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Abstract

It is proved that a quantale is projective if and only if it is isomorphic to a derived tensor quantale over
a completely distributive sup-lattice. Furthermore, an intrinsic characterization of projectivity is given in
terms of inertial sup-lattices and derivations of quantales.
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1. Introduction

Quantales (alias ‘quantum locales’) were introduced by Mulvey [16] as models for
the logic of quantum mechanics, and as a substitute for the spectrum in the case
of a noncommutative C∗-algebra [6, 11, 13, 17, 18]. Their relationship to Girard’s
linear logic [9], and its noncommutative version sketched by Girard in his seminar
lectures (Montreal 1987), was clarified by Yetter [30] and pursued, for example, by
Rosenthal [24, 25]. Furthermore, quantales have been shown to provide a proper
language for the study of Penrose tilings [7, 19], noncommutative topology [5, 8],
étale groupoids and inverse semigroups [23], and process semantics [1, 22].

Joyal and Tierney [10] introduced the category Sup of sup-lattices, a rigid tensor
category with strong analogies to the category Ab of abelian groups. Quantales can
be regarded as semigroup objects in Sup, just as associative rings are the semigroup
objects in Ab. In other words, replacing abelian groups by sup-lattices is all that has to
be done in order to switch from the additive world of ring theory to that of quantales.

The problem of classifying projective quantales was raised in 2002 by Li et al. [14].
Two decades earlier, several characterizations of projective sup-lattices were given
by Niefield [20]. Banaschewski [2] extended Scott’s characterization of injective
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T0-spaces [28] to locales by identifying projective frames as stably supercontinuous
complete lattices. Banaschewski and Niefield’s succinct proof [4] of this result led to
the natural question whether a similar characterization might be valid for projective
quantales [14]. Li et al. [14] derived a necessary criterion (complete distributivity
and weak stability), while Kruml and Paseka [12] proved that these conditions cannot
suffice. Paseka [21] proposed a general view in the spirit of Banaschewski [3], but the
missing condition for projectivity of quantales has not been found (see [12, Section 4]).

In this paper we close this gap by providing a complete characterization of
projective quantales. Guided by the analogy between quantales and associative rings,
some new concepts for quantales are developed for that purpose. We introduce
semidirect products for sup-lattices and analyse their relationship to modules over
locales (Propositions 3.7 and 4.4). Proposition 3.7 states that every ideal I of a
projective sup-lattice L gives rise to a semidirect product L = A n I with a unique
sup-lattice A. This will be applied to quantales Q with an inertial sup-lattice A, which
means that Q = A n Q2, and that an associated graded quantale gr Q can be constructed.
Moreover, there is an epimorphism p : gr Q� Q of quantales. Then we focus our
attention upon a special case where p is determined by a derivation of Q which lifts
to what we call a radical map of gr Q. This leads to an explicit description of derived
quantales, that is, special retracts of graded quantales with some analogy to associative
algebras twisted by a derivation (Theorem 4.6). If gr Q is a tensor quantale, we speak
of a derived tensor quantale.

Our main result (Theorem 5.4) states that, up to isomorphism, projective quantales
Q coincide with derived tensor quantales with Q/Q2 projective as a sup-lattice. Even
if Q/Q2 is the two-element lattice, this characterization yields a multitude of nonfree
projective quantales, one for each subsemigroup N of the additive semigroup N+

of positive integers. In the simplest case N = N+, the projective quantale Q is
an infinite chain {1 > 12 > 13 > · · · > 0}. The more general case |Q/Q2| = 2 with
nN+ ⊂ N for some n > 0 is related to ideal lattices of orders in a skew-field (see
Example 5.7; and [26, Satz 15.1]). Our characterization exhibits an analogy between
projective quantales and completed tensor algebras over a projective bimodule which
are projective in a category of algebras over a local ring (see [27, Theorem 3]).
An intrinsic characterization of projective quantales Q will be given in terms of a
derivation d : Q→ Q2 (Corollary 5.5).

2. The category of sup-lattices

Let Sup denote the category of sup-lattices [10]. Objects of Sup are complete
lattices; morphisms are maps f : L→ M which satisfy f (

∨
A) =

∨
f (A) for subsets

A ⊂ L. For a sup-lattice L, we set 1 = 1L :=
∨

L and 0 = 0L :=
∨
∅ for the greatest

and smallest element, respectively. The morphisms L→ M between two sup-lattices
form a sup-lattice Q(L, M) with pointwise supremum (

∨
F)(x) :=

∨
{ f (x) | f ∈ F} for

F ⊂ Q(L,M). The composition of morphisms respects joins:(∨
fi
)
g =

∨
( fig), f

(∨
gi

)
=

∨
( f gi). (2.1)
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There is a natural duality
Q(L,M) � Q(M◦, L◦), (2.2)

where M◦ denotes the sup-lattice with the dual ordering. In fact, every morphism
f : L→ M in Sup has a right adjoint morphism f ◦ : M◦ → L◦ which is uniquely
determined by the equivalence

f (x) 6 y ⇔ x 6 f ◦(y)

for all x ∈ L and y ∈ M. Thus ( f ◦)◦ = f . The self-dual sup-lattice 1 := {0, 1} with 0 < 1
satisfies Q(1, L) � L and Q(L,1) � L◦.

As observed in [10], the category Sup behaves somewhat similarly to the category
Ab of abelian groups. The intuition for the proof of our main result (Theorem 5.4)
stems from this analogy. Therefore, it might be helpful to sketch the main points of
the relationship.

Equations (2.1) correspond to the bilinearity of composition, where the join
∨

interprets a kind of infinite sum. Accordingly, the biproduct in Ab (see [15, VIII.2])
admits an infinite analogue in Sup, namely, the cartesian product

∏
i∈I Li with

the projections p j ∈ Q(
∏

i∈I Li, L j) and injections e j ∈ Q(L j,
∏

i∈I Li) determined by
e◦j = p j. In fact, these maps satisfy the equations

pie j = 0 for i , j, piei = 1,
∨
i∈I

ei pi = 1 (2.3)

for all i, j ∈ I, in complete analogy with the biproduct in Ab. The term biproduct is
justified by the following proposition.

Proposition 2.1. The cartesian product
∏

i∈I Li of sup-lattices Li is a product with
respect to the projections pi, and a coproduct with respect to the injections ei.

Proof. With L :=
∏

i∈I Li, let fi : M → Li be a morphism for each i ∈ I. Then f :=∨
i∈I ei fi satisfies pi f = fi for all i ∈ I. Together with (2.3), the latter equations yield

f = (
∨

i∈I ei pi) f =
∨

i∈I ei fi. So the pi : L→ Li define a product. The assertion for the
coproduct follows by symmetry. �

Because of this self-duality, we write
⊕

i∈I Li instead of
∏

i∈I Li, or L1 ⊕ L2 if
I = {1, 2}. If Li = L for all i ∈ I, we keep the notation LI . The neutral element with
respect to the biproduct is the zero sup-lattice 0 := {0}. Morphisms between biproducts
are given by infinite matrices:

Q
(⊕

i∈I

Li,
⊕

j∈J

M j

)
�

⊕
i∈I

⊕
j∈J

Q(Li,M j).

As Sup has difference kernels, the category Sup is complete, hence cocomplete
by duality. Recall that a monomorphism is said to be regular if it arises as a
difference kernel (similarly for epimorphisms). We write � (respectively, �) for
monomorphisms (epimorphisms) in Sup.
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Proposition 2.2. Monomorphisms and epimorphisms in Sup are regular.

Proof. Let f : L� M be epic in Sup. For any z ∈ M, we have f f ◦(z) 6 z. Hence
f (x) 6 z implies f (x) = f f ◦ f (x) 6 f f ◦(z) for all x ∈ M. Choose g, h ∈ Q(M,1) with
g◦(0) = z and h◦(0) = f f ◦(z). Then g f = h f , and thus g = h. So we get z = f f ◦(z) for
all z ∈ M, which proves that f is surjective.

Next we take a kernel pair p, q : K → L of f , that is, a pullback of f along f . For all
x, y ∈ L with f (x) = f (y), this implies that x = p(z) and y = q(z) for some z ∈ K. Hence
f is the difference cokernel of p, q. By duality, this completes the proof. �

In particular, Proposition 2.2 shows that monomorphisms (epimorphisms) in Sup
are injective (surjective). Furthermore, every f ∈ Q(M, N) admits a factorization

f : M
p
� Im f

i
� N into a regular epimorphism p and a regular monomorphism i.

Any pair L, M of sup-lattices has a tensor product L ⊗ M in Sup, generated
universally by elements x ⊗ y with x ∈ L and y ∈ M such that

x ⊗
∨
i∈I

yi =
∨
i∈I

(x ⊗ yi),
(∨

i∈I

xi

)
⊗ y =

∨
i∈I

(xi ⊗ y)

for all x, xi ∈ L and y, yi ∈ M. In other words, if we define a bimorphism β : L × M→ N
with L,M,N ∈ Sup to be a map whose partial maps β(x,−) and β(−, y) are morphisms
in Sup, the tensor product is characterized by a natural bijection

Bi(L × M,N) � Q(L ⊗ M,N), (2.4)

where Bi(L × M,N) stands for the set of bimorphisms L × M → N. Hence

L ⊗ M � M ⊗ L.

On the other hand, the tensor product can be represented as

L ⊗ M � Q(L,M◦)◦. (2.5)

That is, the simple tensors x ⊗ y ∈ L ⊗ M can be regarded as morphisms L→ M◦ via

(x ⊗ y)(z) :=


1 for z = 0,
y for 0 < z 6 x,
0 for z 66 x,

(2.6)

and then every f ∈ Q(L,M◦)◦ can be written as

f =
∨
x∈L

x ⊗ f (x). (2.7)

Thus (2.6) and (2.7) yield
x ⊗ y 6 f ⇔ y 6 f (x)

for all x ∈ L, y ∈ M, and f ∈ L ⊗ M. In particular, this implies that the equivalence

x ⊗ y = 0 ⇔ (x = 0 or y = 0)

holds for all x ∈ L and y ∈ M.
The following result shows that tensor products of sup-lattices are easier to handle

than tensor products of modules.
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Proposition 2.3. Let L and M be sup-lattices. Then:

(a) 0 , x ⊗ y 6 x′ ⊗ y′ implies x 6 x′ and y 6 y′;
(b) x ⊗

∧
i∈I yi =

∧
i∈I(x ⊗ yi);

(c) x , 0, x ⊗ y 6 x ⊗ y′ implies y 6 y′;

for all x, x′ ∈ L and y, y′, yi ∈ M, and I , ∅.

Proof. Assume that 0 , x ⊗ y 6 x′ ⊗ y′. Then x , 0 implies that 0 < y = (x ⊗ y)(x) 6
(x′ ⊗ y′)(x). Hence x 6 x′, and thus y 6 (x′ ⊗ y′)(x) = y′. This proves (a). The remaining
assertions follow immediately by (a). �

Together with (2.5) and (2.2), the natural isomorphism

Q(L,Q(M,N)) � Q(M,Q(L,N))

implies
Q(L ⊗ M,N) � Q(L,Q(M,N)),

which also gives
(L ⊗ M) ⊗ N � L ⊗ (M ⊗ N)

for all L, M, N ∈ Sup. Furthermore, (2.5) shows that the tensor product satisfies
1 ⊗ L � L ⊗ 1 � L and distributes over the biproduct:(⊕

i∈I

Li

)
⊗ L �

⊕
i∈I

(Li ⊗ L). (2.8)

A sup-lattice L is said to be completely distributive if arbitrary joins in L distribute
over arbitrary meets, that is,∨{∧

Ai

∣∣∣∣∣ i ∈ I
}

=
∧{∨

i∈I

ai

∣∣∣∣∣∀i ∈ I : ai ∈ Ai

}
for any family of subsets Ai ⊂ L. Recall that a sup-lattice M is said to be projective if
every epimorphism L� M splits.

The following proposition is essentially contained in [20]. The equivalence of (a)
and (b) has been generalized by several authors (see [29]). Note that a left adjoint
f◦ : M → L of a morphism f : L→ M in Sup must be of the form

f◦(y) :=
∧
{x ∈ L | f (x) > y}.

Though f◦ can always be defined, the equivalence of f◦(y) 6 x and y 6 f (x) for all
x ∈ L and y ∈ M need not be satisfied. Unless f respects meets, there is no way back
from f◦ to f .

Proposition 2.4. For a sup-lattice L, the following are equivalent:

(a) L is projective;
(b) L is completely distributive;
(c) for any morphism f ∈ Q(L,M) in Sup, the map f◦ belongs to Q(M, L);
(d) L is injective.
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Proof. (a) implies (b): Every a ∈ L determines a unique morphism 1→ L which maps
1 to a. So we get an epimorphism q : 1L � L which splits since L is projective. Hence
there is a morphism j : L→ 1L with q j = 1. Now let (Ai)i∈I be a family of subsets
Ai ⊂ L. If T denotes the set of transversals {ai | i ∈ I} with ai ∈ Ai, we have to verify
that

∨
{
∧

Ai | i ∈ I} >
∧
{
∨

A | A ∈ T }, the other inequality being trivial. Since 1L is
completely distributive, we have

j
(∧{∨

A
∣∣∣∣∣ A ∈ T

})
6

∧
j
({∨

A
∣∣∣∣∣ A ∈ T

})
=

∧{∨
j(A)

∣∣∣∣∣ A ∈ T
}

=
∨{∧

j(Ai)
∣∣∣∣∣ i ∈ I

}
.

Applying q, this gives∧{∨
A

∣∣∣∣∣ A ∈ T
}
6 q

(∨{∧
j(Ai)

∣∣∣∣∣ i ∈ I
})

=
∨

q
({∧

j(Ai)
∣∣∣∣∣ i ∈ I

})
6

∨{∧
Ai

∣∣∣∣∣ i ∈ I
}
.

(b) implies (c): Let f ∈ Q(L,M) be given, and let X be a subset of M. Then

f◦
(∨

X
)

=
∧{

a ∈ L
∣∣∣∣∣ f (a) >

∨
X
}
6

∧{∨
x∈X

ax

∣∣∣∣∣∀x ∈ X : ax ∈ L, f (ax) > x
}

=
∨
x∈X

∧{
a ∈ L

∣∣∣∣∣ f (a) > x
}
=

∨
f◦(X).

(c) implies (d): Let f ∈ Q(L,M) be monic. Then f◦ ∈ Q(M, L), and f◦ f = 1. Hence
L is injective.

(d) implies (a): By duality, L◦ is projective. Hence L◦ is completely distributive,
and thus L◦ is injective. Again by duality, L is projective. �

For a set X, consider the map δX : X → 1X with δX(x)(y) = 1 if and only if x = y.
Then every map f : X → L into a sup-lattice L extends uniquely to a morphism
f ′ : 1X → L of sup-lattices such that f ′ ◦ δX = f . Thus X 7→ 1X is a functor Set→ Sup
which is left adjoint to the forgetful functor Sup→ Set.

3. Quantales

Recall that an associative ring can be viewed as a semigroup object in the category
Ab of abelian groups. Similarly, a semigroup object in Sup is said to be a quantale.
Explicitly, this means that a quantale Q is a sup-lattice with a semigroup structure such
that the left and right multiplications are morphisms in Sup. A morphism f : Q→ Q′

of quantales is a morphism in Sup which is a homomorphism of semigroups. The
category of quantales will be denoted by Quant. A quantale Q is unital if it admits an
element u which satisfies ua = au = a for all a ∈ Q.

There is a perfect analogy between modules over a ring and modules over a
quantale. By (2.1), every sup-lattice L gives rise to a unital quantale Q(L) := Q(L, L)
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[7] Projective quantales 409

with the composition of maps as multiplication, the endomorphism quantale of M.
A (left) module over a quantale Q is a sup-lattice M together with a morphism
ρ : Q→ Q(M) of quantales (see [1, 12]). For a ∈ Q and x ∈ M, we write ax := ρ(a)(x).
Equivalently, a Q-module M is given by a morphism Q ⊗ M → M, induced by
a ⊗ x 7→ ax, which satisfies (ab)x = a(bx) for all a, b ∈ Q and x ∈ M. A module M
over a unital quantale Q is said to be unital if ux = x for all x ∈ M.

Example 3.1. Let L be a sup-lattice. By Sub(L) we denote the set of subsets A ⊂ L
such that A ↪→ L belongs to Q(A, L) (that is, A is a sub-sup-lattice of L.) For a family
(Ai)i∈I of Ai ∈ Sub(L), we define∨

i∈I

Ai :=
{∨

ai

∣∣∣∣∣ ai ∈ Ai

}
.

This makes Sub(L) into a sup-lattice. We call I ∈ Sub(L) an order ideal of L if a 6 b ∈ I
implies a ∈ I. For A ∈ Sub(L), the order ideal of L generated by A coincides with the
downset ↓A := {a ∈ L | ∃b ∈ A : a 6 b}. Note that every order ideal I of L is principal:
I = ↓{

∨
I}. For an order ideal I of L, we denote the interval {x ∈ L |

∨
I 6 x 6 1} by

L/I. There is a natural epimorphism of sup-lattices

p : L� L/I (3.1)

with p(a) := a ∨
∨

I.

For a quantale Q and A, B ∈ Sub(Q), we set

AB :=
{∨

S
∣∣∣∣∣ S ⊂ {ab | a ∈ A, b ∈ B}

}
. (3.2)

With (3.1) and (3.2), Sub(Q) becomes a quantale. We write An for the n-fold product
A · · · A of A ∈ Sub(Q). Note that the Qn form a descending sequence of subquantales
of Q. If Q is unital, then Q2 = Q.

To define a semidirect product of sup-lattices, we need a suitable kind of action.

Definition 3.2. Let L, M be sup-lattices. We define a dual action of L on M to be a
map L × M → M which satisfies:

(O1) 0x = x;
(O2) a 6 b implies ax 6 bx;
(O3) x 6 y implies ax 6 ay;
(O4) a(ax) = ax,

for all a, b ∈ L and x, y ∈ M.

Example 3.3. Recall that a quantale L is said to be a frame if its multiplication
coincides with the meet, or equivalently, if a · a = a · 1 = 1 · a = a holds for all a ∈ L.
Such a quantale is unital with unit 1. If L and M are sup-lattices such that L◦ is a frame
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and M◦ is a unital L◦-module, the induced map L × M → M satisfies (O1)–(O4). We
call such a dual action localic. Explicitly, this means that (a ∨ b)x = a(bx), 0x = x, and(∧

ai

)
∨ a =

∧
(ai ∨ a),

(∧
ai

)
x =

∧
(aix), a

(∧
xi

)
=

∧
(axi)

for all a, b, ai ∈ L and x, xi ∈ M. Note that (O1) and (O2) imply

x 6 ax (3.3)

for all a ∈ L and x ∈ M. In what follows, we write a ⊕ x for the elements a ∨ x ∈ L ⊕ M
with a ∈ L and x ∈ M.

Lemma 3.4. Let L × M → M be a dual action of sup-lattices. Then the subset

L n M := {a ⊕ ax | a ∈ L, x ∈ M}

of L ⊕ M is
∧

-closed.

Proof. For a family of elements ai ⊕ aixi ∈ L ⊕ M, inequality (3.3) gives∧
aixi 6

(∧
ai

)(∧
aixi

)
6 ai(aixi) = aixi

for all i, hence
∧

aixi = (
∧

ai)(
∧

aixi). Therefore,
∧

(ai ⊕ aixi) = (
∧

ai) ⊕ (
∧

aixi) =

(
∧

ai) ⊕ (
∧

ai)(
∧

aixi) ∈ L n M. �

By Lemma 3.4, any subset S of L n M admits a supremum p(
∨

S ) in L n M, where
x :=

∨
S is the supremum in L ⊕ M, and p(x) denotes the smallest element greater

than or equal to x in L n M. Thus every dual action L × M → M gives rise to an
epimorphism

p : L ⊕ M −→→ L n M

of sup-lattices. We call L n M the semidirect product of L by M. There are natural
embeddings L ↪→ L n M and M ↪→ L n M given by a 7→ a ⊕ a0 and x 7→ 0 ⊕ x,
respectively. Note that M is an order ideal of L n M such that

(L n M)/M � L. (3.4)

The pairs (L, M) with a dual action of L on M form a category Sup(2). Morphisms
(L, M)→ (L′, M′) are pairs ( f , g) of maps f ∈ Q(L, L′) and g ∈ Q(M, M′) such that
f (a)g(ax) = f (a)g(x) for a ∈ L and x ∈ M.

Example 3.5. Every sup-lattice L admits a natural dual action on itself, given by
a · b := a ∨ b. This gives a functor

∆ : Sup −→ Sup(2)

with ∆(L) := (L, L). If L◦ is a frame, the dual action of ∆(L) is localic. On the other
hand, the semidirect product gives a functor

S : Sup(2) −→ Sup
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with S (L, M) := L n M. It is easy to verify that S is a left adjoint of ∆. Note that a
dual action L × M→ M can be recovered from the diagram L ↪→ L n M←↩ M in Sup.
That is, for a ∈ L and x ∈ M,

ax = (a ∨ x) ∧ 1M ∈ M. (3.5)

Proposition 3.6. Let I be an order ideal of a sup-lattice L, and A ∈ Sub(L). With
A ∨ I := {a ∨ x ∈ L | a ∈ A, x ∈ I}, the following are equivalent:

(a) L = A n I;
(b) L = A ∨ I, and the natural morphism α : A ↪→ L� L/I is injective;
(c) L = A ∨ I, and the natural morphism α : A ↪→ L� L/I is bijective.

Proof. That (a) implies (b) follows by the identification A ∨ I = A n I. Furthermore,
L = A ∨ I implies that α is surjective. Hence (b) implies (c). Conversely, let (c)
be satisfied. Then (3.5) defines a dual operation of A on I, with ax = (a ∨ x) ∧ 1I

for all a ∈ A and x ∈ I. Clearly, properties (O1)–(O3) are satisfied. By definition,
x 6 ax 6 a ∨ x. Hence ax 6 a(ax) 6 a ∨ ax 6 a ∨ x, and thus a(ax) = ax. So the
elements of L admit a unique representation a ∨ x with a ∈ A and x = ax ∈ I, which
proves (a). �

Proposition 3.7. Let I be an order ideal of a projective sup-lattice L. There exists a
unique A ∈ Sub(L) with L = A n I. Furthermore, A and I are retracts of L, and the
dual action of A on I is localic.

Proof. Define q ∈ Q(L, I) by q(x) := x ∧ 1I . Then q is a retraction onto I. The
implication

x 6 y ⇒ q(x) = x ∧ q(y) (3.6)

holds for all x, y ∈ L. Furthermore, we define a map r : L→ L by

r(x) :=
∧
{a ∈ L | a ∨ q(x) = x}.

Then q(x) ∨ r(x) = x. By (3.6), the inequality x 6 y yields (x ∧ r(y)) ∨ q(x) = (x ∧
r(y)) ∨ (x ∧ q(y)) = x ∧ (r(y) ∨ q(y)) = x ∧ y = x. Hence r(x) 6 x ∧ r(y) 6 r(y), which
shows that r is monotonic. To show that r ∈ Q(L), let X be a subset of L. Then∨

X =
∨

x∈X(r(x) ∨ q(x)) 6
∨

r(X) ∨
∨

q(X) =
∨

r(X) ∨ q(
∨

X) 6
∨

X. So we get
r(
∨

X) 6
∨

r(X), which implies that r is a morphism of sup-lattices. For any x ∈ L,
we have r(r(x)) 6 r(x), and r(r(x)) ∨ q(x) = r(r(x)) ∨ q(r(x)) ∨ q(x) = r(x) ∨ q(x) = x.
Hence r(r(x)) > r(x), and thus r is a retraction onto A := r(L). In particular, A is a
projective sup-lattice, and A◦ is a frame.

Next we show that L = A n I. Every x ∈ L has a representation x = r(x) ∨ q(x) ∈
A ∨ I. Furthermore, r provides a retraction of the natural morphism α : A ↪→ L� L/I.
In fact, if a ∈ A, then r(a ∨ 1I) = r(a) ∨ r(1I) = a. Hence L = A n I.

To show the uniqueness of A, let L = B n I be another representation with B ∈
Sub(L). Then any a ∈ A can be written as a = b ∨ x with b ∈ B and x ∈ I. Hence
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a = b ∨ q(a), and thus a = r(a) 6 b 6 a, which gives A ⊂ B. Conversely, every b ∈ B
satisfies b = q(b) ∨ r(b) with r(b) ∈ A ⊂ B. Whence b = r(b).

By (3.5), the dual action of A on I must be ax := q(a ∨ x). Then (3.6) gives

a ∨ bx = a ∨ q(b ∨ x) = a ∨ ((b ∨ x) ∧ q(a ∨ b ∨ x))
= (a ∨ b ∨ x) ∧ (a ∨ q(a ∨ b ∨ x)) = a ∨ q(a ∨ b ∨ x)

for all a, b ∈ A and x ∈ I. Applying q yields a(bx) = (a ∨ b)x. Furthermore, 0x =

q(x) = x. Since q respects arbitrary meets, the map A × I → I makes I◦ into a unital
A◦-module. Therefore, the dual action is localic. �

Remark 3.8. The referee has pointed out that the existence of a decomposition L =

A n I holds under the more general hypothesis that L◦ is a frame. (The same applies to
the uniqueness.) The distributivity of the sup-lattice L does not suffice. For example,
consider the sublattice of R × R given by L := {(x, 0) | 0 6 x 6 1} ∪ {(x, 1) | 0 < x 6 1}.
This is a distributive sup-lattice with an order ideal I := {(x, 0) | 0 6 x 6 1}. However,
L cannot be written as a semidirect product A n I.

4. Derived quantales
In this section, we introduce a class of quantales similar to graded algebras A twisted

by a derivation. The Hausdorff property
⋂∞

n=0 RadnA = 0 has to be reformulated in an
appropriate manner.

Definition 4.1. We call a quantale Q separated if the Qn are order ideals and the Q/Qn

cogenerate Q, that is, the natural morphism Q→
⊕∞

n=1 Q/Qn is injective. We say that
Q splits if Q is separated with Qn = An n Qn+1 for all n > 0 and some A ∈ Sub(Q)
which will be called an inertial sup-lattice of Q.

For a separated quantale Q, we can form the associated graded quantale

gr Q :=
∞⊕

n=1

Qn/Qn+1

with multiplication induced by the maps Qm/Qm+1 ⊗ Qn/Qn+1 � Qm+n/Qm+n+1. Note
that gr Q is a splitting quantale with inertial sup-lattice Q/Q2.

Lemma 4.2. Let Q be a separated quantale with Q = A ∨ Q2 for some A ∈ Sub(Q).
Then Q =

∨∞
n=1 An.

Proof. By induction, we get Qn = An ∨ Qn+1, and thus Q =
∨

i<n Ai ∨ Qn for all n > 0.
Therefore, every x ∈ Q can be written as x = an ∨ xn with an ∈

∨
i<n Ai and xn ∈ Qn

for all n > 0. Hence x = (
∨∞

i=1 ai) ∨ xn for all n. Since Q is separated, this yields
x =

∨∞
i=1 ai ∈

∨∞
i=1 Ai. �

Let Q be a splitting quantale with inertial sup-lattice A. By (3.4), there are
natural isomorphisms Qn/Qn+1 � An for all n > 0, and by Lemma 4.2, they induce
an epimorphism of quantales

p : gr Q� Q. (4.1)

If p is an isomorphism, we call Q a graded quantale.
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Definition 4.3. Let L be a quantale. We define a derivation of L to be a sup-lattice
morphism d ∈ Q(L) which satisfies

d(xy) = d(x)y ∨ xd(y)

for all x, y ∈ L. The derivations of L form a sup-lattice Der(L) ∈ Sub(Q(L)). For an
order ideal I of L, the derivations with image in I will be denoted by Der(L, I). We call
a derivation d of L convex if d2 6 d.

Thus, derivations of quantales are quite analogous to derivations of rings, while
convexity has no counterpart in ring theory. Note that the set of convex derivations d
of a quantale Q is

∧
-closed in Der(Q). In fact, if di ∈ Der(Q) are convex for all i ∈ I,

then (
∧

di)(
∧

d jx) 6 di(dix) 6 dix holds for all x ∈ Q and i ∈ I, whence (
∧

di)2 6
∧

di.
So the convex derivations of Q form a sup-lattice Derc(Q), and there is a natural
epimorphism of sup-lattices

Der(Q)� Derc(Q). (4.2)

Proposition 4.4. Let d be a convex derivation of a quantale Q. Then 1 ∨ d is an
idempotent endomorphism of Q.

Proof. For x, y ∈ Q, we have dx · dy 6 d2x · y ∨ dx · dy = d(dx · y) 6 d(dx · y ∨ x · dy) =

d2(xy) 6 d(xy). Hence xy ∨ d(xy) = xy ∨ dx · y ∨ x · dy ∨ dx · dy = (x ∨ dx)(y ∨ dy),
and thus 1 ∨ d is an endomorphism of Q. Furthermore, (1 ∨ d)2x = (1 ∨ d)(x ∨ dx) =

(x ∨ dx) ∨ (dx ∨ d2x) = x ∨ dx, which shows that 1 ∨ d is idempotent. �

The converse of Proposition 4.4 does not hold (see Example 5.8).

Definition 4.5. Let Q be a quantale. We define a radical map of Q to be a morphism
δ : Q→ Q2 of sup-lattices such that 1 ∨ δ is an idempotent endomorphism of Q. For a
radical map δ, we define the derived quantale Qδ to be the retract (1 ∨ δ)(Q) of Q. If
Q is graded, we call Qδ a derived graded quantale.

Our next result gives an intrinsic description of derived graded quantales. Recall
that a splitting quantale Q with inertial sup-lattice A satisfies Qn = An n Qn+1 for all
n > 0. Hence there are dual actions An × Qn+1 → Qn+1 in the sense of Definition 3.2.
For a ∈ An and y ∈ Qn+1, we will write (a, y) 7→ ay for this action, to distinguish it from
the multiplication in Q.

Theorem 4.6. For a quantale Q, the following are equivalent:

(a) Q is a derived graded quantale;
(b) Q splits, and there exist an inertial sup-lattice A, and a convex derivation d of

Q, such that ay = da ∨ y for all a ∈ An, y ∈ Qn+1, and n > 0;
(c) Q splits, and the dual p◦ of the morphism (4.1) is a morphism of quantales.

Proof. (a) implies (b): Let Q =
⊕∞

n=1 Mn be a graded quantale, and let δ : Q→ Q2 be a
radical map. We show that Qδ := (1 ∨ δ)(Q) satisfies (b). Define A := (1 ∨ δ)(M). Then
Qδ =

∨∞
n=1 An. It follows from (Qδ)n = Qn ∩ Qδ that the (Qδ)n are order ideals of Qδ.
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Since Q is separated, Qδ is separated, too. The elements of An are of the form x ∨ δ(x)
with x ∈ Mn, and δ(x) ∈ Qn+1. Therefore, the morphisms An ↪→ (Qδ)n� (Qδ)n/(Qδ)n+1

are injective. This proves that Qδ splits.
Since 1 ∨ δ is idempotent, we have x ∨ δ(x) = (1 ∨ δ)(x ∨ δ(x)) = x ∨ δ(x) ∨ δ2(x)

for all x ∈ Mn and n > 0, which gives δ2(x) 6 δ(x) for x ∈ Mn, and thus δ2 6 δ.
Hence δ(x ∨ δ(x)) = δ(x) for all x ∈ Q. For x ∈ Mm and y ∈ Mn, the multiplicativity
of 1 ∨ δ implies that xy ∨ δ(xy) = (x ∨ δ(x))(y ∨ δ(y)), which yields δ(xy) = δ(x)y ∨
xδ(y) ∨ δ(x)δ(y) = δ(x)(y ∨ δ(y)) ∨ (x ∨ δ(x))δ(y). Therefore, with a := x ∨ δ(x) and
b := y ∨ δ(y), we get δ(ab) = δ(a)b ∨ aδ(b). So the morphism δ restricts to a convex
derivation d of Qδ. Assume that a ∈ An and y ∈ (Qδ)n+1 for some n > 0. Then
a = x ∨ δ(x) for some x ∈ Mn, and da = δ(x) ∈ Qδ ∩ Qn+1 = (Qδ)n+1. If z 6 a ∨ y with
z ∈ (Qδ)n+1, then z 6 δ(x) ∨ y = da ∨ y. Hence (3.5) yields ay = da ∨ y. This proves (b).

(b) implies (c): By Lemma 4.2, we have a surjection (4.1). We identify Qn/Qn+1

with An. To show that p◦ : Q→ gr Q is a morphism of quantales, let (xi)i∈I be a family
of xi ∈ Q. Assume that p◦(xi) =

⊕∞

n=1 xin with xin ∈ An. Then xi =
∨∞

n=1 xin for all
i ∈ I, and the xin are maximal with this property. This gives

∨
i∈I xi =

∨∞
n=1

∨
i∈I xin. To

verify that p◦ is a morphism of sup-lattices, we have to show that p◦(
∨∞

n=1
∨

i∈I xin) =⊕∞

n=1
∨

i∈I xin. This means that every z ∈ An with z 6
∨∞

n=1
∨

i∈I xin satisfies z 6∨
i∈I xin. Since Qn = An n Qn+1, this is equivalent to( ∞∨

j=1

∨
i∈I

xi j

)
∧

∨
Qn =

∨
j>n

∨
i∈I

xi j.

Using induction over n, it suffices to verify(∨
j>n

∨
i∈I

xi j

)
∧

∨
Qn+1 =

∨
j>n

∨
i∈I

xi j

for all n > 0. Now (3.5) yields(∨
j>n

∨
i∈I

xi j

)
∧

∨
Qn+1 =

(∨
i∈I

xin

)(∨
j>n

∨
i∈I

xi j

)
= d

(∨
i∈I

xin

)
∨

∨
j>n

∨
i∈I

xi j

=
∨
i∈I

dxin ∨
∨
j>n

∨
i∈I

xi j =
∨
i∈I

(
dxin ∨

∨
j>n

xi j

)
=

∨
i∈I

(
xin ·

∨
j>n

xi j

)
=

∨
i∈I

(∨
j>n

xi j ∧
∨

Qn+1
)

=
∨
i∈I

∨
j>n

xi j.

It remains to be shown that p◦ is multiplicative. Every element of Q is of the form
a ∨ x with a ∈ Am and x ∈ Qm+1 for some m > 0. Thus if b ∈ An and y ∈ Qn+1, we have
to verify that

p◦((a ∨ x)(b ∨ y)) = p◦(a ∨ x) · p◦(b ∨ y). (4.3)

We will show that there exist xi ∈ Qmi and yi ∈ Qni with mi 6 m and ni 6 n such that
mi + ni > m + n and

p◦((a ∨ x)(b ∨ y)) = ab ⊕
3∨

i=1

p◦(xiyi), p◦(a ∨ x) · p◦(b ∨ y) = ab ⊕
3∨

i=1

p◦(xi)p◦(yi).
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By induction, this will imply (4.3). Now p◦(a ∨ x) = a ⊕ p◦(ax) = a ⊕ p◦(da ∨ x).
Hence

p◦((a ∨ x)(b ∨ y)) = p◦(ab ∨ ay ∨ xb ∨ xy) = ab ⊕ p◦(d(ab) ∨ ay ∨ xb ∨ xy)
= ab ⊕ p◦(da · b ∨ a · db ∨ ay ∨ xb ∨ xy)
= ab ⊕ p◦(a(db ∨ y)) ∨ p◦((da ∨ x)b) ∨ p◦(xy),

and p◦(a ∨ x) · p◦(b ∨ y) = (a ⊕ p◦(da ∨ x))(b ⊕ p◦(db ∨ y)) = ab ⊕ z with

z = a · p◦(db ∨ y) ∨ p◦(da ∨ x) · b ∨ p◦(da ∨ x) · p◦(db ∨ y)
= a · p◦(db ∨ y) ∨ p◦(da ∨ x)b ∨ p◦(da)p◦(db ∨ y) ∨ p◦(da ∨ x)p◦(db) ∨ p◦(x)p◦(y)
= p◦(a)p◦(db ∨ y) ∨ p◦(da ∨ x)p◦(b) ∨ p◦(x)p◦(y).

(c) implies (a): Let A be an inertial sup-lattice of Q. For each x ∈ Qn/Qn+1 ⊂ gr Q,
we have p◦p(x) = x ⊕ δn(x) with δn(x) ∈ (gr Q)n+1. Since p◦ is a morphism of
quantales, δn : Qn/Qn+1 → (gr Q)n+1 is a morphism of sup-lattices. So the δn extend to
a morphism δ : gr Q→ (gr Q)2 of sup-lattices which satisfies

p◦p(x) = x ⊕ δx

for all x ∈ gr Q. Hence δ is a radical map. �

5. Projective quantales

In this section we determine the projective quantales. A quantale Q is said to
be projective if every quantale morphism Q→ N lifts along regular epimorphisms
M � N of quantales. Note that the regular epimorphisms in Quant are just the
surjective ones.

Let M be a sup-lattice. We define the tensor quantale T (M) as follows. First, we
consider the tensor powers M⊗n := M ⊗ · · · ⊗ M (n times). Then we define

T (M) :=
∞⊕

n=1

M⊗n (5.1)

with the multiplication induced by

M⊗m × M⊗n → M⊗(m+n).

So we have

T (M)n =

∞⊕
i=n

M⊗i, (5.2)

and in particular, T (M)2 , T (M) if M , 0. Thus every tensor quantale T (M) is graded,
hence splitting with inertial sup-lattice M.

Every morphism f : M → N in Sup induces morphisms

f ⊗n : M⊗n → N⊗n

https://doi.org/10.1017/S1446788715000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000506


416 W. Rump [14]

for all n > 0 via (2.4) which make up a quantale morphism

T ( f ) : T (M)→ T (N).

This gives a functor
T : Sup→ Quant

which is left adjoint to the forgetful functor Quant→ Sup. In particular, every sup-
lattice morphism 1→ Q into a quantale Q extends to a quantale morphism T (1)→ Q,
which implies that regular epimorphisms in Quant are surjective.

We call an element x ∈ T (M) homogenous if it belongs to some M⊗n. Thus any
x ∈ T (M) admits a unique decomposition

x =

∞∨
n=1

xn

into its homogenous components xn ∈ M⊗n.
The free quantale over a set X can be obtained in two steps as the tensor quantale

T (1X) of the free sup-lattice 1X . The two steps can be interchanged. Note that the
free semigroup S (X) over X looks rather similar to the tensor quantale (5.1), being the
disjoint union

S (X) =

∞⊔
n=1

Xn.

Thus (2.8) yields T (1X) �
⊕∞

n=1(1X)⊗n �
⊕∞

n=1 1
Xn
� 1S (X) as a sup-lattice. The

multiplication is induced by the multiplication in S (X).

Definition 5.1. Let H be a semigroup and Q a quantale. We define the semigroup
quantale Q[H] to be the sup-lattice QH with the convolution product

( f · g)(z) :=
∨
{ f (x)g(y) | x, y ∈ H, xy = z}.

If Q is unital, we have a natural embedding as a subsemigroup H ↪→ Q[H], where
x ∈ H has to be regarded as a function x : H → Q with x(y) = 0 for y , x and
x(x) = u, the unit in Q. With this identification, the elements f ∈ Q[H] admit a unique
expression

f =
∨
x∈H

axx

with ax ∈ Q.
Now the unital quantale Q(1) has 1 as underlying sup-lattice. So we get another

representation of the free quantale over a set X:

T (1X) � Q(1)[S (X)]. (5.3)

For a tensor quantale T (M), every morphism d ∈ Q(M, T (M)) admits a unique
extension to a derivation of T (M). In particular, there is a natural embedding
Q(M) ↪→ Der(T (M)). Therefore, we have a natural isomorphism of sup-lattices

Der(T (M)) � Q(M,T (M)) � Q(M) ⊕ Der(T (M),T (M)2). (5.4)

As an immediate consequence of (5.3), we get the following proposition (see [14]).
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Proposition 5.2. Every projective quantale is projective as a sup-lattice.

Proof. For a projective quantale Q, the natural epimorphism Q(1)[S (Q)]� Q splits.
Since Q(1)[S (Q)] is free as a sup-lattice, the statement follows. �

Definition 5.3. We define a derived tensor quantale to be a derived quantale Q for
which gr Q is a tensor quantale.

For a sup-lattice M, every morphism d ∈ Q(M,T (M)2) gives rise to a derived tensor
quantale with inertial sup-lattice M. In fact, (5.4) shows that d extends to a derivation
of T (M), and by (4.2), there is a smallest convex derivation δ ∈ Der(T (M), T (M)2)
with δ > d, hence a derived tensor quantale T δ(M) := T (M)δ.

Now we are ready to prove our main result.

Theorem 5.4. A quantale Q is projective if and only if Q is isomorphic to a derived
tensor quantale T δ(M) over a projective sup-lattice M.

Proof. Let Q be projective. The identity map Q → Q induces an epimorphism
p : T (1Q)� Q of quantales. So there is a section s : Q→ T (1Q). By (5.2), the T (1Q)n

are order ideals. Hence Qn = p(T (1Q)n) is an order ideal of Q for each n > 0. Since
T (1Q) is separated, it follows that Q is separated.

By Proposition 5.2, Q is projective as a sup-lattice. Therefore, Proposition 3.7
implies that there is a projective A ∈ Sub(Q) with Q = A n Q2. So the inclusion
map A ↪→ Q extends to a quantale morphism q : T (A)→ Q which is surjective by
Lemma 4.2. Since Q is projective, there is a morphism t : Q→ T (A) of quantales with
qt = 1. Hence tq is an idempotent endomorphism of T (A). For any a ∈ A, we have
qtq(a) = q(a) = a, which implies that tq(a) = a ⊕ δ1(a) with δ1(a) ∈ T (A)2. As tq is
a morphism of sup-lattices, it follows that δ1 ∈ Q(A, T (A)2). Furthermore, if a ∈ A⊗n,
we obtain tq(a) = a ⊕ δn(a) with a unique δn ∈ Q(A⊗n, T (A)n+1). So the δn extend to a
radical map δ ∈ Q(T (A),T (A)2) with 1 ∨ δ = tq. Hence Q � T δ(A).

Conversely, assume that Q is isomorphic to a derived tensor quantale T δ(M) over
a projective sup-lattice M. By Definition 4.5, Q is a retract of T (M). Since M is
projective, it is a retract of the free sup-lattice 1M . Applying the functor T , we infer
that T (M) is a retract of the free quantale T (1M). Hence T (M) is projective, and thus
Q is a projective quantale. �

Corollary 5.5. A quantale Q is projective if and only if the following conditions are
satisfied:

(a) Q/Q2 is a projective sup-lattice;
(b) Q splits, and there exist an inertial sup-lattice A, and a convex derivation d of

Q, such that ay = da ∨ y for all a ∈ An, y ∈ Qn+1, and n > 0;
(c) gr Q � T (Q/Q2).

Proof. By Theorem 4.6, Q is a derived tensor quantale if and only if (b) and (c) hold.
Therefore, the corollary follows immediately by Theorem 5.4. �
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Figure 1. A nonfree projective quantale.

Using property (c) of Theorem 4.6, we get the following characterization of
projective quantales.

Corollary 5.6. A quantale Q is projective if and only if Q splits, the dual p◦ of the
morphism (4.1) is a quantale morphism, the sup-lattice Q/Q2 is projective, and gr Q
is a tensor quantale.

For a tensor quantale T (M), there are plenty of morphisms d : M → T (M)2 of sup-
lattices. So there are many (convex) derivations δ of T (M), even for M = 1. The
following example describes the class of nonfree projective quantales T δ(1) obtained
in this case.

Example 5.7. Let N be any subsemigroup of the additive semigroup of positive
integers. To avoid confusion, we denote the greatest element of 1 by e. Consider
the derivation δ of T (1) given by δ(e) :=

∨
n∈N en+1. Then the semigroup property of

N implies that δ is a convex derivation with δ(em) :=
∨

n∈N em+n for all m > 0. By
Theorem 5.4, the derived tensor quantale T δ(1) is projective.

Let us consider the (very) special case N = {k ∈ N | k > n} for a fixed positive
integer n. Then T δ(1) is generated by a := e ∨ δ(e) = e ∨

∨
k>n ek, and for any m > 0,

the number n is the smallest integer k > 0 with am+k 6 am. For n = 1, we get a
chain T δ(1) = {1 > 12 > 13 > · · · > 0}. For n = 3, the quantale Q := T δ(1) satisfies
a ∨ a2 ∨ a3 = 1 and is depicted in Figure 1.

If N contains a subsemigroup {k ∈ N | k > m} for some m > 0, the quantale T δ(1) can
be interpreted as an ideal lattice for some order in a skew-field (see [26, Satz 15.1]).
We illustrate this for the above example with N = {3, 4, 5, . . .}. Let D be a skew-field
with a discrete valuation v : D× � Z. Let ∆ := {a ∈ D | v(a) > 0} be the valuation ring
and Π := Rad ∆ its radical. Assume that Λ is an order in D such that ∆ is totally
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ramified over Λ with Rad Λ = Π3. Thus Λ + Π = ∆ and Λ ∩ Π = Π3. To any ideal I of
Λ we can associate a characteristic [26], that is, a sequence χ(I) = (χi(I))i∈Z with

χi(I) := lengthΛ((I ∩ Πi) + Πi+1/Πi+1).

In our special case, χi(I) ∈ {0, 1} for all i ∈ Z. Since Λ is representation-finite, two
ideals I, J of Λ have the same characteristic if and only if I = Jα for some α ∈ ∆×.
Hence, if I denotes the lattice of ideals I ⊂ Π of Λ, the map I 7→ χ(I) makes I into
a quantale I /∆×. In fact, I /∆× coincides with the quantale of Figure 1.

Example 5.8. Let H be the free commutative semigroup with two generators a and b.
Consider the semigroup quantale Q := Q(1)[H]. Define a morphism δ : Q→ Q2 of
sup-lattices by

δ(am) =

∞∨
i>m

ai, δ(bn) =

∞∨
j>n

b j, δ(ambn) =
∨
{aib j | i > m, j > n, (i, j) , (m, n)}

for m, n > 0. It is easy to verify that 1 ∨ δ is an idempotent quantale endomorphism
of Q. Hence δ is a radical map, and we can form the derived graded quantale Qδ.
However, δ is not a derivation since δ(a)b ∨ aδ(b) =

∨∞
n=2(anb ∨ abn), which is strictly

smaller than δ(ab).
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[23] P. Resende, ‘Étale groupoids and their quantales’, Adv. Math. 208(1) (2007), 147–209.
[24] K. I. Rosenthal, ‘A note on Girard quantales’, Cah. Topol. Géom. Différ. Catég. 31(1) (1990),

3–11.
[25] K. I. Rosenthal, Quantales and their Applications, Pitman Research Notes in Mathematics Series,

234 (Longman Scientific & Technical, Harlow, 1990).
[26] W. Rump, ‘Irreduzible und unzerlegbare Darstellungen klassischer Ordnungen’, Bayreuth. Math.

Schriften 32 (1990), 1–405.
[27] W. Rump, ‘Inertial algebras, inertial bimodules, and projective covers of algebras’, Comm. Algebra

27(11) (1999), 5303–5331.
[28] D. Scott, ‘Continuous lattices’, in: Toposes, Algebraic Geometry and Logic (Conf., Dalhousie

Univ., Halifax, N. S., 1971), Lecture Notes in Mathematics, 274 (Springer, Berlin, 1972), 97–136.
[29] I. Stubbe, ‘Towards “dynamic domains”: totally continuous cocomplete Q-categories’, Theoret.

Comput. Sci. 373(1–2) (2007), 142–160.
[30] D. N. Yetter, ‘Quantales and (noncommutative) linear logic’, J. Symbolic Logic 55(1) (1990),

41–64.

WOLFGANG RUMP, Institute for Algebra and Number Theory,
University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
e-mail: rump@mathematik.uni-stuttgart.de

https://doi.org/10.1017/S1446788715000506 Published online by Cambridge University Press

mailto:rump@mathematik.uni-stuttgart.de
https://doi.org/10.1017/S1446788715000506

	Introduction
	The category of sup-lattices
	Quantales
	Derived quantales
	Projective quantales
	References

