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SURVIVAL PROBABILITIES BASED ON
PARETO CLAIM DISTRIBUTIONS

HILARY L. SEAL

Ecole Polytechnique Federale de Lausanne

1. INTRODUCTION AND BACKGROUND

It is commonly thought that the characteristic function (Fourier transform)
of the Pareto distribution has no known functional form (e.g. SEAL, 1978,
pp. 14, 40, 57). This is quite untrue. Nevertheless the characteristic function of
the Pareto density is conspicuously absent from standard reference works
even when the Pareto distribution itself receives substantial comment (e.g.
HAIGHT, 1961; JOHNSON and KOTZ, 1970, Ch. 19; PATEL, KAPADIA and OWEN,

1976, § 1. 5)-
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where £ is the generalized exponential integral (PAGUROVA, 1961) and can be
written in terms of incomplete gamma or confluent hypergeometric functions
(Slater, i960, Sec. 5.6). When s= — it p(s) becomes the characteristic function
(see Appendix I).

As BENKTANDER (1970) tells us, the Pareto distribution has been particularly
successful at representing the distribution of the larger claim amounts. In
earlier years it was employed to represent the distribution of life insurance
sums assured but more recently it has been used for the claim distributions of
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fire and automobile insurance. Table l provides the v-values we have been
able to locate. Note that the variance of the distribution is infinite when
v:< 2 and if it were not for the anomalous v-values of ANDERSSON (1971) we
would have ventured the opinion that modern claim data encourage the
assumption that v> 2. In our numerical work we have used v= 2.7 and smaller
values might change some of the computer rules we have proposed in Ap-
pendix II.

TABLE 1

Author Value (s) of v Source of data

Meidell (1912)
Hagstroem (1925)
Cramer (1926)
Henry (1937)

Meidell (1938)

Pellegrin (1948)

Thepaut (1950)
Benckert and

Sternberg (1957)
Hagstroem (1960)

Benktander (1962)
Ammeter (1971)
Andersson (1971)

Between 1 and 2
1-3
1-5. 1-7
2.38

1.86, 1.85, 1.9, 2.5,
2.67, 2.55, 2.6, 3.1
1.73, 3.16, 2.1, 2.3,

2.1

1.68

1.67
2.45, 2.50, 2.53, 2.53,

2.55, 2.56, 2.56
1.40, . . . 2.45, 2.54,

2.42, 2.40
2.7
2.4
1.25, 1.26, 1.32, 1.37,

1-38, 1-39, 1-49, i-76

Life insurance; no data
Swedish income data
Swedish life insurance companies
French automobile claims exceeding

40,000 fcs.
Norwegian, British, German and Japanese

life insurance
Swedish and German fire insurance

French automobile claims exceeding
75,000 fcs.

French fire insurance company
Swedish fire insurance of dwellings

Swedish income data for 1912, . . . 1950,
1953. 1954, 1955

Automobile insurance claims
American fire insurance portfolio
Scandinavian countries' fire losses in

1950's and 1960's

It is convenient (cp. SEAL, 1978) to make the mean of the claims distri-
bution equal to unity so that b = v — 1, and write s = iu and ub = z. We thus

require veiz£v + 1(iz) for values of z ranging from zero, when (3(o) = v j x~*~ 1dx =
1

l, up to 500 or more. PAGUROVA (1961) gives two series expansions for small
and large arguments of Ew + 1(x), respectively, namely

with (a)n = a(a+ 1) . . . (a + n— 1), and

e-x

X

I 4. y i— ^'\m
m - l

(v+ m)

xm

with = a(a— 1) . . . (a— n+ 1). These were checked from other sources.
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The former series, analogous to that of ex, converges for all x but involves
perhaps hundreds of terms when x is large. The latter is an alternating series
with a remainder less in absolute value than (v + M+ l) (M+i) j XM+I (JEFFREYS,

1962, Ch. 7).
Coincidentally the generalized exponential integral has appeared before in

the actuarial literature. SEAL (1964) showed that for an m-joint-life annuity
subject to the m mortality forces

j= 1,2, ... m

(Note the uniform c)

where

v = Y" 1 (8+ S A})
1-1

x= y-1 2 Bjtfi
i-i

S being the force of interest and y=ln c.

Changing x to iz Pagurova's expressions yield

= — F ( l — v)^v COS (Z+ V7t/2) — V ^> ( —
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For v in the vicinity of 2.7 numerical work with (4) and (5) needs careful
attention. In order to achieve a final term in each of the four series less than
5 X 10 "8 the asymptotic relation (5) would not give a sensible result for
z= 23. For z= 25 only nine terms were required in the first series of (5) for the
required degree of accuracy. On the other hand 44 terms of the first series in
(4) were required when z= 23 and the values of the real and imaginary series
were then 6114.5 and — 10256, respectively, to five significant figures. This
indicated that double precision arithmetic (about 30 significant figures)
should be used in calculating the series values since the characteristic function
has an absolute value not exceeding unity and the first four or five significant
figures of the series would be lost in the subtraction from the term involving
P in the real and imaginary parts, respectively. The value of F(i—v) was
obtained as F(3—v) / (2— v) (1—v), the V factor being obtained from Davis's
(1964, § 6.134) approximation. Further computational details are supplied in
Table 2 and it is noticed how slowly the Laplace transform (with c— o) con-
verges towards zero particularly along the imaginary axis. This, of course,
poses a problem when we come to invert the Laplace transform of F(x, t), the
distribution function of the aggregate claims.

Real and Imaginary Parts of 2.yeizEz,t(iz)

Number of terms
needed in first

Real series Imaginary

5
10

15
23
25
100

200

250

.22663

.08124

.04002

.01801

•01535
.00100
.00025
.00016

17
25
32
44
9
3
3
3

— .36002
-•23454
-•16795
-.11378
-.10507
— .02695
-.01349
— .01080

2. SURVIVAL PROBABILITIES FOR POISSON/PARETO

The sine and cosine integrals involved in the inversion of a Laplace transform
are shown in SEAL (1978, 3.10) and when claims are occurring as a Poisson
process the P(.) and Q(.) of that relation are the real and imaginary parts of
Laplace transforms implied in SEAL (1978,3.14 and 4.7). In these relations
P(s) must, of course, be replaced by its Pareto value developed above.

In order, therefore, to calculate successive values of
1

U(w,t) = F(w+T^ri-t,t) - (l+7j) J U(o,t-T)f(w + T+^-T, T) ̂ T
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the probability of survival through time t for t= i, 2, 3, . . . we may use the
computer program GETUWT in SEAL (1978) once allowance is made for the
parameter v and the Pareto Laplace transform with c= o has been provided for
in the subroutine RANILT of that program. Details of these adjustments
together with the new subroutines to calculate veizEv+1(iz) are given in Ap-
pendix II.

In illustration of these procedures we have calculated U(o, t) and U(w, t)
for v]= . 1, w= 10 and t= 1, 2, 3, 4, 5 in conformity with Table 4.1 of SEAL

(1978). The first point to notice is the very large value of T (BIGT) to use
instead of infinity in relation (3.10). With T= 200TT we obtained

t

1

5

F(1 O +

P(T)

2 x io~ 6

— 2 x 1 0 - '

• l.lt, t)

em
— 9 x io~4

— 9 x io~5

/(10 +

P(T)

- 1 0 - '

l.lt, t)

em
— 6 x 10-4

— io~5

U(o,

P(T)

2 X 1O~16

2 X 1O~16

em
7 x 10-13

1O"14

It was not considered worth lengthening the range of integration to secure
smaller values of Q(T) for t= l.

Using this T-value we ran GETUWT with 1024 panels in the three trape-
zoidal quadratures at each if-value but convergence appeared to be slow or
even non-existent. Further runs with 2048 and 4096 panels (only acceptable
because of the 15 significant figure working of the CDC computer being used)
imply convergence to a four or five decimal result and use of Richardson's
"deferred approach to the limit" (BUCKINGHAM, 1957, p. 90) produced final
quadratures by Simpson's formula with 4096 panels. Table 3 shows the
quadrature results.

TABLE 3

Number
of
panels * = 1

F(io

2

+ 1

3

•it.t)

4 5 1

/(IO-

2 3

it,t)

4 5 1 2

17(0, t)

3 4 5

1024 1.7 1.6 1.6 1.6 1.6 .22788 .15859 .12779 .11027 .09883 .57616 .44969 .37631 .32154 .27472
2048 .99380 .98739 .98094 .97456 .96833 .00133 .00265 .00389 .00502 .00604 .58282 .46509 .40284 .36181 .33143
4096 .99421 .98824 .98223 .97631 -97053 .00127 .00256 .00377 .00488 .00587 .58397 .46762 .40701 .36793 .33989
Simp-
son -99435 .98852 .98267 .97689 .97127 .00127 .00253 -00373 .00483 .00581 .58436 .46846 .40840 .36998 .34272

These Simpson figures were used in the formula for U(io, t) to obtain the
following results comparable with those of Table 4.1 of SEAL (1978).
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VALUES OF U(O, t) AND U(lO, t) WITH 7] = 0.1

Pn(t)

Poisson

B(y)

Pareto
(v = 2.7)

t= l

•5844
•9937

2

.4685
•9865

3

.4084

.9786

4

.3700
•9703

5

•3427
.9618

What we find surprising about these figures is the substantial improvement
(increase) in U(o, t) in comparison with Poisson/Exponential in spite of the
decrease (which was expected) in U{io, t) for each of t= 1, 2, 3, 4, 5. The
results for U{io, t) based on Simpson with 4096 panels, are all in excess of the
corresponding figures for the trapezoidal, namely by 2, 3, 5, 7 and 8, re-
spectively, in the fourth decimal place.

My thanks go to Peter Nuesch for his helpful suggestions about the evalua-
tion of relation (3) and in connection with Appendix I.

APPENDIX 1

Distributions with Infinite Moments

The characteristic function exists for every probability density. On the other
hand the moment generating function, which is obtained from the charac-
teristic function's integral form by replacing the imaginary i by unity, must be
tested for existence before it is used (LUKACS, 1970, p. 11). In particular, if any
moment of a distribution is infinite the moment generating function does not
exist.

Now the Pareto distribution is a special case of Fisher's F-distribution. The
latter is an example of a beta distribution of the second kind, sometimes
called a beta-prime distribution, namely (KENNEY and KEEPING, 1951, p. 96)

Tip) T{q)
)

which has an nth moment about zero equal to

n>q

where (p)n is the ascending factorial ft(ft+i) (p+2) ... (fi + n— l). Putting
p = l, q = v and introducing the scale factor b the Pareto density is obtained.
The ^-distribution itself is a scaled beta-prime distribution with 2p and 2q
positive integers.

Both JOHNSON and KOTZ (1970, Ch. 26) and OBERHETTINGER (1973, Table A)
state that the characteristic function of the above beta-prime distribution is
1F1 (p; 1 — q; — it)—though both books misprint the second argument as — q—
where the confluent hypergeometric function j i^ is defined by
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b;x)= J | j ^ (Slater- ^ o , p. 2)

a series which is absolutely convergent for all values of a, b and x, real or
complex, excluding b= o, — 1, — 2, . . . , and can thus be differentiated term by
term. Hence

; i-q;-it) =
{\-q)nn\ ^—1 (q-

which is in agreement with KENNEY and KEEPING (1951) for the moments of
the beta-prime destribution when n< q. Now all moments of a distribution
function exist if its characteristic function can be differentiated indefinitely
(LUKACS, 1970, p. 22) hence the non-existence of moments of the beta-prime
distribution for n> q invalidates the confluent hypergeometric as its charac-
teristic function. Our first idea of specializing the foregoing confluent hyper-
geometric function to the Pareto distribution by writing fi= 1 and introducing
the scale factor b had thus to be rejected.

APPENDIX 2

Computer Program for U(w, t)

The following are the additions to be made to GETUWT of SEAL (1978):

(1) GNU = 2.7 after XLAM

(n) IBTYPE = 3 after IPTYPE = 1

(m) Extend calling sequence in subroutines GETBGF, RANILT and DOUBLE
by GNU after XLAM and accordingly change the CALL instructions:

(a) two in the main program
(b) three in GETBGF
(c) two in DOUBLE

(iv) In subroutine RANILT:
(a) Change IF(IBTYPE-i) 1, 1, 2 to IF(IBTYPE-2) l, 2, 8
(b) Insert after the ninth card (Q = —EXP etc.) the three cards:

GO TO 3
8 UB = U*(GNU —1.0)

CALL EXPINT (GNU, UB, P, Q)

(v) Insert after subroutine RANILT the two subroutines EXPINT and
GAMMA 1 exhibited below.

Remember to use N = 4096 and BIGT = 200.0 *PI
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SUBROUTINE EXPINT (GNU,X,P,Q)
DOUBLE PRECISION DGNU.Y.DTERMP.DSUMP.DTERMQ.DSUMQ.DFJ.PP.QQ.GX
DATA KOUNT/0/
IF(X.EQ.O.O) P=1.0
IF (X.EQ.0.0) Q=0.0
IF (X.EQ.0.0) GO TO 6
PI=3.141592653598
DGNU = DBLE(GNU)
Y=DBLE(X)
IF (X.GE.25.0) GO TO 10
IF (X.GT. 5.0) GO TO 7
TERMP=GNU/(—GNU)
SUMP=TERMP
TERMQ = GNU*X/ ((—GNU) * (—GNU+1.0))
SUMQ=TERMQ
DO 1 J=1,100
FJ = FLOAT (J)
TERMP=TERMP* (—X*X) / ((_GNU+2.*FJ—1.) * (—GNU+2.*FJ))
SUMP=SUMP+TERMP
TERMQ=TERMQ* (—X*X) / ((—GNU+2.*FJ ) * (—GNU+2.*FJ+1.0))
SUMQ=SUMQ+TERMQ
IF (ABS(TERMP) .LT.5.0E—8) GO TO 2

1 CONTINUE
2 PP=SUMP

QQ=SUMQ
GO TO 9

7 DTERMP=—1.0D0
DSUMP=DTERMP
DTERMQ=—Y/(—DGNU+1.0D0)
DSUMQ=DTERMQ
DO 20 J = 1,100
DFJ = FLOAT (J)
DTERMP=DTERMP* (—Y*Y) / ((—DGNU+2.0D0*DFJ—1.0D0) * (—DGNU+2.0D0*DFJ))
DSUMP = DSUMP+DTERMP
DTERMQ = DTERMQ* (—Y*Y) / ((—DGNU+2.0D0*DFJ) * (—DGNU+2.0D0*DFJ+1.0D0))
DSUMQ = DSUMQ+DTERMQ
IF (DABS (DTERMP).LT.5.0D—8) GO TO 8

20 CONTINUE
8 PP=DSUMP

QQ = DSUMQ
9 IF(KOUNT.NE.O) GO TO 5

CALL GAMMA1 (3.0D0—DGNU.GX)
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GX = GX / ((2.0D0—DGNU) * (1.0D0—DGNU))
5 PP=—PP—GX*Y**DGNU*DCOS (Y+DGNU*PI/2.)

QQ=_QQ_GX*Y**DGNU*DSIN(Y+DGNU*PI/2.)
KOUNT=1
P=SNGL(PP)
Q=SNGL(QQ)
GO TO 6

10 TERMP=GNU* (GNU+1.0) / (X*X)
SUMP=TERMP
TERMQ=(GNU*(—1.0) * (GNU+2.0) * (GNU+1.0) / (X*X*X)
SUMQ=TERMQ
DO 11 J=1,30
FJ = FLOAT (J)
TERMP=TERMP* (—1.) * (GNU+2.*FJ+1.) * (GNU+2.*FJ) / (X*X)
SUMP = SUMP+TERMP
TERMQ=TERMQ* (—1.) * (GNU+2.*FJ—1.) * (GNU+2.*FJ) / (X*X)
SUMQ = SUMQ+TERMQ
IF (ABS (TERMP).LT.5.E—8) GO TO 12

11 CONTINUE
12 P = SUMP

Q=_GNU/X —SUMQ
WRITE (6,3) J

3 FORMAT (15)
6 RETURN

END

SUBROUTINE GAMMA1 (X,G)
DOUBLE PRECISION X,G>C1,C2>C3,C4>C5,C6,C7,C8,C9,C10)C11,C12>C13,

1 C14,C15.C16,C17.C18.C19,C20,C21 ,C22,C23,C24,C25
C1 = .5772156649015329D0
C2 =—.6558780715202538D0
C3 = —.0420026350340952D0
C4 = .1665386113822915D0
C5 =—.0421977345555443 DO
C6 = —.0096219715278770D0
C7 = .0072189432466630D0
C8 = —.0011651675918591 DO
C9 =—.0002152416741149D0
C10= .0001280502823882D0
C11 =—.0000201348547807D0
C12=—.0000012504934821 DO
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C13= .0000011330272320D0
C14=—.0000002056338417D0
C15= .0000000061160950D0
C16 = .0000000050020075 DO
C17=—.0000000011812746 DO
C18= .0000000001043427D0
C19= .0000000000077823 DO
C20=—.0000000000036968D0
C21= .00000000000051 OODO
C22=— .0000000000000206D0
C23 =—.0000000000000054D0
C24 = .0000000000000014D0
C25=.0000000000000001 DO
G=C25*X
G=G*X+C24*X
G = G*X + C23*X
G = G*X + C22*X
G = G*X + C21*X

G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G = G*X 4
G= G*X 4-
G=1.0D0/G
RETURN
END

- C20*X
- C19*X
- C18*X
- C17*X
- C16*X
- C15*X
- C14*X
- C13*X
- C12*X
- C11*X
- C10*X
- C9*X
- C8*X
- C7*X
- C6*X
- C5*X
- C4*X

C3*X
- C2*X
- C1*X
X
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