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We report an experimental and numerical study on Rayleigh–Bénard convection in a
slender rectangular geometry with the aspect ratio Γ varying from 0.05 to 0.3 and a
Rayleigh number range of 105 � Ra � 3 × 109. The Prandtl number is fixed at Pr =
4.38. It is found that the onset of convection is postponed when the convection domain
approaches the quasi-one-dimensional limit. The onset Rayleigh number shows a Rac =
328Γ −4.18 scaling for the experiment and a Rac = 810Γ −3.95 scaling for the simulation,
both consistent with a theoretical prediction of Rac ∼ Γ −4. Moreover, the effective
Nusselt–Rayleigh scaling exponent β = ∂(log Nu)/∂(log Ra) near the onset of convection
also shows a rapid increase with decreasing Γ . Power-law fits to the experimental and
numerical data yield β = 0.290Γ −0.90 and β = 0.564Γ −0.92, respectively. Near onset, the
flow shows a stretched cell structure. In this regime, the velocity and temperature variations
in a horizontal cross-section are found to be almost invariant with height in the core region
of a slender domain. As the Rayleigh number increases, the system evolves from the
viscous dominant regime to a plume-controlled one, a feature of which is enhancement
in the heat transport efficiency. Upon further increase of Ra, the flow comes back to the
classical boundary-layer-controlled regime, in which the quasi-one-dimensional geometry
has no apparent effect on the global heat transfer.

Key words: Bénard convection, buoyancy-driven instability

1. Introduction

Low dimensionality often leads to the emergence of fascinating physical phenomena
and the development of advanced materials, for example, the quantum Hall effect,
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graphene and topological insulators. Reduction of dimensionality is also sometimes
desired for effective modelling and efficient simulation. Turbulence, as one of the
great unsolved mysteries in classical physics, is three-dimensional (3-D) in nature,
and it has an enormous number of degrees of freedom (Frisch 1995). In some
circumstances, confinement in one dimension leads to a two-dimensional (2-D) turbulence
system, where a novel dual-cascade scenario is predicted and observed (Boffetta
& Ecke 2012). Further geometrical confinement leads to a quasi-one-dimensional
(quasi-1-D) geometry, for example, a long pipe, an air duct and a deep well. However,
turbulent flows in such quasi-1-D geometries are much less explored compared
with their 2-D and 3-D counterparts. In this study, we take Rayleigh–Bénard (RB)
convection (RBC) as a platform to explore the effect of quasi-1-D geometry on heat
transfer.

RBC is a paradigmatic system for the study of thermal convection that occurs widely
in nature and in daily life (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà
& Schumacher 2012; Xia 2013). It concerns the flows in an infinite slab of fluid layer that
is heated from below and cooled from above. However, most of the existing experiments,
numerical simulations and theoretical analyses are carried out in 3-D domains with a finite
aspect ratio Γ , which is defined as the ratio between the horizontal scale and vertical scale
of the convection domain (with a typical value of about one). Extending the convection
domain to large aspect ratio (Γ > 1) significantly changes the flow structure but has only
a minor effect on heat transport (Funfschilling et al. 2005; Pandey, Scheel & Schumacher
2018; Stevens et al. 2018; Zhu & Zhou 2021).

On the other hand, experiments and simulations conducted in quasi-2-D RB cells reveal
a novel flow regime, i.e. the ‘plume-controlled’ regime (Huang et al. 2013; Chong et al.
2015; Xia et al. 2023), for which the transport properties of the system are controlled by
the coherence of thermal plumes rather than the boundary layer. Nevertheless, quasi-1-D
RBC is much less explored, in which the increased drag from the lateral sidewall will
inevitably change the flow morphology as well as the heat transport behaviour. Until
most recently, simulations of quasi-1-D RBC have been conducted as a way of saving
computational resources in order to push the Rayleigh number to the highest attainable
values (Hartmann et al. 2021; Shishkina 2021; Ahlers et al. 2022). However, experimental
studies on quasi-1-D RBC are rare (Roche et al. 2010; de Wit et al. 2020), especially for
the measurement of heat transfer near the onset of convection, which suffers from severe
sidewall heat leakage (Zhang, Chong & Xia 2019).

With the above in mind, in this study, we designed a honeycomb structure that
divides a traditional RBC cell into dozens of parallel-connected slender convection
domains. Heat transport measurements were carried out for flow states ranging from the
onset of convection to fully developed turbulence. We also conducted complementary
direct numerical simulations (DNS) to explore the different flow regimes in great
detail.

The rest of the paper is organized as follows. In § 2, brief introductions to the
experimental and numerical set-ups are provided. Then the main results and discussions
are presented in § 3, which is further divided into four subsections. In § 3.1, we present
the measured onset Rayleigh numbers as functions of different aspect ratios. The effective
Nu–Ra scaling after the onset of convection is discussed in § 3.2. In § 3.3, the flow states
are explored in more detail using the DNS data. The corresponding heat transfer regimes
and the phase diagram are summarized in § 3.4. Finally, we conclude the present work
with § 4.
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Figure 1. (a) Photo of the convection cell. (b) Schematic drawing of the 3-D printed structure used in the
experiment. The highlighted region shows a single quasi-1-D RB convection domain.

2. Experimental and numerical set-ups

2.1. Experiments
In the experiment, a rectangular RB cell with a cross-section of L × W = 126 mm ×
38 mm is used. A quasi-1-D RBC domain is realized by inserting a 3-D printed structure
into the convection cell (Zhang & Xia 2023), which divides the original domain into
dozens of parallel-connected subdomains (figure 1a). The cross-section of the 3-D printed
structure is a square lattice, and the lattice spacing equals Γ H (figure 1b), where H
is the height and Γ is the aspect ratio of the subdomain. The structure is made by
a commercial 3-D printer (JG AURORA, Model A8) using a polylactic acid (PLA)
filament. The density, thermal conductivity and specific heat capacity of PLA are about
1.2 × 103 kg m−3, 0.15 W (m K)−1 and 1.6 kJ (kg K)−1, respectively. The outermost
sidewall of the convection cell is made of 4 mm thick Plexiglas, whose density, thermal
conductivity and specific heat capacity are about 1.2 × 103 kg m−3, 0.21 W (m K)−1 and
1.0 kJ (kg K)−1. Distilled and deionized water is used as the working fluid and the bulk
temperature is set to be 40.0 ◦C, which corresponds to a Prandtl number of Pr = 4.38. So
the thermal diffusivities of the sidewall materials and the working fluids are of the same
order. Additionally, over 6 cm thick polystyrene foam (whose thermal conductivity is about
0.03 W (m K)−1) is wrapped around the outermost sidewall to prevent heat leakage to the
surroundings.

For such a configuration, most of the subdomains are isolated from the outermost
sidewall, and therefore cannot directly exchange heat with the environment. Using this
set-up, we can systematically vary the height H as well as the aspect ratio Γ of a single
subdomain and thereby explore the heat transport behaviour in a quasi-1-D RBC domain.
Ten sets of structures are fabricated with four different aspect ratios, namely, Γ = 0.05,
0.1, 0.16 and 0.3. Since the length (L) and width (W) of the convection cell are fixed
in the present experiment, and only integral numbers of subdomains are allowed (in
both horizontal directions), we have to adjust the thickness of the PLA wall accordingly
for specific values of H and Γ H, which turns out to vary from 0.9 mm to 1.2 mm.
Moreover, a homemade thermostat whose temperature is set the same as the working fluid
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is also applied to minimize sidewall heat leakage. For more details of the heat transfer
measurement, readers are referred to Zhang & Xia (2023).

2.2. Direct numerical simulations
For a detailed inspection of the velocity and temperature fields in a quasi-1-D RBC domain
(see the highlighted region in figure 1b), we conduct complementary DNS. The CUPS
code is adopted to solve the governing equations using a fourth-order finite-volume method
on staggered velocity and temperature grids (Chong, Ding & Xia 2018a). All boundaries
are no-slip and the sidewalls are set to be adiabatic. The possible sidewall effect (Wan et al.
2019) and thermal coupling effect between adjacent subdomains in the experiment are not
considered for the sake of simplicity.

3. Results and discussions

Figures 2(a) and 2(b) show the Nu–Ra relations for four different aspect ratios obtained by
experiment and DNS, respectively. For comparison, data obtained in cells with aspect
ratios of unity are plotted as well. The error bars (taken as one standard deviation of
the measured Nusselt number time series) are within the size of a symbol and therefore
not shown. It is seen that the experimental and numerical results show qualitatively
good agreement. Firstly, the onset of convection (the intersection point of the Nu–Ra
curve with the dashed horizontal line of Nu = 1) is considerably postponed as the cell
approaches the quasi-1-D limit (Γ � 1). Secondly, the effective local Nu–Ra scaling
exponent (β = ∂(log Nu)/∂(log Ra)) just after the onset of convection shows a rapid
increase with decreasing Γ . Finally, when the Rayleigh number is large enough, the
experimental and numerical data points with different aspect ratios all collapse onto the
black solid curves, which represent the predictions of the Grossmann–Lohse (GL) theory
(Grossmann & Lohse 2000, 2001, 2002; Stevens et al. 2013). We discuss these features in
detail below.

3.1. The onset Rayleigh number Rac

Figure 3(a) shows the log–log plot of the onset Rayleigh number Rac as a function
of the aspect ratio Γ . The red stars and blue squares denote the experimental and
numerical data of the present study, respectively. We also plot the critical Rayleigh
numbers obtained from the literature (Catton & Edwards 1970; Muller, Neumann &
Weber 1984; Hébert et al. 2010). It is seen that all the data points fall onto a solid
curve with Rac = (2π)4(1 + Γ −2)(1 + Γ −2/2), which is derived by Shishkina (2021)
for a rectangular cell with an adiabatic sidewall. In the quasi-1-D limit (Γ � 1), the
above equation reduces to Rac = 8π4Γ −4. Power-law fits to the present experimental and
numerical data yield Rac = 328Γ −4.18 and Rac = 810Γ −3.95 (the solid lines in the inset
of figure 3a), which are both consistent with the theoretical prediction above. To the best
of our knowledge, this is the first experimental result of the Rac ∼ Γ −4 scaling in the
quasi-1-D regime.

Though the negative biquadratic power law obtained in a quasi-1-D RBC domain is
in sharp contrast with its quasi-2-D counterpart Rac ∼ Γ −2 (Chong & Xia 2016), it
is worth noting that it has the same form as the onset Rayleigh number of rotating
Rayleigh–Bénard convection (RRBC), which scales as Rac ∼ Ek−4/3 ∼ (l/H)−4, where
Ek is the Ekman number, which quantifies the strength of rotation, and l is the horizontal
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Figure 2. (a) The experimentally measured Nu versus Ra data for RBC domains with different aspect ratios.
(b) The corresponding Nu–Ra relations obtained by DNS. The dashed lines in both panels show power-law fits
to the data points near onset, and the solid lines represent predictions of the GL theory.

scale of convection near onset. This also suggests that applying geometrical constraint and
dynamical constraint to thermal convection may share the same underlying mechanism
for the changes in heat transport properties (Chong et al. 2017; Lim et al. 2019; Xia et al.
2023).

3.2. The Nu–Ra scaling near onset
Another striking feature of the heat transfer in a quasi-1-D RBC domain is that the
Nu–Ra curve shows a steep slope on a log–log plot near the onset Rayleigh number. Such
behaviour can be described quantitatively by an effective scaling exponent β, which is
obtained by applying a power-law fit to the near-onset data points (see the dashed lines
in figure 2b). It is seen that the corresponding local scaling exponent β increases rapidly
with decreasing aspect ratio. For the lowest aspect ratio explored in this study (Γ = 0.05),
the local scaling exponent is β = 4.30 for the experiment and β = 8.49 for the DNS.
Stevens, Lohse & Verzicco (2014) conducted a systematic DNS to explore the effects of
different sidewall temperature boundary conditions in a single RBC domain. They found
that the heat transfer efficiencies for an isothermal sidewall boundary condition and an
adiabatic condition can differ by over 10 % at a Rayleigh number of 2 × 108. The Nusselt
numbers for cells with finite sidewall thicknesses are in between the above two ideal cases
– see figure 9 in Stevens et al. (2014). A possible reason for the discrepancy in β is the
different sidewall thermal boundary conditions: most of the quasi-1-D subdomains in the
experiment are thermally coupled with their nearest neighbours, while the DNS assumes
that the sidewall is adiabatic.
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Figure 3. (a) The onset Rayleigh number Rac as a function of the aspect ratio Γ . Red stars are the experimental
data and blue squares are obtained by DNS. The grey solid curve shows the theoretical prediction of
Rac = (2π)2(1 + Γ −2)(1 + Γ −2/2) proposed by Shishkina (2021). Data from references are also plotted
for comparison. The red and blue solid lines in the inset show power-law fits with Rac = 328Γ −4.18 and
Rac = 810Γ −3.95, respectively. (b) The effective near-onset Nusselt–Rayleigh scaling exponent β as a function
of the aspect ratio Γ . The legend is the same as for panel (a). The red and blue solid lines show power-law fits
with 0.290Γ −0.90 and 0.564Γ −0.92, respectively.

Figure 3(b) show the β–Γ relations obtained from figure 2. Power-law fits to the
data yield β = 0.290Γ −0.90 for the experiment and β = 0.564Γ −0.92 for the DNS,
respectively. Similar behaviour of heat transport is also observed in RRBC: for a rapidly
rotating cell, the effective near-onset local Nu–Ra scaling exponent also shows a rapid
increase with decreasing Ekman number (Cheng et al. 2015; Plumley & Julien 2019). It
is also worth mentioning that in our quasi-1-D RBC configuration, the extremely rapid
increase of Nu serves to divide the flow roughly into two states: before onset the system is
in a ‘thermal insulating’ state, in which heat is transported by conduction only; after onset
the system turns into a ‘thermal conducting’ state, in which heat is transferred efficiently
by turbulent convection. In this sense, the present system can be viewed as a ‘convective
thermal diode’ (Wehmeyer et al. 2017), which might be used for advanced thermal control
or other engineering applications.

In figures 4(a) and 4(b), we present the compensated plots of (Nu − 1)/Ra1/3
c versus

Ra/Rac obtained from the experiment and DNS, respectively. For comparison, Nusselt
numbers measured near the convective onset in a cylindrical cell with Γ = 2 (Behringer &
Ahlers 1982) were also plotted in figure 4(a). It is seen that the curves with different aspect
ratios basically collapse onto a single master curve even for the near-onset regime, where
the effective scaling exponent shows a gradual transition to the classical value of 1/3 within
one decade of the reduced Rayleigh number Ra/Rac. Though an explicit explanation for
this universal behaviour is not yet available, we hope that a theoretical understanding will
come up in the near future. Experimentally, it would also be quite interesting to push Γ

to even smaller values to see whether the near-onset local Nu–Ra scaling exponent will
increase further or not.

3.3. The near-onset flow structure
Figure 5(a) shows the streamlines obtained by DNS for different aspect ratios. The
Rayleigh number is fixed at Ra = 1.1Rac. It is seen that a feature of the flow is an
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Figure 4. Compensated plots of (Nu − 1)/Ra1/3
c versus Ra/Rac for (a) the experimental data and (b) the

numerical data.

elongated, stretched cell structure. It consists of a hot, ascending flow on one side and
a cold, descending flow on the other side. Figures 5(b) and 5(c) show vertical profiles
of the root mean square (r.m.s.) temperature 〈(T − 〈T〉x,y)

2〉1/2
x,y and the r.m.s. vertical

velocity 〈w2〉1/2
x,y , respectively. Here 〈·〉x,y denotes averaging over a certain horizontal plane.

It is seen that the two profiles have almost the same shape, which is in line with the
prediction that the temperature variation and vertical velocity are highly correlated when
the nonlinearity effect is weak (Chandrasekhar 1961).

With these facts, the above Rac ∼ Γ −4 scaling, which was recently derived by Shishkina
(2021) and Ahlers et al. (2022), can also be understood in a different way as follows. We
start with the exact balance between dissipation and global heat transfer. If we denote by
δw and δT the typical vertical velocity and temperature scales of the ascending/descending
flow observed in figure 5(a), then the exact relations for viscous dissipation and thermal
dissipation in the near-onset regime (Ra → Rac) read

εu = ν3

H4 Pr−2Rac(Nu − 1) ∼ ν

(
δw

Γ H

)2

, (3.1)

εT = κ
Δ2

H2 Nu ∼ κ

(
δT

Γ H

)2

+ κ
Δ2

H2 . (3.2)

Moreover, considering the fact that the temperature and velocity fields are highly
correlated, the Nusselt number can also be expressed as

Nu − 1 ∼ δwδT

κΔ/H
. (3.3)
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Figure 5. (a) Streamlines in the near-onset regime Ra/Rac = 1.1 for different aspect ratios, with different
colours showing the local temperatures. (b) Vertical profiles of the temperature variations for different aspect
ratios. (c) The corresponding profiles of the vertical velocity variations.

Moving the last term in (3.2) to the left-hand side yields κ(Δ/H)2(Nu − 1) ∼
κ[δT/(Γ H)]2. If we now multiply this by (3.1), and then substitute the term Nu − 1 with
(3.3), we can obtain

Rac ∼ Γ −4. (3.4)

It is also worth mentioning that, for a quasi-2-D RBC domain (Chong & Xia 2016),
(3.1) is still valid, whereas (3.2) should be replaced by εT = κ(Δ/H)2Nu ∼ κ(δT/H)2 +
κ(Δ/H)2. We can then obtain Rac ∼ Γ −2, which is in agreement with the scaling derived
using linear stability analysis (Bizon et al. 1997).

Another interpretation for the Rac ∼ Γ −4 scaling originates from linear stability
analysis. Suppose that the vertical velocity perturbation near onset has the form w =
W(z) exp[i(kxx + kyy)]. It should satisfy the following sixth-order ordinary differential
equation (Chandrasekhar 1961):

(
∂2

∂z2 − k2H2
)3

W = −Ra(kH)2W, (3.5)

where k =
√

k2
x + k2

y is the wavenumber. For the present system, the no-slip boundary

condition requires that kH ∼ Γ −1. As shown in figure 5(b), the r.m.s. vertical velocity
does not exhibit any appreciable change in the core region of the quasi-1-D cell, which
implies that ∂nW/∂zn = 0. Substituting this (assuming it holds up to sixth order) into
(3.5) again results in Ra ∼ (kH)4 ∼ Γ −4.

We remark that it is quite surprising that the typical temperature and velocity scales are
both invariant with height in a quasi-1-D cell. This feature is neither predicted by the exact
solution of the velocity profile in a horizontally unconstrained domain (Chandrasekhar
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Figure 6. (a) The normalized Nusselt number Nu/NuΓ =1 as functions of Rayleigh number for different aspect
ratios. Solid symbols show the experimental data and open symbols are obtained by DNS. (b) Compensated
plot of the Nu–Ra relations taken from DNS. The dashed lines show fits with a transition function f (Ra) =
ARaα2 [1 + (Ra0/Ra)4](α2−α1)/4.

1961), nor described by the eigenmodes of the Laplace operator (Shishkina 2021).
Nevertheless, this feature reminds us of the Taylor–Proudman theorem, which states that,
for a rapidly rotating convection system, the velocity will be uniform along any line parallel
to the axis of rotation. The Taylor–Proudman theorem implies a balance between the
Coriolis force and the pressure gradient in RRBC, while the dominant force balance in
a quasi-1-D RBC cell is between viscous force and buoyancy.

3.4. Different heat transfer regimes and the phase diagram
Figures 6(a) and 6(b) show the normalized and compensated Nusselt numbers as functions
of Rayleigh number, respectively. The Nu–Ra relations measured in cells with unity
aspect ratio (Γ = 1) are taken as benchmarks for the normalization (see the solid and
open squares in figure 2). Power-law fits to these data yield NuΓ =1 = 0.192Ra0.282 for
the experiment (Zhang, Ding & Xia 2021) and NuΓ =1 = 0.135Ra0.297 for the DNS
(Kaczorowski & Xia 2013). It is seen that heat transfer enhancement is achieved for all
four aspect ratios providing the Rayleigh number exceeds a certain threshold value. For the
parameter range explored, maximum heat transfer enhancement is observed for Γ = 0.1
at Ra = 1.3 × 109, which is about 10 %. This is in agreement with the recent numerical
simulations of Hartmann et al. (2021).

For a quantitative determination of the heat transfer enhancement regime, we use the
transition function f (Ra) = ARaα2[1 + (Ra0/Ra)4](α2−α1)/4 to fit the DNS data, where A,
α1, α2 and Ra0 are four independent fitting parameters. When Ra � Ra0, the function
above approaches f (Ra) ≈ ARaα2−α1

0 Raα1 ; while in the limit of Ra 	 Ra0, it reduces to
f (Ra) ≈ ARaα2 . Therefore, such a functional form can be adopted to describe the transition
between two power laws, and the fitting parameter Ra0 can be interpreted as a transitional
Rayleigh number. The fits are carried out to the numerical data points shown in figure 6(b).
For the case of Γ = 0.3, the fitting is only done with data points up to Ra = 2 × 108,
beyond which the data converge to the case of Γ = 1. The fitting results are plotted as
dashed curves in figure 6(b). The parameters are listed in table 1. When α1 = α2, the
function above is identical to a power law. The range of the heat transfer enhancement
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Γ A α1 α2 Ra0 Rat1 Rat2

1 0.135 0.297 0.297 — — —
0.3 0.208 0.325 0.274 2.45 × 107 5.12 × 106 1.68 × 108

0.16 0.237 0.421 0.272 9.58 × 107 4.46 × 107 3.28 × 109

0.1 0.349 0.417 0.256 7.86 × 108 2.98 × 108 1.41 × 1010

0.05 0.00374 0.461 0.461 — 3.08 × 109 —

Table 1. Fitting parameters and the corresponding transition Rayleigh numbers.

(b)

(a) (c)
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0
–1
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0

w

Figure 7. (a) Streamlines at different Rayleigh numbers in a Γ = 0.3 convection domain, with different
colours showing the magnitude of the vertical velocity. (b) Snapshots of temperature fluctuations (T −
〈T〉x,y)/σT in a horizontal cross-section located at one thermal boundary-layer thickness away from the bottom
plate. (c) Phase diagram of different heat transport regimes in a slender RBC domain. The Prandtl number is
fixed at Pr = 4.38. The open squares correspond to the positions of the snapshots shown in panels (a) and (b).

regime (Rat1, Rat2) is then determined by the intersection points of the dashed curves
and the solid line. Fitting Rat1 and Rat2 with power laws of Γ yield Rat1 ∼ Γ −3.6 and
Rat2 ∼ Γ −4.1, respectively.

Next, we plot in figure 7(a) the flow fields at different Rayleigh numbers in a Γ = 0.3
cell. Near onset (Ra = 105), the flow is static and exhibits a stretched cell structure, as
mentioned above. With increasing Rayleigh number (Ra = 106), the flow is strengthened
and corner flows are gradually developed. A further increase in Ra breaks the stretched
cell structure and the flow eventually becomes turbulent. In this regime, thermal plumes
are generated in the corners of the cell and then emitted into the bulk region. Thereafter,
they merge and condense into a highly coherent giant plume, and then impinge on the
opposite plate, thus facilitating efficient heat transport. This heat transfer enhancement
regime is also known as the ‘plume-controlled’ regime (Xia et al. 2023). The transition in
flow state is also reflected in the thermal boundary-layer behaviour.

Figure 7(b) shows snapshots of the normalized temperature fields (T − 〈T〉x,y)/σT in
a horizontal cross-section that is located at z = 1/(2Nu) (one thermal boundary-layer
thickness away from the bottom plate), where σT is the r.m.s. temperature in that plane.
As the Rayleigh number increases, the symmetry of the flow breaks down. Hot plumes
are developed in the corner region and a giant cold plume is formed in the centre of
the plane (Chong et al. 2015). Further increase in Ra will squeeze the hot flows to the
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peripheral of the cell. Meanwhile, sheet-like plumes are gradually developed in the centre
of the domain (Zhou & Xia 2010), which indicates that the flow enters the classical
boundary-layer-controlled regime. In this regime, the heat transfer efficiency shows no
apparent aspect-ratio dependence (see figure 6b).

With the results above, we map out in figure 7(c) the phase diagram of the heat
transport properties for quasi-1-D RBC, with the solid diamonds representing the DNS
data. Four regimes are identified, namely, the classical boundary-layer-controlled regime,
the plume-controlled regime, the viscous dominant regime and finally the conduction
regime. The boundaries separating the different regimes are almost parallel to each other
and show power-law scalings close to Γ −4, which are much steeper than those found in
a quasi-2-D domain (Chong & Xia 2016). It is also worth mentioning that the Prandtl
number may also have a significant effect on the phase diagram (Chong et al. 2018b;
Hartmann et al. 2021), which, of course, deserves further investigation.

4. Conclusions

To conclude, we have made a systematic study of the heat transport properties and flow
states in a quasi-1-D RBC cell. The experiments were conducted using a meticulously
designed 3-D printed structure. Our results provide the first experimental evidence for the
Rac ∼ Γ −4 scaling in the quasi-1-D regime (0.05 � Γ � 0.3), which is also consistent
with recent theoretical predictions and numerical simulations (Shishkina 2021; Ahlers
et al. 2022). In addition, the effective local Nu–Ra scaling exponent just after the onset of
convection shows a rapid increase with decreasing aspect ratio as β ∼ Γ −0.90. Subsequent
DNS confirm this experimental finding. The discrepancies in the magnitudes of Rac and β

obtained from experiments and simulations are most likely caused by the different lateral
thermal boundary conditions. However, despite this difference, both experiment and DNS
results show the same flow physics with respect to the heat transport properties.

Our DNS also reveals that the flow in a quasi-1-D RBC cell shows a stretched cell
structure near onset and that the typical velocity and temperature scales are invariant
with height in the core region of the cell. Based on these findings, we provide several
interpretations of the observed Rac ∼ Γ −4 scaling. Finally, different heat transfer regimes
are identified and the corresponding phase diagram is mapped out.

The results of this study suggest that quasi-1-D RBC may be utilized for advanced
thermal engineering applications like thermal diodes, thermal regulators and efficient heat
exchangers. We also remark that the effect of Prandtl number, as well as a comprehensive
theoretical understanding for the heat transfer behaviour in quasi-1-D RBC, remain open
questions and call for future studies.
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