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Background. Liver hepatocellular carcinoma (LIHC) is the predominant type of liver cancer, and its treatment still faces great
challenges presently. Mitochondrial inner membrane protein MPV17 is reported to be involved in multiple biological activities of
cancers. Here, we seek to investigate the specific role and functions of MPV17 in LIHC progression. Methods. Firstly, MPV17
expressions in various tumors and corresponding normal samples and LIHC groups with various clinical features were analyzed,
respectively. Next, the relationship between MPV17 expression and LIHC survival was analyzed and verified by AUC curves.
Besides, differentially expressed genes (DEGs) for LIHC were screened from TCGA and then analyzed by GO and KEGG. .en,
MPV17 was analyzed by prognostic model, Cox analysis, predictive nomogram, pathway correlation, and immunoassay. Finally,
the functions of MPV17 were determined by CCK-8 and Tranwell assays. Results. In most tumors, MPV17 expression was higher
than that in the normal group, and it was related to LIHC clinical features. In the LIHC survival analysis, highly expressedMPV17
was associated with a poor prognosis. Besides, 314 upregulated and 193 downregulated DEGs are mainly involved in the TNF
signaling pathway and tyrosine metabolism..rough prognostic model, Cox analysis, and predictive nomogram, MPV17 had the
prognostic value for LIHC. Gene-pathway correlation analysis showed that MPV17 had the strongest correlation with the
G2M_checkpoint pathway. In an immunoassay, MPV17 had a strong correlation with many immune cells. Functional assays
showed that MPV17 reduction in LIHC cells could inhibit cell invasion, migration, and proliferation. Conclusion. MPV17, as a
tumor promoter, could be a new biomarker for LIHC diagnosis and prognosis and probably shed new light on the exploration of
LIHC therapies.

1. Background

Globally, liver carcinoma is the fourth most widely incurred
inducer of carcinoma-correlated mortality, ranking sixth
amongst emergency events [1]. Liver hepatocellular carci-
noma (LIHC) is the main subtype of primary liver carci-
noma, accounting for up to approximately 90% of cases

[2, 3]. Presently, LIHC treatment faces huge difficulties
[4, 5]. On the one hand, the early symptoms of LIHC are
atypical, and most LIHC patients get diagnosed at an ad-
vanced stage [6]. On the other hand, due to the high LIHC
metastasis and recurrence, the prognosis of patients after
liver transplantation treatment is still poor [7, 8]. Under-
standing the molecular mechanism of LIHC will facilitate
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biological insights and the detection of novel therapeutic
targets. However, the occurrence and development of LIHC
have not been clear exactly [9].

As an inner membrane protein of mitochondrial, mi-
tochondrial inner membrane protein MPV17 (MPV17) has
a ubiquitous expression in adrenal and thyroid. Presently, it
still remains elusive in many aspects, such as cell activities
and cancer development. So far, it is reported to be involved
in the reactive oxygen species (ROS) metabolic process
[10–12]. Zwacka et al. revealed that MPV17 protein had a
function in peroxisomal reactive oxygen metabolism, and a
new relationship between peroxisomal ROS generation and
glomerulosclerosis was discovered [13]. Besides, some
studies have shown that the mutated MPV17 gene leads to a
mitochondrial DNA depletion syndrome of human hep-
atocerebral [10, 14, 15]. Herein, the biologic functions of
MPV17 in the development of LIHC are further studied.

In our study, systematic bioinformatics and functional
experiments were conducted to assess the expression pat-
tern, associated pathways, clinical significance, and prog-
nostic value of MPV17 in LIHC patients. .ese analyses
suggest that MPV17may be related to LIHC progression and
function as a novel prognostic biomarker for LIHC patients.

2. Materials and Methods

2.1. 8e Study on MPV17 Expression by UALCAN Database.
UALCAN (.e University of Alabama at Birmingham
Cancer data analysis portal, https://ualcan.path.uab.edu/)
[16] is a digital resource for studying cancer OMICS data. It
could make a comparison with the relative gene mRNA
expression levels in multiple tumors and their normal tis-
sues. Meanwhile, the Cancer Genome Atlas (TCGA) is
employed to acquire the relationship between gene mRNA
levels and various clinicopathological characteristics. In this
study, we analyzed the expressions of MPV17 in 33 types of
tumors by UALCAN and Cox regression analysis and
MPV17 expressions in LIHC groups with different clini-
copathological features (sample types, tumor grade, indi-
vidual cancer stages, nodal metastasis status, gender,
histological subtypes, tp53 mutation status, age, and race) by
TCGA.

2.2.8e Kaplan–Meier Plotter Analysis onMPV17 and LIHC.
Next, we performed a Kaplan–Meier Plotter (https://kmplot.
com/analysis/) to decipher the effect of MPV17 expression
on the overall survival (OS), progression-free survival (PFS),
and disease-specific survival (DFS) in LIHC patients. We
classified patients into high-MPV17 and low-MPV17
groups. Additionally, this classifier was verified by receiver
operating curve (ROC) analysis. .e area under ROC is
defined as area under curve (AUC), and the higher the AUC,
the greater the classifier’s effect. It is defined as the area
under the ROC curve, and the larger the AUC is, the better
effect the classifier has. Log-rank ∗∗P< 0.01 and hazard
ratios (HR) were calculated and displayed. Statistical dif-
ference indicated P< 0.05.

2.3. Differentially Expressed Genes (Degs) Identification and
Enrichment Analyses. .rough the TCGA database, we
obtained 314 upregulated and 193 downregulated DEGs
from high-MPV17 and low-MPV17 LIHC patients. MPV17
was in the upregulated DEGs, consistent with the findings
we had before. To depict interesting gene characteristics, we
conducted the widely used methods of Gene Ontology (GO)
in cellular component (CC), biological process (BP), and
molecular functions (MF), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses. We used the high-
throughput functional annotation bioinformatics online
platform Database for Annotation Visualization and Inte-
grated Discovery (DAVID, https://david.nicifcrf.gov/) to
conduct the functional annotation and enrichment analyses
(P< 0.05).

2.4. Evaluation of Risk Model. Prognosis and survival
analysis can be used to study the clinical value of a gene in
certain diseases. Herein, according to the median risk score,
patients with LIHC were separated into two groups: high-
risk and low-risk, and the corresponding survival time was
displayed. .en, the OS curves of the two groups were
demonstrated (median time: 2.8 and 6.6). Finally, ROC was
conducted on the effect of MPV17 prediction on 1-, 3-, and
5-year prognosis.

2.5. Establishment of Predictive Nomogram. Firstly, univar-
iate and multivariate analyses were conducted using the
“forest plot” package to display each variable (MPV17,
gender, age, pT_stage, pTNM_stage, and grade), and per-
tinent P value, HR, and 95% CI were calculated. Based on
these results, nomograms were built using the “rms” package
to predict 1-, 3-, and 5-year survival status. .en, the cal-
ibration curve represents the ideal prediction of the no-
mogram with the observation rate at the pertinent time
points.

2.6. Correlation of MPV17 with Pathways.
RNA-sequencing expression (level 3) profiles and related
information for LIHC were downloaded from the TCGA
dataset. .e R software GSVA package was for analyzing the
collected genes involved in corresponding pathways with
method� “ssgsea.” Spearman’s correlation was used to ex-
amine the relationship between genes and pathway scores.
.e abscissa depicts the gene expression distribution (its
trend in the upper density curve), whereas the ordinate
reflects the pathway score distribution (its trend in the right
density curve). .e correlation P value, correlation coeffi-
cient, and correlation calculation method are all shown on
the top. R (4.0.3) was used to implement all of the analytic
techniques and R packages. Statistical significance was de-
fined as a P value of less than 0.05.

2.7. Immunoassay onMPV17. First, the distribution of high-
and low-MPV17 immune scores in LIHC tumors and
normal tissues was analyzed. For a reliable immune score
assessment, a total of 6 advanced algorithms in the R package
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were conducted. Methodologically, the correlation between
quantitative variables with abnormal distribution was de-
scribed using Spearman’s analysis. Finally, the relationship
between MPV17 expression and the immune cell enrich-
ment scores was demonstrated.

2.8. Cell Culture. LIHC cell lines, SMMC-7721 and Huh7,
were acquired from the Shanghai Cell Bank, Chinese
Academy of Sciences, and cultured in DMEM with 10% FBS
under a 37°C incubator with 5% CO2.

2.9. Isolation and Quantification of RNA. TRIzol reagent
(Invitrogen, USA) was utilized to harvest the whole RNA of
the specimens or cell lines of LIHC. Harvested RNA was
reverse-transcribed into cDNA utilizing the Oligo dT
primer. qRT-PCR was performed utilizing the SYBR Green
PCR kit (Tsingke, China) referring to the protocol on
LightCycler® 480 real-time PCR (Roche, Switzerland).
GAPDH was an internal reference. .e relative MPV17
mRNA expression was computed by the 2−ΔΔCT method.

2.10. Cell Transfection. We designed siRNA specific for
MPV17 (si-MPV17) and then synthesized it by Ribobio
(Guangzhou, China). We carried out siRNA transfection
utilizing Lipofectamine RNAiMAX reagent (.ermo Fisher,
MA) as instructed in the manual. Cells were collected and
subjected to cell function detection 24 hours posttransfection.
qRT-PCR was applied to calculate the reduction efficiency of
MPV17 mRNA in SMMC-7721 and Huh7 cells.

2.11. Cell Proliferation Assay. .e CCK-8 kit (Dojindo,
China) was adopted to observe cell proliferation. In a 96-well
plate, 1× 103 cells were inoculated in each well and main-
tained at 37°C. Cell proliferation per well was measured after
0, 24, 48, 72, and 96 h of transfection on a microtiter plate
reader (Spectra Rainbow, Tecan) utilizing the Clone Select
Imager System (Genetix) as the protocol depicted. All tests
were repeated more than 3 times.

2.12. Transwell Assay. Transwell assays (24-well plate, 8 μm
well) were used to determine cell invasion and migration.
Matrigel (BD Biosciences, CA) was precoated in the upper
well of a Transwell chamber (Corning Inc., NY) for invasion
detection under a 37°C incubator containing 5% CO2 for 1
hour. Briefly, 600 μl DMEM with 10% FBS was supple-
mented into the lower chamber. LIHC cells in DMEM free of
FBS were put into the upper chamber under a 37°C incubator
for 24 hours. .en, the migrating or invading cells were
rinsed with PBS, then fixed in methanol, and stained with
DAPI. Cells were stochastically imaged and observed by a
100x optical microscope of individual samples.

2.13. Statistical Analysis. .e represented data were ana-
lyzed by SPSS 20.0 (IBM, USA) plus GraphPad Prism 7
(GraphPad Software, USA). .e difference in MPV17 ex-
pression in the two groups was analyzed by Student’s t-test.

.e log-rank test was adopted to distinguish changes in
survival time. P< 0.05 represented a significant difference.

3. Results

3.1.MPV17Expressions inPan-Cancers and theLIHCPatients
with Clinicopathological Characteristics. .rough the
UALCAN database, it was observed that MPV17 had a high
expression in most cancers, LIHC included (Figure 1(a)),
and it was highly expressed in 371 primary LIHC samples
compared to 50 normal tissues (Figure 1(b)). .e rela-
tionship betweenMPV17 expression and clinicopathological
features in LIHC patients was estimated. A steady increase in
MPV17 expression was observed with increased individual
cancer stage (Figure 1(c)), tumor grade (Figure 1(d)), and
node metastasis status (Figure 1(e)). Furthermore, higher
MPV17 expression was observed in the female group than in
the male group (Figure 1(f )) and hepatocholangial carci-
noma in the aspect of histological subtype (Figure 1(g)). For
other groups, MPV17 showed an irregular expression in the
TP53 mutation group (Figure 1(h)), age (Figure 1(i)), and
race (Figure 1(j)).

3.2.8e Kaplan–Meier Plotter Analysis onMPV17 and LIHC.
Cox regression analysis of MPV17 and various tumors
showed that LIHC was statistically significant with MPV17
(P< 0.0001, Figure 2(a)). .en, we performed a
Kaplan–Meier survival analysis on MPV17 in LIHC. Given
the median expression of MPV17 mRNA, we classified the
patients into two groups based on MPV17 expression: high
and low, respectively, which was verified by ROC analysis on
MPV17 (Figure 2(e), AUC� 0.951). As shown in Figure 2(b),
patients with higherMPV17 expression exhibited shorter OS
times relative to patients with low MPV17 expression. In
addition, increased MPV17 expression also demonstrated
significantly reduced PFS (Figure 2(c)) and DSS time
(Figure 2(d)), confirming that increased MPV17 expression
was a risk factor for the patient’s prognostic status.

3.3. GO and KEGG Analyses on the Identified DEGs. We
acquired 314 upregulated and 193 downregulated LIHC-
related DEGs based on MPV17 expression from the TCGA
database. .e volcano plots and heat maps of DEGs were
mapped (Figures 3(a) and 3(b)). .en, GO and KEGG
analyses were conducted on them, respectively. .e upre-
gulated DEGs were in KEGG enriched in TNF signaling
pathways, small-cell lung cancer, etc. (Figure 3(c)), and in
sister chromatid segregation and regulation of nuclear di-
vision in GO (Figure 3(d)). Downregulated DEGs were
enriched in KEGG in tyrosine metabolism, steroid hormone
biosynthesis, etc. (Figure 3(e)), and xenobiotic metabolic
process and triglyceride metabolic process in GO
(Figure 3(f )).

3.4. MPV17 Had Prognostic Value for LIHC Patients. We
assigned each patient a risk score and separated them into
high-risk (n� 185) and low-risk (n � 185) groups.

Genetics Research 3

https://doi.org/10.1155/2022/7236823 Published online by Cambridge University Press

https://doi.org/10.1155/2022/7236823


Figure 4(a) shows the survival time of patients, and the
expression of MPV17 had a positive relationship with a risk
score. In Figure 4(b), when compared to the low-risk group,
the high-risk group had a poorer overall survival rate. As
the ROC analysis shown, MPV17 had the best predictive
potential in 1-year overall survival (Figure 4(c),
AUC � 0.721).

.e univariate and multivariate analyses were initially
established to ensure the precision of prediction. MPV17
and pT_stage had significant relation with LIHC prognosis
(Figures 5(a) and 5(b)). .en, a nomogram on MPV17 to
predict 1-, 3-, and 5-year prognosis in LIHC patients was
mapped (Figure 5(c)). .e calibration plot for prognostic
prediction showed the results of the MPV17 nomogram
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were in consistence with the actual results (Figure 5(d)).
.ese results indicate that MPV17 could serve as an inde-
pendent prognostic biomarker.

3.5. Pathway Correlation Analysis on MPV17. In the gene-
pathway correlation analysis, 19 pathways related to LIHC
were chosen, while we found that MPV17 was positively
correlated with 17 pathways, including Cellular_res-
ponse_to_hypoxia, Tumor_proliferation_signature, EMT_-
markers, ECM-related_genes, Angiogenesis, Apoptosis,
DNA_repair, G2M_checkpoint, Inflammatory_response,
PI3K_AKT_mTOR_pathway, P53_pathway, MYC_targets,
TGFB, Genes_upregulated_by_reactive_oxigen_species_(ROS),

DNA_replication, Collagen_formation, and Degrada-
tion_of_ECM. MPV17 had the strongest correlation with the
G2M_checkpoint (Figures 6(a)–6(q)).

3.6. Correlation Analysis of MPV17 and Immune Cells.
Different expressions of immune cells in high-expressed and
low-expressed MPV17 groups are shown in Figure 7(a),
while the results of T cell CD8+ did not have statistical
significance. Figure 7(b) demonstrates the percent abun-
dance of LIHC immune cells in high-expressed and low-
expressed MPV17. MPV17 had a positive correlation with
B cells, Tcell CD4+, myeloid dendritic cells, neutrophils, and
macrophages. Among them, MPV17 had the strongest
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correlation with neutrophil (Figure 7(c)). Next, the en-
richment scores of immune cells with high MPV17 ex-
pression were higher than those of immune cells with low
MPV17 expression (Figure 7(d)).

3.7. Silenced MPV17 Weakened the Cell Proliferation, Mi-
gration, and Invasion Abilities. In functional assays, we
validated the effects of MPV17 knockdown on cell prolif-
eration, migration, and invasion. MPV17 siRNAs were
transfected into SMMC-7721 and Huh7 cells. Subsequently,
we conducted qRT-PCR to observe the reduction efficiency
of MPV17 (Figures 8(a) and 8(b)). CCK-8 results indicated
that downregulating MPV17 greatly impeded SMMC-7721
and Huh7 cell proliferation (Figures 8(c) and 8(d)).
Transwell assays displayed that knockdown of MPV17 ex-
pression dramatically repressed cell migration and invasion
abilities (Figures 8(e)–8(h)). Our data indicated that MPV17
displayed as a promoter in the cell proliferation, migration,
and invasion of LIHC.

4. Discussion

Currently, it is not clear about the pathogen and the
detailed mechanism of primary liver carcinoma. People
generally think its onset is a complicated process with
multiple factors and steps influenced by the environment
and diet [17]. Epidemiological research data and some
studies reveal many contributors induce liver carcinoma,
including hepatitis B and hepatitis C virus infection,
aflatoxin, ethanol, liver cirrhosis, nitrosamines, and so on

[18–21]. All of them exhibit a relationship with the onset
of liver carcinoma. Considering the different stages of
liver carcinoma, the personalized integrated strategy is
pivotal to ameliorating the curative efficacy. Treatment
including surgery, radiofrequency, laser, chemotherapy,
and others are usually unsatisfactory [22–24]. New
biomarkers and targets still need to be found. In our
paper, we investigated the expression and clinical sig-
nificance of MPV17 in LIHC through bioinformatics
analysis and functional experiments.

MPV17, also named SYM1, CMT2EE, and MTDPS6 is
an inner membrane protein of mitochondrial participating
in ROSmetabolism [25, 26]. At present, there are few studies
about it. Many researchers discuss its relationship with
mitochondrial DNA depletion syndrome (MDDS). For
example, Löllgen and Weigher reported that mutations of
MPV17 could cause MDDS [27]. Kim et al. analyzed the
relationship of mutated MPV17 with hepatocerebral MDDS
patients [28]. Besides, Canonne et al. held a controversial
view on the effect of MPV17 on carcinoma cell proliferation
[29]. It still needs more research to evaluate the clinical
significance and the possible mechanism of MPV17 in the
development of LIHC. .rough UALCAN and TCGA da-
tabases, we found that MPV17 was upregulated in most
tumors, and its expression in LIHC patients had a great
association with carcinoma stages, tumor grades, nodal
metastasis status, gender, histological subtypes, and TP53
mutation status, implying that MPV17 might act as an
oncogene in LIHC. .is conclusion was verified by our
functional experiments. Cell function experiments dem-
onstrated silenced MPV17 in LIHC cells inhibited cell
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Figure 4: Risk model for MPV17 and LIHC. (a) .e relationship between MPV17 expression, survival time, and survival status. (b) Overall
survival probability of MPV17 expression in high-risk and low-risk groups. (c) ROC analysis on MPV17 and LIHC prognosis at 1, 3, and 5 years.
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proliferation, migration, and invasion. .ese findings in-
dicate that MPV17 might play an oncogenic role in LIHC. In
addition, MPV17 expression and LIHC prognosis were
studied by the Kaplan–Meier curve. It was demonstrated
that elevated MPV17 expression endangered the prognosis
of LIHC patients.

In addition, we divided LIHC samples based on MPV17
expression in the TCGA database and finally got 314
upregulated and 193 downregulated DEGs. MPV17 was in
the upregulated group. We also conducted a functional
enrichment analysis to better explore the interconnections
among DEGs. GO analysis showed DEGs were related to
regulation of mitotic sister chromatid separation, sister
chromatid segregation, organic acid catabolic process, and
drug metabolic process. As in previous studies, Vander
Heiden and DeBerardinis showed that transformed cells
change their metabolism to facilitate tumorigenesis. Specific
metabolic activities can play a direct role in tumor trans-
formation or promote biological mechanisms in tumors
[30]. In addition, McGranahan et al. show that cancer
chromosomal instability leads to an increased rate of change
in chromosome number and structure and creates intra-
tumoral heterogeneity [31]. .is may suggest that many of

the DEGs in this study are involved in the metabolism of
functional molecules in vivo and may be involved in the
chromosome replication pathway during cell proliferation.
KEGG analysis revealed that DEGs were related to several
cancer-related pathways, such as small cell lung cancer,
bladder cancer, tyrosine metabolism, protein digestion,
absorption, etc. Digestion and absorption of protein have
been verified to participate in the development of cancer.
Besides, we also performed pathway correlation analysis on
MPV17, and it was closely related to the G2M_checkpoint
pathway involved in cancer progression. Oshi et al. dem-
onstrated the prognostic value of the G2M cell cycle pathway
score in estrogen receptor-positive breast cancer metastasis
[32]. Liu et al. found that aloperine induced apoptosis and
G2/M cell cycle arrest in hepatocellular cancer cells through
inhibition of the PI3K/Akt signaling pathway [33]. In a
word, we suppose that MPV17 could affect the initiation and
progression of LIHC through the above biological terms and
pathways, particularly the G2M_checkpoint pathway.

Cell immunotherapy is to collect the body’s own im-
mune cells (like peripheral blood mononuclear cells), make
them multiply by thousands of times after in vitro culture,
and then back to the human body to kill pathogens in blood
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and tissue cells, cancer cells, and mutations. .us, the body’s
immune ability is activated and strengthened to achieve the
prevention of tumor recurrence and metastasis [34]. Herein,
immunoassay analysis exhibited that MPV17 had a positive
correlation with B cells, Tcell CD4+, myeloid dendritic cells,
neutrophils, and macrophages. .e expression of immune

cells would elevate with the increase of MPV17 expression,
and the enrichment scores of immune cells with high
MPV17 expression were higher than those of immune cells
with low MPV17 expression. .ese results may imply that
MPV17 could be one new immunotherapy target in LIHC
treatment.

(a) (b) (c) (d)

(e) (f ) (g) (h)
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Figure 6: Pathway correlation analysis on MPV17. (a–q) Spearman’s correlation analysis between MPV17 and 17 pathways’ scores.
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Figure 7: Correlation analysis between MPV17 and immune cells. (a) Different expressions of immune cells in high-expressed and low-
expressed MPV17 groups. (b) .e percentage abundance of tumor-infiltrating immune cells in each sample. (c) Spearman’s correlation
analysis between MPV17 and immune cell expression. (d) Enrichment scores of immune cells in high- and low-expressed MPV17 groups.
Immune cells with high MPV17 expression also had higher enrichment scores. ∗ ∗ ∗P< 0.001.
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Figure 8: MPV17 knockdown weakened cell proliferation, migration, and invasion abilities. (a, b) Transfection of si-MPV17 in SMMC-7721
and Huh7 cells. (c, d), Knockdown of MPV17 led to the suppression of cell proliferation ability. (e, h), MPV17 knockdown resulted in
reduced cell migration and invasion abilities. ∗P< 0.05; ∗∗P< 0.01.
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5. Conclusion

In summary, we first find and verify that MPV17 is an
oncogenic gene in LIHC and it has potential clinical value in
its prognosis through multiple bioinformatics analyses and
functional experiments. Our results indicate MPV17 could
be a prospective biomarker for LIHC prognosis and a
candidate target for LIHC immunotherapy.
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