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1. Introduction

Consider the nonlinear 2mth-order boundary-value problem (BVP) consisting of the
equation

u(2m) = λf(t, u, u′′, . . . , u(2m−2)), t ∈ (0, 1), (1.1)

and the boundary condition (BC)

u(2i)(0) = gi(u(2i)(a)), u(2i)(1) = hi(u(2i)(b)), i = 0, . . . , m − 1, (1.2)

where m � 1 is an integer, λ > 0 is a parameter, a, b ∈ [0, 1] and f : (0, 1) × R
m → R

satisfies the conditions:

(i) for (x0, . . . , xm−1) ∈ R
m, f(· , x0, . . . , xm−1) is measurable on (0, 1); and

(ii) for t ∈ (0, 1) almost everywhere (a.e.), f(t, · , . . . , ·) is continuous on R
m;

and gi, hi : R → R are continuous for i = 0, . . . , m−1. Note that the function f in Equa-
tion (1.1) may depend on any or all of the even-order derivatives of the unknown function
u(t). By a positive solution of BVP (1.1), (1.2), we mean a function u ∈ C2m−2[0, 1] such
that u(2m−1)(t) is absolutely continuous on (0, 1), u(t) satisfies Equation (1.1) a.e. on
(0, 1) and BC (1.2), and u(t) > 0 for t ∈ (0, 1).
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For the case

f(t, x0, x1, . . . , xm−1) ≡ f(t, x0) and gi(xi) ≡ hi(xi) ≡ 0

for i = 0, . . . , m − 1, BVP (1.1), (1.2) reduces to the BVP consisting of the equation

u(2m)(t) = λf(t, u), t ∈ (0, 1), (1.3)

and the BC
u(2i)(0) = u(2i)(1) = 0, i = 0, . . . , m − 1. (1.4)

There has been a great deal of research work on the existence of positive solutions of
BVP (1.3), (1.4) (see, for instance, [3,4,13,25] for m = 1, [26,27] for m = 2 and [15]
for m � 1). For comparison, we list several known results on BVP (1.3), (1.4) and its
special case, the BVP consisting of the equation

u′′ = λg(t)h(u), t ∈ (0, 1), (1.5)

and the BC
u(0) = u(1) = 0. (1.6)

Proposition 1.1 (the main result in [3]). Let h(u) = eu and assume that g ∈
C1((0, 1], (−∞, 0)) is singular at 0 and is O(1/t2−δ) as t → 0+, for some δ > 0. There
then exists λ∗ > 0 such that BVP (1.5), (1.6) has a positive solution for each λ ∈ (0, λ∗),
and does not have a positive solution for any λ ∈ (λ∗,∞).

Proposition 1.2 (Theorem 7 in [25]). Assume that g < 0 is singular at 0 and
is O(1/tα) as t → 0+, for some α ∈ [0, 1), h ∈ C(R, R+) with R

+ = [0,∞) is locally
Lipschitz continuous, increasing, h > 0 on R

+, and satisfies∫ c

0

du√
H(c) − H(u)

� L < ∞ for all c > 0,

where H(u) =
∫ u

0 h(y) dy. There then exists λ∗ > 0 such that BVP (1.5), (1.6) has a
positive solution for each λ ∈ (0, λ∗), and does not have a positive solution for any
λ ∈ (λ∗,∞).

Proposition 1.3 (Theorem 1.1 in [4]). Assume that g ∈ C((0, 1), R−) with R
− =

(−∞, 0], g �≡ 0 on (0, 1), ∫ 1

0
sa(1 − s)b|g(s)| ds < ∞

for some a, b ∈ (0, 1), and h(u) is non-decreasing and h(u) > 0 for u � 0. Moreover, there
exists c > 0 such that h(u) � cu for u � 0. There then exists λ∗ > 0 such that BVP (1.5),
(1.6) has a positive solution for each λ ∈ (0, λ∗), and does not have a positive solution
for any λ ∈ (λ∗,∞).

https://doi.org/10.1017/S0013091504000860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000860


Positive solutions of BVPs 447

Proposition 1.4 (Theorem 2 in [13]). Assume that g < 0 on (0, 1) and satisfies∫ 1

0
s|g(s)| ds < ∞,

and h(u) � eu for u ∈ R. There then exists λ∗ > 0 such that BVP (1.5), (1.6) has
a positive solution for each λ ∈ (0, λ∗), and does not have a positive solution for any
λ ∈ (λ∗,∞).

Proposition 1.5 (Theorem 4.3 in [15]). Assume that (−1)mf ∈ C((0, 1)×R
+, R+),

f(t, 0) �≡ 0 on (0, 1), and (−1)mf(t, u) is non-decreasing in u. Suppose that, for each
η > 0, there exists Cη > 0 such that

|f(t, u)| � Cηq(t) on (0, 1) × [0, η] with 0 <

∫ 1

0
s(1 − s)q(s) ds < ∞

and

|f(t, u)| � l(t)u on (0, 1) × R
+ with 0 <

∫ 1

0
s2(1 − s)2l(s) ds < ∞.

Let

λ̄ = 30m−1
(∫ 1

0
s2(1 − s)2l(s) ds

)−1

.

There then exists λ∗ ∈ (0, λ̄] such that BVP (1.3), (1.4) has a positive solution for each
λ ∈ (0, λ∗), and does not have a positive solution for any λ ∈ (λ∗,∞).

As in [15, Remark 4.1], we observe that Proposition 1.5 improves and generalizes
Propositions 1.1–1.4, and more importantly, Proposition 1.5 provides an explicit verifi-
able range (λ̄, ∞) of λ where the BVP has no positive solution. However, none of Propo-
sitions 1.1–1.5 provide an explicit verifiable range of λ where the BVP has a positive
solution.

The BVP with the equation depending on the derivatives of the unknown function
has recently been investigated (see, for example, [1, 5, 6, 8–11, 16–20] and references
therein). In particular, Davis et al . [5] discussed the existence of at least three positive
symmetric concave solutions for the BVP consisting of Equation (1.1) and BC (1.4);
Ehme et al . [10] obtained sufficient conditions for the existence of solutions of fourth-
order BVPs based on the existence of a pair of strong lower and upper solutions. BVPs
with special nonlinear BCs have also been studied in the literature (see [8–11,22–24].
We remark that the BVPs in the general form (1.1), (1.2) are important because of their
applications to physical, biological and chemical phenomena (see [2, 7, 21]). Moreover,
they are also interesting in themselves from theoretical perspectives.

Motivated partly by the ideas in [8–10], in this paper, we study the existence and non-
existence of positive solutions of the BVP (1.1), (1.2). Under certain assumptions, we
show that there exists λ∗ > 0 such that this BVP has a positive solution for λ ∈ (0, λ∗),
and has no positive solution for λ ∈ (λ∗,∞). Moreover, we find explicit verifiable ranges
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of λ where the BVP has and does not have positive solutions, respectively. A comparison
theorem plays a key role in the proofs.

The results obtained in this paper generalize and improve many results in the literature,
in particular those given by Propositions 1.1–1.5.

This paper is organized as follows. In § 2, we state the main results of this paper and
provide an example to show the significance of the results. All the proofs of the main
results together with some technical lemmas are given in § 3.

2. Main results

In this paper, for k = 0, 1, . . . , we denote by Ck[0, 1] the Banach space of all kth contin-
uously differentiable functions u(t) on [0, 1] with the norm

‖u‖ = max
t∈[0,1]

{|u(t)|, . . . , |u(k)(t)|},

and let X = C2m−2[0, 1]. Define

D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R
+ × R

− × R
+ × R

− × · · · × R
+︸ ︷︷ ︸

2k−1

, if m = 2k − 1,

R
+ × R

− × R
+ × R

− × · · · × R
−︸ ︷︷ ︸

2k

, if m = 2k,

and, for η > 0,

Dη =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, η] × [−η, 0] × [0, η] × [−η, 0] × · · · × [0, η]︸ ︷︷ ︸
2k−1

, if m = 2k − 1,

[0, η] × [−η, 0] × [0, η] × [−η, 0] × · · · × [−η, 0]︸ ︷︷ ︸
2k

, if m = 2k,

and

(−1)i
R

+ =

{
R

+, if i = 2k,

R
−, if i = 2k − 1.

Throughout this paper, we assume that, for i � 1 and (x0, . . . , xm−1) ∈ D,
f(t, x0, x1, . . . , xm−1) is non-decreasing in the variables xm−2i on (−1)m−2i

R
+ and non-

increasing in the variables xm−2i−1 on (−1)m−2i−1
R

+ (here we do not require that f is
monotone in xm−1),

(−1)mf � 0 on (0, 1) × D, f(t, 0, 0, . . . , 0) �≡ 0 a.e. on (0, 1); (2.1)

and for i = 0, . . . , m − 1, gi, hi are non-decreasing on (−1)i
R

+, and

(−1)igi � 0 and (−1)ihi � 0 on (−1)i
R

+. (2.2)

In the remainder of the paper we will need the following additional assumptions.
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Assumption 2.1. For any η > 0, there exists Mη > 0 such that

(−1)mf(t, x0, x1, . . . , xm−1) � Mηψ(t) on (0, 1) × Dη, (2.3)

where ψ : (0, 1) → R
+ satisfies ∫ 1

0
s(1 − s)ψ(s) ds < ∞. (2.4)

Assumption 2.2. There exist χ : (0, 1) → R
+ and k ∈ {0, . . . , m − 1} such that

(−1)mf(t, x0, x1, . . . , xm−1) � χ(t)|xk| on (0, 1) × D (2.5)

and

0 <

∫ 1

0
s(1 − s)χ(s)µ(s) ds < ∞, (2.6)

where
µ(t) = min{t, 1 − t} for t ∈ [0, 1]. (2.7)

Assumption 2.3. There exists r > 0 such that

m−1∑
i=0

(|gi((−1)ir)| + |hi((−1)ir)|) +
∫ 1

0
s(1 − s)ψ(s) ds � r, (2.8)

where ψ is given in Assumption 2.1.

Remark 2.4. We observe that

(i) Assumption 2.1 holds if f : [0, 1] × R
m → R is continuous or f(t, x0, . . . , xm−1) =

ψ(t)f1(x0, . . . , xm−1), where ψ : (0, 1) → R
+ satisfies (2.4) and f1 ∈ C(Rm);

(ii) Assumption 2.3 holds if

lim inf
r→∞

1
r

m−1∑
i=0

(|gi((−1)ir)| + |hi((−1)ir)|) = ρ < 1.

Now we state the main results of this paper. The first theorem is a comparison result
on the existence of solutions of BVP (1.1), (1.2) among different values of λ.

Theorem 2.5. Assume that Assumption 2.1 holds, and there exists λ∗ > 0 such that,
for λ = λ∗, BVP (1.1), (1.2) has a solution u∗(t) satisfying

(−1)ju
(2j)
∗ (t) � 0 for t ∈ [0, 1] and j = 0, . . . , m − 1. (2.9)

Then, for each λ ∈ (0, λ∗], BVP (1.1), (1.2) has a positive solution u(t) satisfying

(−1)ju(2j)(t) � 0 for t ∈ [0, 1] and j = 0, . . . , m − 1. (2.10)
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The following provides an explicit interval for λ where BVP (1.1), (1.2) has a positive
solution.

Theorem 2.6. Assume that Assumptions 2.1 and 2.3 hold, and let λ = 1/Mr, where
r is given in Assumption 2.3 and Mr defined in Assumption 2.1 with η = r. Then, for
each λ ∈ (0, λ], BVP (1.1), (1.2) has at least one positive solution satisfying (2.10).

The next theorem gives explicit values of λ with which BVP (1.1), (1.2) has no solution.

Theorem 2.7. Assume that Assumption 2.2 holds, and let

λ̄ =
4 × 30m−k−1∫ 1

0 s(1 − s)χ(s)µ(s) ds
,

where χ(t) and k are given in Assumption 2.2, and µ(t) is defined by (2.7). Then, for any
λ ∈ (λ̄, ∞), BVP (1.1), (1.2) has no solution satisfying (2.10).

Combining Theorems 2.5–2.7, we obtain the following result.

Theorem 2.8. Assume that Assumptions 2.1–2.3 hold, and let λ and λ̄ be defined
in Theorems 2.6 and 2.7, respectively. There then exists λ∗ ∈ [λ, λ̄] such that, for each
λ ∈ (0, λ∗), BVP (1.1), (1.2) has at least one positive solution satisfying (2.10) and, for
any λ ∈ (λ∗,∞), it does not have a solution satisfying (2.10).

Remark 2.9. Theorems 2.5–2.8 are generalizations and improvements of Proposi-
tions 1.1–1.5 because

(i) the results are given for more general BVP (1.1), (1.2) where f may depend on
higher-order derivatives of the unknown function and the BC may be nonlinear
with multiple points involved;

(ii) weaker assumptions are imposed, in particular, the monotonicity of f in xm−1 is
no longer required;

(iii) stronger conclusions are reached; in fact, in addition to the existence of λ∗, explicit
intervals are found in Theorems 2.6 and 2.7, where the BVP has or does not have
positive solutions, respectively.

Remark 2.10. The existence of positive solutions of BVP (1.1), (1.2) with λ = λ∗ is
not given in Theorem 2.8. However, with further assumptions, we can show that BVP
(1.1), (1.2) has a positive solution satisfying (2.10) when λ = λ∗. We omit the details.

Similar results to Theorems 2.5–2.8 also hold for the BVP consisting of Equation (1.1)
and the more general form of BCs

u(2i)(0) = ĝi(u(2i)(a1), u(2i)(a2), . . . , u(2i)(al)),

u(2i)(1) = ĥi(u(2i)(b1), u(2i)(b2), . . . , u(2i)(bl)),

}
i = 0, . . . , m − 1, (2.11)

where l � 1 is an integer, a1, . . . , al, b1, . . . , bl ∈ [0, 1], and ĝi, ĥi : R
l → R, i =

0, . . . , m − 1, are continuous, non-decreasing in all their arguments on ((−1)i
R

+)l, and
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(−1)iĝi, (−1)iĥi � 0 on ((−1)i
R

+)l. Note that, for m = 1, BC (2.11) includes the linear
multipoint BC

u(0) =
n∑

i=1

ciu(ti), u(1) =
n∑

i=1

diu(ti),

where n � 1 is an integer, ti ∈ (0, 1), and ci, di � 0 for i = 1, . . . , n, which has been
extensively studied in the literature (see, for example, [12, 16, 18] and the references
therein).

We will use the following assumption.

Assumption 2.11. There exists r > 0 such that

m−1∑
i=0

(|ĝi((−1)ir, . . . , (−1)ir)| + |ĥi((−1)ir, . . . , (−1)ir)|) +
∫ 1

0
s(1 − s)ψ(s) ds � r,

where ψ is given in Assumption 2.1.

Now we state the parallel results for BVP (1.1), (2.11) to Theorems 2.5–2.8 for the
BVP (1.1), (1.2). The first theorem is a comparison result on the existence of solutions
of BVP (1.1), (2.11) among different values of λ.

Theorem 2.12. Assume that Assumption 2.1 holds, and there exists λ∗ > 0 such
that, for λ = λ∗, BVP (1.1), (2.11) has a solution u∗(t) satisfying (2.9). Then, for each
λ ∈ (0, λ∗], BVP (1.1), (1.2) has a positive solution u(t) satisfying (2.10).

The following provides an explicit interval for λ where BVP (1.1), (2.11) has a positive
solution.

Theorem 2.13. Assume that Assumptions 2.1 and 2.11 hold, and let λ be defined as
in Theorem 2.6, where r is given in Assumption 2.11. Then, for each λ ∈ (0, λ], the BVP
(1.1), (2.11) has at least one positive solution satisfying (2.10).

The next theorem gives explicit values of λ with which the BVP (1.1), (2.11) has no
solution.

Theorem 2.14. Assume that Assumption 2.2 holds, and let λ̄ be defined as in Theo-
rem 2.7. Then, for each λ ∈ (λ̄, ∞), the BVP (1.1), (2.11) has no solution satisfying (2.10).

Combining Theorems 2.12–2.14, we obtain the following.

Theorem 2.15. Assume that Assumptions 2.1, 2.2 and 2.11 hold, and let λ and λ̄ be
defined in Theorems 2.13 and 2.14, respectively. There then exists λ∗ ∈ [λ, λ̄] such that,
for each λ ∈ (0, λ∗), the BVP (1.1), (2.11) has at least one positive solution satisfying
(2.10) and, for any λ ∈ (λ∗,∞), it does not have a solution satisfying (2.10).

In the next section, we only prove Theorems 2.5–2.8. With minor modification of the
arguments, one can prove Theorems 2.12–2.15. We omit the details.

In the rest of this section, we give an example to illustrate our results.
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Example 2.16. Consider the BVP consisting of the equation

u(4) = λ(u − 1
6 t−1/2u′′ + 1), t ∈ (0, 1), (2.12)

and the BC
u(0) = 1

10u1/2( 1
3 ), u(1) = 1

5u2/3( 1
2 ),

u′′(0) = 1
5u′′( 1

3 ), u′′(1) = 1
10u′′( 1

2 ),

}
(2.13)

where λ > 0 is a parameter.
With m = 2, D = R

+ × R
− and f(t, x0, x1) = x0 − t−1/2x1/6 + 1, we see that f is

non-decreasing in x0 on R
+ and (2.1) holds. With g0(x0) = x

1/2
0 /10, g1(x1) = x1/5,

h0(x0) = x
2/3
0 /5, and h1(x1) = x1/10, we see that gi, hi are non-decreasing on (−1)i

R
+

for i = 0, 1, and (2.2) holds.
Let ψ(t) = t−1/2/6 + 2 for t ∈ (0, 1). Then ψ(t) satisfies (2.4). For any η > 0, let

Mη = max{1, η} and Dη = [0, η] × [−η, 0]. Then, for (t, x0, x1) ∈ (0, 1) × Dη,

f(t, x0, x1) = x0 − 1
6 t−1/2x1 + 1 � Mη( 1

6 t−1/2 + 2) = Mηψ(t),

i.e. (2.3) is satisfied. Hence Assumption 2.1 holds.
Let χ(t) ≡ 1 for t ∈ (0, 1). Then χ(t) satisfies (2.6), and for (t, x0, x1) ∈ (0, 1) × D

f(t, x0, x1) = x0 − t−1/2x1 + 1 > χ(t)x0 = χ(t)|x0|,

i.e. (2.5) is satisfied for k = 0. Hence Assumption 2.2 holds.
Let r = 1. Then

1∑
i=0

(|gi((−1)ir)| + |hi((−1)ir)|) = 3
5 .

From ∫ 1

0
s(1 − s)ψ(s) ds =

∫ 1

0
s(1 − s)( 1

6s−1/2 + 2) ds = 17
45

we have that

1∑
i=0

(|gi((−1)ir)| + |hi((−1)ir)|) +
∫ 1

0
s(1 − s)ψ(s) ds = 3

5 + 17
45 < 1 = r,

i.e. (2.8) is satisfied. Thus Assumption 2.3 holds.
Note that m = 2, Mr = 1, k = 0, and χ(t) ≡ 1 on (0, 1). For λ and λ̄ defined

in Theorems 2.6 and 2.7, respectively, we have that λ = 1 and λ̄ = 2304. Thus, from
Theorem 2.8, there exists λ∗ ∈ [1, 2304] such that, for each λ ∈ (0, λ∗), the BVP (2.12),
(2.13) has at least one positive solution satisfying (2.10) and, for any λ ∈ (λ∗,∞), it does
not have a solution that satisfies (2.10).
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3. Proofs

It is well known that the Green function for the BVP

u′′(t) = 0 on (0, 1) with u(0) = u(1) = 0

is given by

G(t, s) =

{
t(s − 1), 0 � t � s � 1,

s(t − 1), 0 � s � t � 1.
(3.1)

Let G1(t, s) = G(t, s) and recursively define

Gj(t, s) =
∫ 1

0
G(t, τ)Gj−1(τ, s) dτ, j = 2, . . . , m. (3.2)

Then Gj(t, s) is the Green function for the BVP

u(2j)(t) = 0, t ∈ (0, 1), u(2i)(0) = u(2i)(1) = 0, i = 0, . . . , j − 1,

for j = 1, . . . , m. Clearly, (3.1) implies that

0 � −G(t, s) � s(1 − s) for (t, s) ∈ [0, 1] × [0, 1]. (3.3)

By (3.2), (3.3), and by induction, it is easy to see that, for j = 1, . . . , m,

0 � (−1)jGj(t, s) � s(1 − s) for (t, s) ∈ [0, 1] × [0, 1]. (3.4)

For any u ∈ X and f : (0, 1) × X → R, if∫ 1

0
s(1 − s)|f(s, u(·))| ds < ∞, (3.5)

then from (3.1), (3.2) and (3.4), we see that, for j = 0, . . . , m − 1,∣∣∣∣
( ∫ 1

0
Gm(t, s)f(s, u(·)) ds

)(2j)∣∣∣∣ =
∣∣∣∣
∫ 1

0
Gm−j(t, s)f(s, u(·)) ds

∣∣∣∣
�

∫ 1

0
s(1 − s)|f(s, u(·))| ds, (3.6)

and, for j = 1, . . . , m − 1,∣∣∣∣
( ∫ 1

0
Gm(t, s)f(s, u(·)) ds

)(2j−1)∣∣∣∣
=

∣∣∣∣
∫ t

0

∫ 1

0
τGm−j(τ, s)f(s, u(·)) ds dτ +

∫ 1

t

∫ 1

0
(τ − 1)Gm−j(τ, s)f(s, u(·)) ds dτ

∣∣∣∣
�

∫ t

0

∫ 1

0
s(1 − s)|f(s, u(·))| ds dτ +

∫ 1

t

∫ 1

0
s(1 − s)|f(s, u(·))| ds dτ

=
∫ 1

0
s(1 − s)|f(s, u(·))| ds. (3.7)
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Moreover, from [1, Lemma 2.1] or [15, Lemma 3.1], we have that, for j = 1, . . . , m,

|Gj(t, s)| � 1
30j−1 t(1 − t)s(1 − s) on [0, 1] × [0, 1]. (3.8)

We refer the reader to [1,15] for related discussions about Green’s functions.
The following lemmas will be used in the proofs of our main results. The first one is

an analogue to Lemma 2.1 in [8,9], and can be proved in the same way.

Lemma 3.1. x(t) is a solution of the BVP (1.1), (1.2) if and only if x(t) is a solution
of the integral equation

x(t) =
m−1∑
i=0

[gi(x(2i)(a))pi(t) + hi(x(2i)(b))qi(t)]

+ λ

∫ 1

0
Gm(t, s)f(s, x(s), x′′(s), . . . , x(2m−2)(s)) ds,

where Gm(t, s) is defined by (3.2) with j = m, and pi and qi are, respectively, the unique
solutions of the BVPs

p
(2m)
i (t) = 0 on (0, 1), p

(2j)
i (0) = δij , p

(2j)
i (1) = 0, i, j = 0, . . . , m − 1,

q
(2m)
i (t) = 0 on (0, 1), q

(2j)
i (0) = 0, q

(2j)
i (1) = δij , i, j = 0, . . . , m − 1,

with

δij =

{
1, if i = j,

0, if i �= j.

In fact, pi and qi, i = 0, . . . , m − 1, are polynomials of degree less than 2m.

Lemma 3.2 shows some properties of the functions pi and qi given in Lemma 3.1.

Lemma 3.2. Let pi, qi, i = 0, . . . , m − 1, be defined as in Lemma 3.1. Then

(i) ‖pi‖ � 1 and ‖qi‖ � 1 for i = 0, . . . , m − 1;

(ii) for t ∈ [0, 1] and i = 0, . . . , m − 1,

p
(2j)
i (t) = 0, q

(2j)
i (t) = 0 for j ∈ {i + 1, . . . , m},

and
(−1)i−jp

(2j)
i (t) � 0, (−1)i−jq

(2j)
i (t) � 0 for j ∈ {0, . . . , i}.

Proof. The proof of part (i) was shown in [8, Lemma 2.3]. In the following, we prove
part (ii).

For t ∈ [0, 1], i = 0, . . . , m − 1, and j = 0, . . . , m, let wi,j(t) = p
(2j)
i (t). For

i = m − 1, from the definitions of pm−1 and qm−1, p
(2m)
m−1(t) = q

(2m)
m−1(t) = 0 for

t ∈ [0, 1]. Then w′′
m−1,m−1(t) = 0 on (0, 1), wm−1,m−1(0) = 1 and wm−1,m−1(1) = 0.

https://doi.org/10.1017/S0013091504000860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000860


Positive solutions of BVPs 455

So wm−1,m−1(t) = 1 − t � 0 for t ∈ [0, 1]. Note that w′′
m−1,m−2(t) = wm−1,m−1(t) � 0

on [0, 1], wm−1,m−2(0) = wm−1,m−2(1) = 0 and we conclude that wm−1,m−2(t) � 0 for
t ∈ [0, 1]. By induction, (−1)m−1−jwm−1,j(t) � 0 for t ∈ [0, 1] and j ∈ {0, . . . , m},
i.e. (−1)m−1−jp

(2j)
m−1(t) � 0 on [0, 1] for j ∈ {0, . . . , m}. By the same argument, we can

show that (−1)m−1−jq
(2j)
m−1(t) � 0 on [0, 1] for j ∈ {0, . . . , m}. Thus, we have proved that

part (ii) holds if i = m − 1.
For i ∈ {0, . . . , m − 2}, w′′

i,m−1(t) = 0 on [0, 1] and wi,m−1(0) = wi,m−1(1) = 0.
Thus, wi,m−1(t) = 0 for t ∈ [0, 1]. By the definition of pi and induction, it is easy
to see that wi,j(t) = 0 for t ∈ [0, 1] and j ∈ {i + 1, . . . , m}, i.e. p

(2j)
i (t) = 0 on [0, 1]

for j ∈ {i + 1, . . . , m}. Note now that w′′
i,i(t) = wi,i+1(t) = 0 on [0, 1], wi,i(0) = 1 and

wi,i(1) = 0, and we have that wi,i(t) = 1 − t � 0 for t ∈ [0, 1]. Similarly to the case
where i = m − 1, it is easy to prove by induction that (−1)i−jp

(2j)
i (t) � 0 for t ∈ [0, 1]

and j ∈ {0, . . . , i}. The same reasoning can be used to show that q
(2j)
i (t) = 0 on [0, 1] for

j ∈ {i+1, . . . , m}, and (−1)i−jq
(2j)
i (t) � 0 on [0, 1] for j ∈ {0, . . . , i}. This completes the

proof. �

The following is a generalized version of the Arzela–Ascoli theorem from C[a, b] to
Ck[a, b] (see [19]).

Lemma 3.3. Let k be a non-negative integer. Assume that {un(t)}∞
n=1 is a sequence

in Ck[0, 1] such that {un(t)}∞
n=1 is uniformly bounded and {u

(i)
n (t)}∞

n=1, i = 0, . . . , k,
are equicontinuous. Then {un(t)}∞

n=1 has a subsequence which converges uniformly to a
function u(t) in Ck[0, 1].

The next result is about a property of functions given by Lemma 3.4 in [14].

Lemma 3.4. Assume that v ∈ C[0, 1]
⋂

C2(0, 1) with v(t) � 0 and v′′(t) � 0 on (0, 1).
Then

v(t) � µ(t) max
τ∈[0,1]

v(τ) for t ∈ [0, 1],

where µ(t) is defined by (2.7).

3.1. Proof of Theorem 2.5

To prove Theorem 2.5, we need to introduce the definition of lower and upper solutions
and present several related lemmas.

Definition 3.5. Let α ∈ X such that α(2m−1) is absolutely continuous on (0, 1). Then
α(t) is said to be a lower solution of BVP (1.1), (1.2) if

α(2m)(t) � λf(t, α(t), α′′(t), . . . , α(2m−2)(t)) a.e. on (0, 1),

(−1)m−i+1(α(2i)(0) − gi(α(2i)(a))) � 0,

(−1)m−i+1(α(2i)(1) − hi(α(2i)(b))) � 0,

}
i = 0, . . . , m − 1.
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Let β ∈ X such that β(2m−1) is absolutely continuous on (0, 1). Then β(t) is said to
be an upper solution of the BVP (1.1), (1.2) if

β(2m)(t) � λf(t, β(t), β′′(t), . . . , β(2m−2)(t)) a.e. on (0, 1),

(−1)m−i+1(β(2i)(0) − gi(β(2i)(a))) � 0,

(−1)m−i+1(β(2i)(1) − hi(β(2i)(b))) � 0,

}
i = 0, . . . , m − 1.

If α, β ∈ X satisfy the condition that, for t ∈ [0, 1],

(−1)m−i+1α(2i)(t) � (−1)m−i+1β(2i)(t), i = 0, . . . , m − 1. (3.9)

then, for i = 0, . . . , m − 1, we define γi and δi by

γi = min
t∈[0,1]

min{α(2i)(t), β(2i)(t)} (3.10)

and

δi = max
t∈[0,1]

max{α(2i)(t), β(2i)(t)}, (3.11)

and, for u ∈ X and i = 0, . . . , m − 1, we define ũ[2i] : [0, 1] → R by

(−1)m−i+1ũ[2i](t)

= max{(−1)m−i+1α(2i)(t), min{(−1)m−i+1u(2i)(t), (−1)m−i+1β(2i)(t)}}. (3.12)

Then, for i = 0, . . . , m − 1, γi � δi, ũ[2i](t) is continuous on [0, 1], and

α̃[2i](t) = α(2i)(t), β̃[2i](t) = β(2i)(t),

(−1)m−i+1α(2i)(t) � (−1)m−i+1ũ[2i](t) � (−1)m−i+1β(2i)(t).

}
(3.13)

Define a functional f̃ : (0, 1) × X → R by

f̃(t, u(·)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(t, ũ[0](t), ũ[2](t), . . . , ũ[2m−4](t), α(2m−2)(t)) +
u(2m−2)(t) − α(2m−2)(t)

1 + (u(2m−2)(t))2
,

if u(2m−2)(t) < α(2m−2)(t),

f(t, ũ[0](t), ũ[2](t), . . . , ũ[2m−4](t), u(2m−2)(t)),

if α(2m−2)(t) � u(2m−2)(t) � β(2m−2)(t),

f(t, ũ[0](t), ũ[2](t), . . . , ũ[2m−4](t), β(2m−2)(t)) +
u(2m−2)(t) − β(2m−2)(t)

1 + (u(2m−2)(t))2
,

if u(2m−2)(t) > β(2m−2)(t).
(3.14)

Then, for t ∈ (0, 1), f̃(t, u(·)) is continuous in u for u ∈ X. Consider the BVP consisting
of the equation

u(2m) = λf̃(t, u(·)), t ∈ (0, 1), (3.15)
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and the BC

u(2i)(0) = gi(ũ[2i](a)), u(2i)(1) = hi(ũ[2i](b)), i = 0, . . . , m − 1. (3.16)

Lemma 3.6. Let λ > 0 be fixed. Assume that the BVP (1.1), (1.2) has a lower
solution α(t) and an upper solution β(t) satisfying (3.9), and [γi, δi] ⊆ (−1)i

R
+ for i =

0, . . . , m − 1, where γi and δi are defined by (3.10) and (3.11), respectively. If u(t) is a
solution of the BVP (3.15), (3.16), then u(t) satisfies the condition that, for t ∈ [0, 1] and
i = 0, . . . , m − 1,

(−1)m−i+1α(2i)(t) � (−1)m−i+1u(2i)(t) � (−1)m−i+1β(2i)(t). (3.17)

Consequently, u(t) is a solution of the BVP (1.1), (1.2).

Proof. We first prove that

(−1)m−i+1u(2i)(t) � (−1)m−i+1β(2i)(t) for t ∈ [0, 1] and i = 0, . . . , m − 1.

Suppose by contradiction that there exists t0 ∈ [0, 1] such that u(2m−2)(t0) > β(2m−2)(t0).
Without loss of generality, assume that u(2m−2)(t) − β(2m−2)(t) is maximized at t0. If
t0 = 0, then, from (3.13), (3.16), the monotonicity of gm−1, and the fact that β(t) is an
upper solution of the BVP (1.1), (1.2), we see that

u(2m−2)(0) = gm−1(ũ[2m−2](a)) � gm−1(β(2m−2)(a)) � β(2m−2)(0), (3.18)

which is a contradiction. A similar contradiction occurs at t0 = 1. If t0 ∈ (0, 1),
then there exists t̂ in a neighbourhood of t0 such that u(2m−2)(t̂) > β(2m−2)(t̂) and
u(2m)(t̂) � β(2m)(t̂). For otherwise, there exists a small neighbourhood N of t0 such that
u(2m)(t) > β(2m)(t) almost everywhere in N . This implies that u(2m−2)(t) − β(2m−2)(t)
is strictly concave-up in N , contradicting the assumption that u(2m−2)(t) − β(2m−2)(t)
is maximized at t0. Since β(t) is an upper solution of the BVP (1.1), (1.2), from (3.13)
and the monotonicity of f , we have that

0 � u(2m)(t̂) − β(2m)(t̂)

� λf(t̂, ũ[0](t̂), ũ[2](t̂), . . . , β(2m−2)(t̂)) +
u(2m−2)(t̂) − β(2m−2)(t̂)

1 + (u(2m−2)(t̂))2

− λf(t̂, β(t̂), β′′(t̂), . . . , β(2m−2)(t̂))

� u(2m−2)(t̂) − β(2m−2)(t̂)
1 + (u(2m−2)(t̂))2

> 0.

We again reach a contradiction. Thus u(2m−2)(t) � β(2m−2)(t) for t ∈ [0, 1].
Using the monotonicity of gm−2, similar to that in (3.18), we can show that

u(2m−4)(0) − β(2m−4)(0) � 0 and u(2m−4)(1) − β(2m−4)(1) � 0. (3.19)
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By Lemma 2.2 in [8,9], we have that, for t ∈ [0, 1],

u(2m−4)(t) − β(2m−4)(t) = [u(2m−4)(0) − β(2m−4)(0)](1 − t)

+ [u(2m−4)(1) − β(2m−4)(1)]t

+
∫ 1

0
G(t, s)[u(2m−2)(s) − β(2m−2)(s)] ds. (3.20)

From (3.3), 0 � G(t, s) � −s(1 − s) for (t, s) ∈ [0, 1] × [0, 1]. Note that u(2m−2)(t) −
β(2m−2)(t) � 0 on [0, 1]; we get from (3.19) and (3.20) that u(2m−4)(t) − β(2m−4)(t) � 0
on [0, 1]. Repeated application of the above argument yields that

(−1)m−i+1u(2i)(t) � (−1)m−i+1β(2i)(t) for t ∈ [0, 1] and i = 0, . . . , m − 1.

In the same way, we can show that

(−1)m−i+1α(2i)(t) � (−1)m−i+1u(2i)(t) for t ∈ [0, 1] and i = 0, . . . , m − 1.

Hence (3.17) holds for t ∈ [0, 1] and i = 0, . . . , m − 1. From (3.12), ũ[2i](t) ≡ u(2i)(t)
on [0, 1] for i = 0, . . . , m − 1, and then f̃(t, u(·)) ≡ f(t, u(t), u′′(t), u(2m−2)(t)) on [0, 1].
Therefore, u(t) is a solution of the BVP (1.1), (1.2). This completes the proof. �

Lemma 3.7. Let λ > 0 be fixed and let Assumption 2.1 hold. Assume that the BVP
(1.1), (1.2) has a lower solution α(t) and an upper solution β(t) satisfying (3.9), and
[γi, δi] ⊆ (−1)i

R
+ for i = 0, . . . , m − 1, where γi and δi are defined by (3.10) and (3.11),

respectively. Then the BVP (1.1), (1.2) has at least one solution u(t) satisfying (3.17)
for t ∈ [0, 1] and i = 0, . . . , m − 1.

Proof. Let ũ[2i], i = 0, . . . , m− 1, and f̃ be defined by (3.12) and (3.14), respectively.
Let η = max{‖α‖, ‖β‖}. Then from Assumption 2.1 and (3.14) we see that, for u ∈ X

and t ∈ [0, 1],
|f̃(t, u(·))| � Mηψ(t) + ‖α‖ + ‖β‖ + 1, (3.21)

where ψ is given in Assumption 2.1. Define an operator T̃ : X → X by

(T̃ u)(t) =
m−1∑
i=0

[gi(ũ[2i](a))pi(t) + hi(ũ[2i](b))qi(t)] + λ

∫ 1

0
Gm(t, s)f̃(s, u(·)) ds, (3.22)

where Gm(t, s) is given by (3.2) with j = m. In a manner similar to the proof of
Lemma 3.1, we see that u(t) is a solution of the BVP (3.15), (3.16) if and only if u

is a fixed point of T̃ . Clearly, T̃ : X → X is continuous. In the following, we show that
T̃ (X) is compact. In view of (3.13), there exists d > 0 such that, for all u ∈ X and
i = 0, . . . , m − 1,

|gi(ũ[2i](t))| � d and |hi(ũ[2i](t))| � d on [0, 1]. (3.23)
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From (2.4) and (3.21), we see that (3.5) holds with f replaced by f̃ . Thus, from Lemma
3.2 (i), (3.6), (3.7), (3.21)–(3.23) and (2.4), we have that, for u ∈ X, t ∈ [0, 1] and
j = 0, . . . , 2m − 2,

|(T̃ u)(j)(t)| �
m−1∑
i=0

[|gi(ũ(2i)(a))| + |hi(ũ(2i)(b))|] + λ

∫ 1

0
s(1 − s)|f̃(s, u(·))| ds

� 2md + λ

∫ 1

0
s(1 − s)(Mηψ(s) + ‖α‖ + ‖β‖ + 1) ds

< ∞.

This means that T̃ is uniformly bounded on X, and (T̃ u)(j)(t) is equicontinuous on [0, 1]
for j = 0, . . . , 2m − 3. Now we show that (T̃ u)(2m−2)(t) is equicontinuous on [0, 1]. From
(3.22),

(T̃ u)(2m−2)(t) =
m−1∑
i=0

[gi(ũ[2i](a))p(2m−2)
i (t) + hi(ũ[2i](b))q(2m−2)

i (t)]

+ λ

∫ 1

0
G(t, s)f̃(s, u(·)) ds.

Hence, it suffices to show that the operator A : X → X defined by

(Au)(t) =
∫ 1

0
G(t, s)f̃(s, u(·)) ds

is equicontinuous on [0, 1]. From (2.4), we see that, for any ε > 0, there exists δ = δ(ε) > 0
such that ∫ δ

0
s(1 − s)(Mηψ(s) + ‖α‖ + ‖β‖ + 1) ds � 1

6ε (3.24)

and ∫ 1

1−δ

s(1 − s)(Mηψ(s) + ‖α‖ + ‖β‖ + 1) ds � 1
6ε. (3.25)

Since G(t, s) is uniformly continuous on [0, 1] × [0, 1], for the above ε, there exists ζ =
ζ(ε) > 0 such that

|G(t1, s) − G(t2, s)| � ε

3
∫ 1−δ

δ
(Mηψ(τ) + ‖α‖ + ‖β‖ + 1) dτ

(3.26)

for s ∈ [0, 1] and t1, t2 ∈ [0, 1] with |t1 − t2| � ζ. Combining (3.24)–(3.26) and considering
(3.3) and (3.21), we have that, for any u ∈ X and t1, t2 ∈ [0, 1] with |t1 − t2| � ζ,

|(Au)(t1) − (Au)(t2)| =
∣∣∣∣
(∫ δ

0
+

∫ 1

1−δ

+
∫ 1−δ

δ

)
(G(t1, s) − G(t2, s))f̃(s, u(·)) ds

∣∣∣∣
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� 2
(∫ δ

0
+

∫ 1

1−δ

)
s(1 − s)(Mηψ(s) + ‖α‖ + ‖β‖ + 1) ds

+
∫ 1−δ

δ

|(G(t1, s) − G(t2, s))|(Mηψ(s) + ‖α‖ + ‖β‖ + 1) ds

� 2
3ε + 1

3ε

= ε.

This implies that A is equicontinuous on [0, 1], and so is (T̃ u)(2m−2)(t). By Lemma 3.3,
T̃ (X) is compact. Using the Schauder fixed-point theorem, we see that there exists a fixed
point u of T̃ in X. Hence, u(t) is a solution of the BVP (3.15), (3.16). Therefore, from
Lemma 3.6, u(t) satisfies (3.17) for t ∈ [0, 1] and i = 0, . . . , m − 1, and is consequently a
solution of the BVP (1.1), (1.2). This completes the proof. �

Proof of Theorem 2.5. We consider two cases when m is even and odd, respectively.

(1) Assume m is even. In this case, from (2.1), f � 0 on (0, 1) × D. Let α(t) ≡
u∗(t) and β(t) ≡ 0 for t ∈ [0, 1]. Then, from (2.9), α(t) and β(t) satisfy (3.9),
(α(t), . . . , α(2m−2)(t)) ∈ D, and (β(t), . . . , β(2m−2)(t)) ∈ D. Since for λ ∈ (0, λ∗),

α(2m)(t) = λ∗f(t, α(t), α′′(t), . . . , α(2m−2)(t))

� λf(t, α(t), α′′(t), . . . , α(2m−2)(t)) on (0, 1),

α(2i)(0) = gi(α(2i)(a)) and α(2i)(1) = gi(α(2i)(b)) for i = 0, . . . , m − 1, α(t) is a lower
solution of the BVP (1.1), (1.2) for λ ∈ (0, λ∗). On the other hand, from (2.2) we see
that, for λ ∈ (0,∞),

β(2m)(t) ≡ 0 � λf(t, β(t), β′′(t), . . . , β(2m−2)(t)), t ∈ (0, 1),

(−1)m−i+1(β(2i)(0) − gi(β(2i)(a))) � 0,

(−1)m−i+1(β(2i)(1) − gi(β(2i)(b))) � 0,

}
i = 0, . . . , m − 1.

Thus β(t) is an upper solution of the BVP (1.1), (1.2) for λ ∈ (0,∞). Moreover, [γi, δi] ⊆
(−1)i

R
+ for i = 0, . . . , m−1. Thus, Lemma 3.7 implies that, for each λ ∈ (0, λ∗), the BVP

(1.1), (1.2) has at least one solution u(t) satisfying (3.17) for t ∈ [0, 1] and i = 0, . . . , m−1.
Clearly, u(t) satisfies (2.10). Now we show that u(t) is a positive solution. Note from (2.1)
that u(t) �≡ 0 on [0, 1]. From (2.10) with j = 1 we see that u′′(t) � 0 on (0, 1). Thus, by
Lemma 3.4, u(t) > 0 for t ∈ (0, 1), i.e. u(t) is a positive solution of the BVP (1.1), (1.2).

(2) Assume m is odd. In this case, from (2.1), f � 0 on (0, 1) × D. Let α(t) ≡ 0
and β(t) ≡ u∗(t) for t ∈ [0, 1]. Then as in case (1), we see that α(t) and β(t) satisfy
(3.9), (α(t), . . . , α(2m−2)(t)) ∈ D, (β(t), . . . , β(2m−2)(t)) ∈ D, α(t) is a lower solution of
the BVP (1.1), (1.2) for λ ∈ (0,∞), and β(t) is an upper solution of the BVP (1.1), (1.2)
for λ ∈ (0, λ∗). The rest of the proof is similar to case (1) and hence is omitted. �
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3.2. Proof of Theorems 2.6–2.8

Proof of Theorem 2.6. Define a set K in X by

K = {u ∈ X | (−1)ju(2j)(t) � 0 for t ∈ [0, 1] and j = 0, . . . , m − 1},

and an operator T : K → X by

(Tu)(t) =
m−1∑
i=0

[gi(u(2i)(a))pi(t) + hi(u(2i)(b))qi(t)]

+ λ

∫ 1

0
Gm(t, s)f(s, u(s), u′′(s), . . . , u(2m−2)(s)) ds, (3.27)

where λ > 0. By Lemma 3.1, u(t) is a solution of the BVP (1.1), (1.2) if and only if u is
a fixed point of the operator T . For u(t) ∈ K, t ∈ [0, 1] and j = 0, . . . , m − 1,

(Tu)(2j)(t) =
m−1∑
i=0

[gi(u(2i)(a))p(2j)
i (t) + hi(u(2i)(b))q(2j)

i (t)]

+ λ

∫ 1

0
Gm−j(t, s)f(s, u(s), u′′(s), . . . , u(2m−2)(s)) ds. (3.28)

We observe from (2.2) and Lemma 3.2 (ii) that, for u(t) ∈ K, (t, s) ∈ [0, 1] × [0, 1] and
i, j = 0, . . . , m − 1,

(−1)jgi(u(2i)(a))p(2j)
i (t) � 0 and (−1)jhi(u(2i)(b))q(2j)

i (t) � 0, (3.29)

and, from (2.1) and (3.4),

(−1)jGm−j(t, s)f(t, u(s), u′′(s), . . . , u(2m−2)(s)) � 0. (3.30)

Combining (3.28)–(3.30), we obtain the result that

(−1)j(Tu)(2j)(t) � 0 for t ∈ [0, 1] and j = 0, . . . , m − 1. (3.31)

Thus, T : K → K. Let r be as given in Assumption 2.3 and define Kr = {u ∈ K |
‖u‖ � r}. From Assumption 2.3, (2.8) holds. Thus, in view of (2.2) and from the mono-
tonicity of gi, hi, we see that, for u ∈ Kr,

m−1∑
i=0

(|gi(u(2i)(a))| + |hi(u(2i)(b))|) +
∫ 1

0
s(1 − s)ψ(s) ds � r.

Note from Assumption 2.1 that f satisfies (3.5) with u ∈ Kr. Thus, for λ ∈ (0, λ], u ∈ Kr,
t ∈ [0, 1] and j = 0, . . . , 2m − 2, by Lemma 3.2 (i), Assumption 2.1 with η = r, (3.6) and
(3.7), we have that

|(Tu)(j)(t)| �
m−1∑
i=0

[|gi(u(2i)(a))| + |hi(u(2i)(b))|] + λMr

∫ 1

0
s(1 − s)ψ(s) ds

�
m−1∑
i=0

(|gi(u(2i)(a))| + |hi(u(2i)(b))|) +
∫ 1

0
s(1 − s)ψ(s) ds

� r,
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i.e. ‖Tu‖ � r. Thus T : Kr → Kr for λ ∈ (0, λ]. As in the proof of Lemma 3.7, we can
show that T (Kr) is compact. By the Schauder fixed-point theorem, there exists a fixed
point u of T in Kr for each λ ∈ (0, λ]. Hence, for each λ ∈ (0, λ], the BVP (1.1), (1.2)
has a solution u(t). Since u(t) ∈ K, u(t) satisfies (2.10). Using the same argument as in
the proof of Theorem 2.5, we see that u(t) is positive. This completes the proof. �

Proof of Theorem 2.7. From (2.6), we see that λ̄ ∈ (0,∞). Suppose by contradiction
that there exists λ ∈ (λ̄, ∞) such that the BVP (1.1), (1.2) has a solution u(t) satisfying
(2.10). For the k given in Assumption 2.2, we now claim that u(2k)(t) �≡ 0 on [0, 1].
Otherwise, u(2j)(t) ≡ 0 on (0, 1) for j = k, . . . , m. By the monotonicity of f , it is easy to
see that

|f(t, u(t), . . . , u(2k−2)(t), 0, . . . , 0)| � |f(t, 0, . . . , 0)| �≡ 0 a.e. on (0, 1).

But this contradicts the assumption that u(t) is a solution of Equation (1.1).
From (2.10) we see that

(−1)ku(2k)(t) � 0 and (−1)ku(2k+2)(t) � 0 on (0, 1).

Then Lemma 3.4 implies that

(−1)ku(2k)(t) � µ(t) max
τ∈[0,1]

{(−1)ku(2k)(τ)}. (3.32)

Thus (−1)ku(2k)(t) > 0 for t ∈ (0, 1). Note from Lemma 3.1 that u is a fixed point of the
operator T defined by (3.27), i.e. (Tu)(t) ≡ u(t) on [0, 1]. Hence, from (3.28)–(3.30) with
j = k, we have that, for t ∈ [0, 1],

(−1)ku(2k)(t) � λ

∫ 1

0
|Gm−k(t, s)| |f(s, u(s), u′′(s), . . . , u(2m−2)(s))| ds.

Then, from (2.5), (3.8) and (3.32),

(−1)ku(2k)( 1
2 ) � 1

4 × 30m−k−1 λ

∫ 1

0
s(1 − s)χ(s)(−1)ku(2k)(s) ds

� 1
4 × 30m−k−1 λ max

τ∈[0,1]
{(−1)ku(2k)(τ)}

∫ 1

0
s(1 − s)χ(s)µ(s) ds

� 1
4 × 30m−k−1 λ(−1)ku(2k)( 1

2 )
∫ 1

0
s(1 − s)χ(s)µ(s) ds.

Hence,

1 � 1
4 × 30m−k−1 λ

∫ 1

0
s(1 − s)χ(s)µ(s) ds,

and so

λ � 4 × 30m−k−1∫ 1
0 s(1 − s)χ(s)µ(s) ds

= λ̄,

which contradicts the assumption that λ ∈ (λ̄, ∞). Thus, for any λ ∈ (λ̄, ∞), the BVP
(1.1), (1.2) has no solution that satisfies (2.10). This completes the proof. �
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Proof of Theorem 2.8. Theorem 2.8 readily follows from Theorems 2.5–2.7. �
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22. I. Rachu̇nková and J. Tomeček, Impulsive BVPs with nonlinear boundary conditions

for the second order differential equations without growth restrictions, J. Math. Analysis
Applic. 292 (2004), 525–539.

https://doi.org/10.1017/S0013091504000860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000860


464 L. Kong and Q. Kong

23. H. B. Thompson, Second order ordinary differential equations with fully nonlinear two
point boundary conditions, Pac. J. Math. 172 (1996), 255–276.

24. H. B. Thompson, Second order ordinary differential equations with fully nonlinear two
point boundary conditions, II, Pac. J. Math. 172 (1996), 279–297.

25. F. H. Wong, Existence of positive solutions of singular boundary value problems, Nonlin.
Analysis 21 (1993), 397–406.

26. Q. L. Yao and Z. B. Bai, Existence of positive solutions for boundary value problems
of u(4)(t) − λh(t)f(u(t)) = 0, Chin. Ann. Math. A20 (1999), 575–578.

27. B. G. Zhang and L. Kong, Existence of positive solutions of fourth order singular
boundary value problems, Chin. J. Contemp. Math. 22 (2001), 207–214.

https://doi.org/10.1017/S0013091504000860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000860

