Theorem. If, for a finitely generated group G with prime-power exponent p^{r}, there exists a positive integer such that

$$
H_{s+1}(G) \subseteq D_{2}(G)
$$

then

$$
H_{q s+1}(G) \subseteq H_{q+1}(D(G)), \quad q=1,2,3, \ldots
$$

Before proving Theorem 5.2, we make a remark which also has a bearing on Theorem 6.2. A well-known theorem, due to O. Schreier, states that in a finitely generated free group any subgroup of finite index is also finitely generated. Since any finitely generated group is a homomorphic image of a finitely generated free group, the statement remains true when the words "free group" are replaced by "group." In particular, let F be a group with a finite exponent. Then if F is finitely generated, so also is $D(F)$ and every factor $D_{i}(F) / D_{i+1}(F)$ in the derived series is finite.

Proof. If N is any normal subgroup of $G, H_{i}(G / N)=\left\{H_{i}(G), N\right\} / N$; hence it is sufficient to prove

$$
H_{q s+1}(X) \subseteq H_{q+1}(D(X))
$$

for the finite group $X=G / D_{\alpha}(G)$ where α is chosen large enough to ensure that $D_{\alpha}(G) \subseteq H_{q+1}(D(G))$.

Thus we consider a p-group X of exponent p^{τ}, generated by a minimal basis $x_{1}, x_{2}, \ldots, x_{n}$. A result due to Hall (2; Theorem 2.8.2) states that $H_{j}(X)$ is generated by the set of all left-normed commutators of weight $\geqslant j$ in the components $x_{1}, x_{2}, \ldots, x_{n}$. Thus $D(X)=H_{2}(X)$ is generated by the simple commutators

$$
\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{t}}\right] \quad t \geqslant 2
$$

But $H_{s+1}(X) \subseteq D_{2}(X)$; hence the simple commutators with $t \geqslant s+1$ all lie in $D_{2}(X) \subseteq \phi(D(X))$, and can therefore (2) be omitted from any generating set of $D(X)$. Thus $D(X)$ is in fact generated by the simple commutators with $2 \leqslant t \leqslant s$; we denote these by d_{1}, d_{2}, \ldots

If we set

$$
c=\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}++1}\right]
$$

then c lies in $D_{2}(X)$, so

$$
c=d_{j_{1}} d_{j_{2}} \ldots d_{j_{\alpha}}
$$

Consequently, by Lemma 5.1,

$$
c=b_{1} b_{2} \ldots b_{\beta}
$$

where each b_{i} is a commutator in the d 's and therefore also in the x 's and is of positive weight in $\quad x_{i v}, \quad \nu=1,2, \ldots, q s+1$.

Thus, in particular, each b_{i} is of weight at least $q s+1$ in the x 's. Since no commutator d has weight greater than s in the x 's, each b_{i} must be of weight at least $q+1$ in the d 's. The required result follows.
5.3 Corollary. If, in addition to the assumptions of the previous theorem,

$$
H_{s+1}\left(D_{\beta}(G)\right) \subseteq D_{\beta+2}(G) \text { for every positive integer } \beta
$$

then

$$
H_{s^{d}+1}(G) \subseteq D_{d+1}(G) \quad \text { for any positive integer } d
$$

Proof. $H_{s+1}(G) \subseteq D_{2}(G)$ gives a basis for induction on d. We assume that the statement is true for an integer d. Then

$$
\begin{aligned}
H_{s^{1+d+1}}(G) & \subseteq H_{s^{d}+1}(D(G)) \quad \text { by Theorem } 5.2 \\
& \subseteq D_{d+1}(D(G)) \text { by the induction hypothesis }
\end{aligned}
$$

since $D(G)$ itself satisfies the conditions stated for G.

6. Final results

All that remains now is to apply 5.3 to the groups considered in 3.3 and 4.1. If G is finitely generated with exponent 4 , so also are its successive Frattini subgroups; and

$$
D_{\beta}(\phi(G))=\phi_{\beta}(\phi(G))=\phi\left(\phi_{\beta}(G)\right) ;
$$

thus by Corollary 3.3,

$$
H_{5+1}\left(D_{\beta}(\phi(G)) \subseteq D_{\beta+2}(\phi(G))\right.
$$

Corollary 5.3 now gives
Theorem 6.1. If G is a finitely generated group with exponent 4:

$$
H_{5^{\lambda}+1}(\phi(G)) \subseteq \phi_{\lambda+2}(G) .
$$

Again, if G is finitely generated with prime exponent p, so also is $D_{\beta}(G)$, and by Theorem 4.1,

$$
H_{p+1}\left(D_{\beta}(G)\right) \subseteq D_{\beta+2}(G)
$$

Theorem 6.2. If G is a finitely generated group with prime exponent p :

$$
H_{p^{d}+1}(G) \subseteq D_{d+1}(G)
$$

References

1. R. Baer, The higher commutator subgroups of a group., Bull. Amer. Math. Soc., 50 (1944), 143-160.
2. P. Hall, A contribution to the theory of groups of prime power order, Proc. Lond. Math. Soc., 36 (1933), 29-95.
3. G. Higman, Note on a theorem of R. Baer, Proc. Camb. Phil. Soc., 45 (1949), 321-327.
4. H. Meier-Wunderli, Über endliche p-Gruppen deren Elemente der Gleichung $x^{p}=1$ genügen, Comment. Math. Helv., 24 (1950), 18-45.
5. I. N. Sanov, Solution of Burnside's Problem for exponent 4, Leningrad State Univ. Annals, Math. Ser., 10 (1940), 166-170.

University College, Galway, Ireland

[^0]: Received July 22, 1955. This paper embodies some of the work carried out by the author for a Ph.D. thesis at the University of Manchester. I wish to express my gratitude to Dr. Graham Higman for his continued interest and advice then, and, in connection with the present paper, for Theorem 5.2 which is essentially due to him both in conception and in proof.

