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AN INVERSE MAPPING THEOREM FOR SOBOLEV CHAINS
AND ITS APPLICATION

TRUONG CONG NGHE

The author combines the methods used by Yamamuro and Omori to

define a differentiation in Sobolev chains and obtain an Inverse

Mapping Theorem. He then uses this theorem to give a new proof

for a result of Sunada on the local finite-dimensionality of the

solution space of a non-linear ell iptic differential operator

with smooth coefficients.

The purpose of this paper is to combine the methods used by Yamamuro

[7] and Omori [3] to define a differentiation in Sobolev chains and obtain

an Inverse Mapping Theorem. Here, for simplicity, we only consider the

differentiability of class u even though the theorem can be extended to

If OO

the class C~ for any integer k ̂  1 and to the class C . As its first

application we give a new proof for a result of Sunada [6] on the local

finite-dimensionality of the solution space of a non linear elliptic

differential operator with smooth coefficients.

The paper consists of three sections. In the first section we define

regular CZr maps between Sobolev chains and give a sufficient condition
pi

for a map to be a regular Cgp map. The next section is for stating and

proving the Inverse Mapping Theorem and the last section is for its

application.
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1. Regular Cgr mappings

Recall that a Sobolev chain [3] , [S] is a sequence {ff, £*" : i > d)

(d being a positive integer) satisfying:

(i) each E is a Banach (or Hilbert) space with the Banach

(or Hilbert) norm | # | . ,

( i i ) for each i > d , EV D / and | • | . 5 | • | . on

(iii) E is the intersection of all E and has the inverse

limit topology defined by the E 's ,

(iv) E is dense in every E , i > d .

Thus, since {|*| • : i > d] is an (increasing) sequence of norms, E

has the structure of a Frechet space. In practice, Sobolev chains often

arise in the following way. Let E be a Frechet space defined by an

increasing sequence of norms { | • | . : i > d) which are pairwise
If

coordinated [S, p. 337]- Then E can be considered as the limit space of

the Sobolev chain {E, E : i > d\ where, for each i , E is the

completion of the normed space E. = {E, |*|.) .

Now let \E, E : i, > d\ and {F, F : i > d) be two Sobolev chains.

Let U c E be open and $ : U c E •* F be a map. We may consider the

T-differentiability of $ by taking the following natural calibration [7]

for (E, F) :

(i) r = U N ; , l-y :i>-d}.

Then, by a result in [7], for any integer r > 0 , $ is of class c£ if

and only if i : U c E. -*• F. is if (for all i > <2 ) in the usual sense

of mapping between normed spaces.

Let A : E -*• F be linear F-continuous. We say that A is quasi

BT-continuous or is $T-continuous if there exist constants C > 0
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(independent of i ) and D. > 0 such that

(2) \A(u)\ • £ C\u\ . + D.\u\ . f o r a l l u € E and i > d+1 .

We denote by Lgp(2?, F) the space of a l l quasi sr-continuous l inea r

maps E •* F . Then, as vector spaces, we have ([7])

(3) LBT{E' F) - L 8 r ( £ 1 ' F) -LT^E' F)

If A £ Lgp(B, F) , l e t | ^ | be the Omori semi-norm of A def ined i n

[ 3 ] , p . l U l ,

(1») \A\ = i n f{C : C i s a p o s s i b l e c o n s t a n t i n ( 2 ) } ,

and, for each i > d , de f ine t h e fo l lowing norm on LQJ,(E, F) :

(5) IMII; = max(M|, | | M | y for A € L&T(E, F) ,

where | | |A| | | . is the operator norm of A .

We endow Lar(E, F) with the canonical calibration {||*||. : i > d} .

Note that any A € Lgp(E, F) can be extended to a linear continuous map

E% -»• FV for a l l i > d .

We denote by GLQT(E, F) the to ta l i ty of elements A € L^E, F)

such that A exists and is contained in LOV(F, E) .
pl

(1 .1) . GLOP(ff, F) is open in L^iE, F) endowed with the
pi pl

calibration {||*||- : ^ - d) defined by ( 5 ) .

Proof. This follows from [ 3 , Theorem 11 .1 .2 ] .

Now l e t $ : U c_E -*• F be as above and l e t a € U . We say that $

is quasi BY-differentiable at a (or &T-differentiable at a ) if there

exists an element A € L (E, F) such that the following condition is

satisfied: for a l l i > d , a l l e > 0 , there exists & > 0 such that

(6) |*(a+u)-*(a)-i4(v)|. < e|w|.

whenever | u | . < 6 and a+U € £/ .
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The map A = D$(a) € Lgp(ff, F) is then uniquely determined and is called

the pT'-derivative of * at a Z U . Thus we can define the notion of
gF-differentlable map on U . We say that $ is continuously pT-

differentiable at a € U (or $ is CZr at a ) i f $ is 6T-

differentiable in a neighbourhood of a and the derived map
D$ : U c £ •*• Lgp(£, F) is T-continuous at a with respect to the natural

calibration f = {( |«|-» 11*11-1 : £ 2 d} for [E, £or(£r, F)) . The notion

of a Cor niap on U is then defined as usual. The notion of Ĉ L maps
pi pi

( r > 2 or •+ro ) can also be defined. But here we are more interested in

Cjtp maps.

A Cgr, map J : £/c j + f is called regular if and only if the

following conditions are satisfied:

(i) there exists an open set fl c g" such that £/ = fl n ff ;

( i i ) for each i > d , $ can be extended to a (/ -map

SI n E1 + E* .

The following proposition will give us a sufficient condition for a

map to be a regular CZj, map.

(1.2). Let {E, E1 : i > d] , {P, / : i > d} be two Sobolev
chains, V <£ E be open such that U = fi n E where fi is an open convex

set in E*^ . Let $ : U c £• -•• p be a map and endow (E, F) with the

calibration T = { ( | • | . , | • | .) : i > d] .

Suppose that $ : U c E •* F is of class CZ [7]^ and satisfies the

following condition: for all u € U = fl n E t all v, v., u_ € E and all

i > d+1 , we have
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en)

where C is a positive constant (independent of i ) and P. is a

polynomial with positive coefficients depending on i .

Then $ : U c E •*• F is a regular CTp map with respect to the
pi

calibration f = { (| • | . , | • | .) : i > d+l} .

Proof. Since t : fi n f c j + ? i s of class Ct , for a l l i > d ,

we have, by [ 7 ] ,

(7) $ : H n S c E + ? i s of class C1

where ^ = [E, \'\i) and F_. = [F, | • | ^ .

We f i r s t prove t ha t $ i s of class CZ.,, . Since, by (i),
pi

W(M) € Lor(E, F) for a l l u € U , i t suffices to show that
pl

0$ : U c E •* LOT,{E, F) i s f-continuoias.
— pi

Now, for u, M. £ U , we have

(8) \{D9{u)-D9[uQ))v\i < [ I^Cug+tCu-UQ^'tM-uJ'wI^t .

Thus, by a simple calculation, using (ii) , we have, for a l l £ > d+l ,

(9) IN«) -w(« 0 ) ) , | . 5 c|M-M oyy| . + p j i - , , ^ , I«-«OU)l"U_i -

where P. is a polynomial in \un\• and |w-",J • with positive

-coefficients depending on £ .

Thus, by definition of the Omori semi-norm,

(10) |0$(u)-D*(uo)| < C|w-w0ld 5 CIM-UQI^ for a l l i > d .

From this i t follows quickly that DQ is F-continuous.

To see that , for a l l i > d+l , $ can be extended to a CT map from
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Q n E t o F , we not ice tha t conditions (i) and (ii) in (1.2) ensure

t h a t , for a l l £ > <2+l , a l l u € fi n £ , a l l u, u and v € E , we have

(11)

and

(12)

where P. and P. are polynomials with positive coefficients depending on
1r is

Now, using (11) , i t can be seen t h a t , for a l l •£ 2 d+1 ,

71 n E <=_E -*• F c

i s s t i l l denoted by

$ : f 2 n £ r c £ r - > - F can be extended to a continuous map £2 n E •*• F which

Let a be an a r b i t r a r y element in £2 <"» E and l e t \a } c Q r> E

converging to a in E . Then, by (7 ) , for every n , the derivat ive

D${a ) (. L[E., F.) e x i s t s . We may consider i t as a l i nea r continuous map
Yt I s t s '

E • -*• F . Then i t extends to a unique element D$(a ) € L [E , F ) with

the same norm. From (12) i t can be seen tha t {D$(a )} i s a Cauchy

sequence in L [E , F J and thus converges to an element

D$(a) € L[E , F ) . Then i t i s easi ly seen tha t the map

V V ^

i s continuous and the extension $ : S 2 n £ ' c £ - » - F i s d i f ferent iable at

a with 0$(a) as i t s de r iva t ive .

REMARK I. The above proof shows that the regular i ty condition is a

consequence of the i nequa l i t i e s (£) and (H) in (1 .2 ) .

00 Q

REMARK 2. (1.2) shows tha t a l l C ILB-Cr normal mappings in [3] are

regu la r Ctp maps with respect t o natural ca l ib ra t ions .
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2. The Inverse Mapping Theorem

Since, by ( l . l ) , GLgp(£', F) i s open in L~-{.E, F) , we may expect

tha t the Inverse Mapping Theorem i s t rue for CZj, maps between Sobolev
pi

chains. In fact, we have

(2 .1 ) . Let {E, EV : i > d} , \_F, F% : £ > d) be two Sobolev

chains, $: U = QnEc_E-+F be a regular CT_ map, where Q is open

convex in a . Suppose that 0 € V and $(0) = 0 and assume that

D$(0) € GLBr(£, F) .

Then $ is a local CZ^-diffeomorphism at 0 [that is, there are

open neighbourhoods' W, W of 0 in E, F respectively such that

$ : W •* W is a CZ^-diffeomorphism).

Proof. This is basically the proof given by Omori [3] with suitable

modification.

By hypothesis, 0$(0) : E •* F is a toplinear isomorphism satisfying,

for all v € E and al l i > d+1 ,

(13) i t , ^

(lit) \m{0)v\. > y\v\. - S.\v\. ,
U U L- Is—A.

where a, y> 3-, 6- are positive constants (a, y being independent of
Is 1*

i ) , and, for al l i ^ d , $ extends to a u map

(15) $ : n " EV c EV •+ F% .

Since E (respectively F ) is dense in every E (respectively

F ), W>(0) extends to a toplinear isomorphism of E and F for

every i 2 d . We s t i l l denote the extensions by D$(0) which satisfy

(13) and (ll*) for a l l V € E1 and all i > d+1 .

Since D$ : fi n E c £ -*- Lg_(ff, F) is f-continuous, there is &' > 0

such that
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(16) \u\d < 6 ' implies |ZW(w)-0*(O) | < y/3 .

Thus, for a l l i > d+1 , we have

(IT) U L * « ' impl ies | O * ( M ) V - D * ( 0 ) W | . 5 (y/3) |w| - + 0 . | v L , •

Hence, from ( l U ) , for a l l \u\ , < 6 ' and a l l i > d+1 , we have

(18) | Z » ( H ) V | . > ( 2 Y / 3 ) | W | • - D'.\v\. for a l l v t EV ,
Is U Is U~X

where D'. = 6 . + D. .
tr If I*

Furthermore, since $ : fi c #" + r~ is C1 and Z?$(0) : ZT •* rf* is

a toplinear isomorphism, there are open convex neighbourhoods W and W

of 0 in ff and i^ respectively such that $ is a (/-diffeomorphism

of an open neighbourhood of W onto an open neighbourhood of W \W, W

being the closures of W, W in E , r respectively) and W is

contained in an open ball centred at 0 in a and of radius

p < min(6'/3, Y/3) •

Theorem (2.1) then follows from the following three lemmas.

( 2 . 2 ) . For all i > d and all u € W " E% , LXb(u) : E* •+ F1' is a

toplinear isomorphism of Banaah spaces.

Proof. Using (18) we can proceed as in [ 3 , Lemma 3-1.2] ,

( 2 . 3 ) . $((/ " EV) = W n F1 for all i > d .

Proof. For a l l y € W n E we have

fl
(19) *(j/) = $(y) - $(0) = D$(O)y - [D<t>{O)y-M(ty)y]dt .

H e n c e , b y ( l U ) ,

' ^ '0u:
Furthermore, by (17), for all y (. W r> E1" , we have
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If
I Jo

[D*{O)y-D*{ty)y]dt £ (Y/3)|j/|. + D.\y\. .
i V i i-\

Hence, for a l l i > <f+l and a l l y € W " £ , we have

(20) | « ( i / ) | £ > (2y/3)\y\i - Dilyl^ (DI = 6.. + 0, .) .

Using (20) we can proceed just as in [3 , Lemma 3.1.3].

(2.4). There is an open neighbourhood W' of 0 in F^ such that

W'^W , and the following inequalities hold for all i > d+1 , all

u € W * F1 and all v € / " ,

O-) \D* ,t _ - , - 1 £ - i ,

(ii) \m~1(O)v\i > Y'|w|^ - 6 i l w l ^ _ i *

where C", Y'> D'. and 6! are positive constants (C and Y' being

independent of i ).

Proof. Use (18) and (20) and proceed as in [3, Lemma 3.1.U].

REMARK I. Theorem (2.1) can be stated and proved for any a € V and

b = *(a) .

REMARK 2. The inverse map $ is also a regular CT̂ , map.

3. Application

In this section, we shall prove, as an application of our Inverse

Mapping Theorem, a result of Sunada on the local finite dimensionality of

the solution space of a non linear e l l ip t ic differential operator with

smooth coefficients [6].

00

Let M be a compact C manifold without boundary, E, F be two

finite-dimensional vector bundles over M . We denote by S(E) and S(F)
00

the spaces of C sections of E and F respectively. Let

L : S(E) •*• S(F) be a non linear differential operator of order m with

smooth coefficients [4], [5]. Suppose that L is elliptic at 0 € S(E)
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(that i s , the linearisation d L is a linear e l l ip t ic operator [2] , [4])

and assume that L(0) = 0 . Put

(21) EQ = {* 6 S(E) : L{t) = 0} ,

(22) To(£) = {M € S(E) : dQL(M) = o} .

Endow [S(E), S(F)) with the calibration

(23) r = {(H-ll^, l l ' iy : i 2m} ,

where, for each i > m , ||*|L- is the H-norm defined in [3] , p. 28.

Put £> = ft-// and apply the Hodge-Kodaira theory to the linear

e l l i p t i c operator D [4 ] , [6] . We have the direct decompositions

(2U) S(E) = Ker D @ Im D* = T0(E) @ Im ZJ* ,

(25) 5(F) = Ker D* ® Im D .

Let # : S(E) •+ TQ(L) = Ker D and X : S(F) + Im/) be the

corresponding projections, and consider the bifurcation operator, [6] ,

(26) « : S(B) ->• TQ(Z) ®Im D

d e f i n e d b y * ( £ ) = H(t) ® K o L{t) f o r a l l t € S ( £ ) , w h e r e T (I) @ I m 0

is the topological direct sum of the Frechet spaces ^ (^ J

Notice that Im D and Im D* are closed in S(F) and S(E)
respectively, Ker D and Ker D* are finite-dimensional, and
*(0) = (0, 0) .

Endow TAT) and Im D with the relative calibrations and define the

sum-calibration for G = TAT.) © Im D ,

(27) TG = {HI; : i > m] ,

w h e r e | |w+u | | . = | |w | | . + H i . f o r a l l u + v € G = 21. ( E ) @ Im D .
t- t- t- U

(3.1). The decompositions (2k) and (25) ai^ QT-direct decompositions
that is, the projections are &T'-continuous linear maps.

Proof. By symmetry, i t suffices to prove that (2U) is a gF-direct
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decomposition. Let D denote the restriction of DD* to Im Dc_S(F) .

Then D : Im D -*• Im D is an isomorphism. Furthermore, for any u € S(E) ,

the element u - D*CT Du € Ker D . Thus, the identity

u = [u-D*O Du) + D*a Du shows that the projections corresponding to the
decomposition {2k) are

H : ut—>-u- D'O'1Du and P : u *-+ D*U1Du .

It suffices to show that P is a BF-continuous linear map. Now,

since D and D* are differential operators of order ra , we have by [3],

p. 73,

(28) I M , 5 C\\u\l.+m + D.UuU.^ , \\D*v\\. 5 C'\\v\\i+m * DIM.

where C, C and £., D'. are positive constants as usual.

Since • is the restriction of a linear elliptic differential

operator of order 2m , [3, Lemma 5.2.1] or [I, p. 358] gives

(29) l l D ~ H 5 C " H - 2 m + ° i H - 2 m - l •

Thus i t follows from (28) and (29) that , for a l l u and al l i 2 m+-l ,

( 3 0 ) llPMll. £ CHul l . + 5 . Hul l . , ,

where C, Z?. are positive constants (C being independent of i ) .

(3.2). Let L •• S(E) •*• S{F) be a (non-linear) differential operator
of order m and let d = dim M + 5 (M being the base space of E and

F ) . Denote by f*E the m-jet bundle of E and by f : S(E) + S{jmE)
the m-jet extension. Endow the pair (S(fi'), S(F)) with the calibration

where, for each j , ll'll • is the H-norm defined as above.
3

Let W be a relatively compact open tubular neighbourhood of the zero

section of fE , S(W) = {u € S[/"E) : u(x) € W for all x € M\ , and

suppose that U is an open neighbourhood of the zero element in S(E)

such that f(U) c S(W) and V = Q n S(E) where Q is an open ball
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centred at 0 in Sm+ (E) a the completion of S{E) with respect to the

norm II11

Then L : U<=_S(E) •*• S(F) is a regular Cgp map with respect to the

calibration f = { ( J l ' l ^ , II* 11̂ } : i ^ d+l) for the pair (S(£), S(F)) .

Proof. L may be factorised [4], [5] , [6] as follows:

(31) S(E) -^S{S"E) -

where $ = <(>* : S[d E) •* S(F) is the induced map of a C fibre bundle

morphlsm <|> : J E •* F which is a fortiori a fibre preserving map.

Endow S^E) with the calibration {||*||. : i > d} , where for each

i , \\'\\. is the ff-norm in S[/"E) [3 , p. 28].

Since J is linear continuous, by using the chain rule and [3 , Lemma

! ] , we have for a l l u € U , all

(32) \\DL(u)v\\. = |U$) </"(y)||

2 . 5 - 3 ] , we have for a l l u € U , a l l V, v , Ug € S(E) ,

(33)

Hence, using [3 , Lemma 5-1-2], p. 70, i t is easily seen that L satisfies

the hypotheses of (1.2) and (3.2) is proved.

Now we can prove the following theorem which is due to Sunada [6,

Theorem 2] .
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(3 .3 ) . * maps a neighbourhood of 0 in S(E) diffeomorphically

onto a neighbourhood of *(0) = ( 0 , 0 ) in TQ(Z) @ Im D .

Proof. Endow (S(E), T' (E) @ Im D) with the cal ibra t ion

where the second norm, | |*| |. , i s given in (27) .

Then, in view of (3 .1) and ( 3 . 2 ) , we may suppose t h a t

$ : U = fi n S(£) c S(S) -»• G = T.(Z) @ Im D i s a regu la r c L map— u pi

(recalibrate if needed).

Furthermore, i t follows quickly that

(35) 0*(0) = H © KodQL = H@K°D = H@D.

From th i s i t i s eas i ly seen tha t D$(0) : S(ff) •*• G i s a topl inear

isomorphism [6 , Lemma 5 ] .

Now, since 0 i s a l inear e l l i p t i c operator of order m , [1] or [ 3 ,

Lemma 5.2.1] gives u s , for a l l u and a l l i > <2+l ,

(36) |M | , > y\\u\\mH - 6 J M U . , ,

where Y and ^v a r e posi t ive constants (y being independent of i ) .

Thus, for a l l u € S(E) and a l l £ > d+1 , we have, by (35) ,

(37) I W O ) ! ^ = PdOII; +

Therefore D$(0) € GLgr(S(£') , G) and (3 -3) then fol lows from ( 2 . 1 ) .

OO

It is an easy consequence of (3.3) that if E, F are two C fibre

bundles over M and if L : S(E) •*• S(F) is a non-linear differential

operator with smooth coefficients and is elliptic at 8 € S(E) , [6], then
the solution space I = it € S(£) : I ( t ) = L(s)} is locally a finite-s

dimensional subset in S(E) near e [ 6 , Theorem 1 ] ,
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