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Abstract

Although detractors of functional programming sometimes claim that functional programming

is too difficult or counter-intuitive for most programmers to understand and use, evidence

to the contrary can be found by looking at the popularity of spreadsheets. The spreadsheet

paradigm, a first-order subset of the functional programming paradigm, has found wide

acceptance among both programmers and end users. Still, there are many limitations with

most spreadsheet systems. In this paper, we discuss language features that eliminate several

of these limitations without deviating from the first-order, declarative evaluation model.

The language used to illustrate these features is a research language called Forms/3. Using

Forms/3, we show that procedural abstraction, data abstraction and graphics output can be

supported in the spreadsheet paradigm. We show that, with the addition of a simple model of

time, animated output and GUI I/O also become viable. To demonstrate generality, we also

present an animated Turing machine simulator programmed using these features. Throughout

the paper, we combine our discussion of the programming language characteristics with

how the language features prototyped in Forms/3 relate to what is known about human

effectiveness in programming.

Capsule Review

What is the most widely-deployed use of functional programming? Spreadsheets, of course!

Yet the functional programming community pays surprisingly little attention to spreadsheets.

This paper is an exception to that rule.

Considered as programming languages, spreadsheets are pretty limited. Forms/3 is an

exploration of how far these limitations can be overcome without losing the immediacy and

responsiveness that characterises the spreadsheet paradigm. The paper draws insights from

both the functional-programming and visual-languages communities; it is an intelligent and

articulate discussion of this cross-disciplinary territory.

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


156 M. Burnett et al.

1 Introduction

A criticism that some have leveled against functional languages is the assertion that

functional languages are difficult for many programmers to use. Yet, spreadsheet

systems provide evidence to the contrary: even though spreadsheet systems are

(first-order) functional programming languages, the success of spreadsheet systems

in the commercial market has shown that they are simple enough for a huge number

of end users to use. However, while spreadsheet systems are indeed programming

languages – they feature at least some degree of composition (through the inclusion

within a cell’s formula of references to other cells), selection (through a functional

if-then-else), and a limited facility for repetition (through replication of the same

formula across many rows or columns) – they have historically been rather limited.

One limitation has been that spreadsheet systems usually support only a few types,

typically numbers, strings, and Booleans. Another limitation has been the lack of

abstraction capabilities, which has prevented the kind of expressive power that comes

from procedural abstraction, data abstraction, and exception handling. Despite these

limitations, however, if the number of people using a programming paradigm is a

measure of its popularity, then the spreadsheet paradigm is probably the most

popular programming paradigm in use today.

Henceforth, we use the term spreadsheet languages1 to refer to all systems that

follow the spreadsheet paradigm, in which computations are defined by cells and

their formulas. The essence of the spreadsheet paradigm is expressed well by Alan

Kay’s value rule, which states that a cell’s value is defined solely by the formula

explicitly given it by the user (Kay, 1984). The value rule disallows devices such as

multi-way constraints, state modification, or other non-applicative mechanisms that

have sometimes been used to extend spreadsheet languages. When we say a language

feature is consistent with the spreadsheet paradigm, we mean that it upholds Kay’s

value rule.

Via the research language Forms/3 (Burnett and Ambler, 1994; Burnett and

Gottfried, 1998), a lazy spreadsheet language, we have been experimenting with

both programming language and Human-Computer Interaction (HCI) devices to

remove spreadsheet limitations without sacrificing consistency with the spreadsheet

paradigm. Although we use Forms/3 as a testbed for some techniques intended

for spreadsheet languages aimed at end users, Forms/3 also contains techniques

intended for trained programmers. In essence, Forms/3 is a ‘gentle slope’ language,

intended to allow end users to create spreadsheets with fewer limitations than exist

in other spreadsheet languages, while at the same time allowing more sophisticated

users and programmers to create more powerful spreadsheets without having to

leave the spreadsheet paradigm to do so.

1 We have chosen this terminology to emphasize the fact that even commercial spreadsheet systems are
indeed languages for programming, although they differ in audience, application, and environment from
traditional programming languages. Strictly speaking, a ‘spreadsheet system’ includes both a spreadsheet
language and environmental features. However, in this paper we will not usually differentiate between
features present in the language versus the environment, since unlike traditional languages, spreadsheet
language features are designed to support tight integration with a particular environment.
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1.1 Differences between spreadsheet languages and other functional programming

languages

The similarities between spreadsheet languages and more traditional functional

languages are obvious: like other functional languages, spreadsheets are applicative,

and hence computations are specified by providing arguments to functions and/or

operators.2 Further, like other functional languages, the evaluation mechanisms for

spreadsheet languages are declarative, and can be eager, lazy, or a mixture of both.

Not surprisingly, given these attributes in common, some spreadsheet languages

have been implemented as applications of lazy functional programming (e.g. Wray

and Fairbairn, 1989).

There is also an obvious difference between spreadsheet languages and other

functional languages: unlike spreadsheet languages, most functional languages sup-

port higher-order functions. It is not impossible for a spreadsheet language to do

so (e.g. see de Hoon et al., 1995), but since this is not commonly associated with

spreadsheets, for the purposes of this paper we will regard only first-order functions

as a characteristic of the paradigm.

Another difference between spreadsheet languages and other functional languages

is the presence of continuous evaluation in spreadsheet languages, which ensures

that all values on the screen are correct reflections of the current formulas in the

cells. This difference may, on the surface, appear to be an environmental nicety,

but it has more fundamental effects. The continuous evaluator can be described as

a simple constraint solver that handles the one-way, equality constraints described

by the spreadsheet’s formulas. This constraint solver is necessary to provide the

immediate feedback (automatic recalculation) feature that is present in spreadsheet

languages, but it also enables the use of one-way constraints (expressed as spread-

sheet formulas) to support time-based calculations, such as animations and GUI

I/O, as we demonstrate later in this paper. Due to the presence of the constraint

solver, in some of the literature, spreadsheet languages are said to follow the one-way

constraint paradigm.

These two differences as well as other language design differences have been due

to the fact that the primary intended audience for this paradigm has been end users

with no formal training in programming. Examples of such differences in addition

to those discussed above include the lack of procedural or data abstraction features,

and the use of a very simple model of I/O, consisting only of the ability to enter

constant formulas (the only ‘input’ capability) and to receive immediate feedback

(the only ‘output’ capability).

1.2 Forms/3 design goals

We have already mentioned that our overall goal has been to remove limitations

previously associated with spreadsheet languages while still remaining consistent with

the spreadsheet paradigm. The motivation behind this goal has been twofold: first,

2 We will not differentiate between functions and operators in this paper.
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to bring support for more powerful programming capabilities to end users (people

who are comfortable with computers but are not formally trained in programming),

and second, to leverage some of the ease of programming achieved by spreadsheet

languages to professional programming as well.

Any language feature we added could have undermined attributes critical to these

ease of programming goals. This has been a consistent problem in the history of

programming language design: increasing power has often lead to a corresponding

decrease in the language’s usability by its intended audience, and therefore its

usefulness. Our view is that programming language design is in part a Human-

Computer Interaction (HCI) problem. Thus, our design goals include drawing upon

what is known about how programming language design attributes affect people’s

ability to use a language effectively. Background from the HCI literature about the

relationship of our particular design goals to research about human productivity in

programming and problem-solving is summarized in Appendix A.

Two HCI-related design goals have had a particularly strong influence on

Forms/3: directness and immediate visual feedback. In this paper we will use

the term directness to mean following the principles advocated by Shneiderman;

by Hutchins, Hollan and Norman; by Green and Petre; and by Nardi. In short,

directness means employing a vocabulary directly related to the task at hand; see

Appendix A for more details. For example, for programming graphics, the ability to

directly draw the desired graphics instead of textually describing the desired graphics

would be an example of directness. Directness is one of the language design goals

of Forms/3.

In the context of programming, immediate visual feedback refers to automatic

display of semantic effects of program edits, and HCI researchers have revealed im-

portant ways it can improve programmers’ effectiveness. Immediate visual feedback

is supported in spreadsheet languages via the continuous evaluator. Tanimoto has

coined the term liveness to categorize the immediacy of semantic feedback that is

automatically provided during the process of editing a program (Tanimoto, 1990).

Tanimoto described four levels of liveness. At level 1 no semantics are communi-

cated to the computer by the user’s edits, and hence no semantic feedback about

the edits is ever provided to the user. An example of level 1 is an entity-relationship

diagram for documentation. At level 2 the user can obtain semantic feedback about

a portion of a program after an edit, but it is not provided automatically. Some

compilers support level 2 liveness only for final output values; other compilers and

most interpreters do so for a wide range of program attributes. At level 3, incre-

mental semantic feedback is automatically provided whenever the user performs

an incremental program edit, and all affected on-screen values are automatically

redisplayed. This ensures the consistency of display state and system state if the

only trigger for system state changes is user editing. The automatic recalculation

feature of spreadsheet languages supports level 3 liveness. At level 4, the system

responds to program edits as in level 3, and to other events as well such as system

clock ticks and mouse clicks over time, ensuring that all data on display accurately

reflects the current state of the system as computations continue to evolve. Forms/3

is an example of a spreadsheet language that supports time-related computations
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and provides feedback about them at liveness level 4. In this paper, the terms live

and liveness refer to liveness level 3 or higher.

Immediate visual feedback is facilitated when concrete objects are present in the

programming environment, because in that case feedback about semantics can be

concretely based upon those specific objects. Because immediate visual feedback is

emphasized in Forms/3, concreteness is a goal as well.

1.3 Organization of this paper

In this paper, we use Forms/3 to show that the limitations previously associated with

the spreadsheet paradigm are not inherent, and how they can be removed without

loss of consistency with the spreadsheet paradigm. A parallel thread throughout this

paper is how the design goals of section 1.2 are realized in Forms/3.

We begin in section 2 with two basic ways Forms/3 extends traditional spreadsheet

languages: graphical types and dynamic grids. The way the mechanisms supporting

these features are related to the design goal of directness is also discussed. Section

3 generalizes upon linked spreadsheets to support procedural abstraction and data

abstraction. An emphasis in section 3 is on how abstraction capabilities can be

supported without sacrificing concreteness. Section 4 introduces time-oriented cal-

culations, GUI I/O and animation, and shows how these features can be leveraged

for program comprehension and debugging purposes. Immediate visual feedback,

particularly when coupled with concreteness, is a key that makes possible many of

the features presented in that section. Section 5 relates our work to other spreadsheet

languages and visual languages. Following sections 6–8, which present future work,

implementation status, and conclusions, Appendix A presents a discussion of rele-

vant HCI research, and Appendix B demonstrates a Turing machine implemented

using dynamic grids and time.

2 Basic features of Forms/3

Definitions for the elements of the Forms/3 language are given in Table 1. As

the definitions imply, Forms/3 programs (Definition 1) are forms (spreadsheets)

containing cells. A form is a flexible organizational unit, analogous to what might

be described as a subprogram or a module in some traditional languages. An

example of a form (Definition 2) that is also a type definition form (Definition 3) is

primitiveCircle in figure 1.

Unlike in traditional spreadsheet languages, Forms/3 cells need not be elements

of grids (matrices). A Forms/3 user can place the individual cells (Definition 5)

in the form’s cellSet (Definition 4) anywhere on the form. This allows flexibility in

achieving visual results and documentation simply by placement of the cells. Figure

1’s radius, thickness and lineStyle are examples of simple cells (Definition 7) that

are not in any grid. A simple cell is analogous to a first-order zero-arity function (a

function with no formal parameters, thus referring only to free variables). Forms and

simple cells are the basic language elements; discussion of the remaining elements

will be deferred until sections 2.1–2.2.
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Table 1. Language elements of Forms/3. Formulas are as defined in Table 2

Defn 1. A program is a set of forms.

Defn 2. A form in a program P is the tuple (ID, modelName, cellSet), where

ID uniquely identifies the form within P, and

modelName =

{
F .modelName if this form is a copy of form F

ID otherwise.

Defn 3. A type definition form is a form whose cellSet includes a simple cell with ID

Image, one abstraction box with ID MainAbs, and zero or more additional cells.

Defn 4. A cellSet is a set of cells.

Defn 5. A cell is a simple cell or a cell group.

Defn 6. A cell group is a dynamic matrix or an abstraction box.

Defn 7. A simple cell on a form F is the tuple (ID, formula, value, visual attributes),

where ID uniquely identifies the simple cell within F.

Defn 8. A dynamic matrix on a form F is the tuple (ID, cellSet, formula, value,

visual attributes) whose cellSet contains only simple cells, including one whose

ID is MID [NumRows] and one whose ID is MID [NumCols], where

MID is the dynamic matrix’s ID and uniquely identifies the dynamic matrix

within F.

Defn 9. An abstraction box on type definition form F is the tuple (ID, cellSet, formula,

value, visual attributes) whose cellSet contains only simple cells and dynamic

matrices, and that is an element of a type definition form’s cellSet, where

ID uniquely identifies the abstraction box within F.

Fig. 1. (Left) a portion of a Forms/3 form (spreadsheet) that defines a primitiveCircle. The

primitiveCircle in cell newCircle is specified by the other cells, which define its characteristics.

A user can view and specify formulas by clicking on the formula tabs attached to the bottom

right of each cell. Radio buttons and popup menus are equivalent to cells with constant

formulas. (Right) visual attributes of cell radius.

Each cell has a formula as well as some visual attributes controlling its appearance,

and the program’s outputs are entirely determined by the combination of these

formulas and attributes. A cell’s value is the result of the execution of the formula.

The value is well defined prior to computation (since it is simply the result of the
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Table 2. The grammar for Forms/3 formulas. (Note that subexpressions are fully

parenthesized, thereby avoiding ambiguity.) As the top section shows, it has the usual

spreadsheet formula operators and also some operators supporting computations on

grids (dynamic matrices) and on graphics. The bottom section shows cell reference

syntax, which includes row/column referencing for cells that are in a grid (Matrix)

formula ::= Blank | expr

expr ::= Constant | ref | infixExpr | prefixExpr | ifExpr |
composeExpr | (expr)

infixExpr ::= subExpr infixOperator subExpr

prefixExpr ::= unaryPrefixOperator subExpr |
binaryPrefixOperator subExpr subExpr

ifExpr ::= IF subExpr THEN subExpr ELSE subExpr |
IF subExpr THEN subExpr

composeExpr ::= COMPOSE subExpr AT (subexpr subexpr)

composeWithClause |
COMPOSE subExpr AT (subexpr subexpr)

composeWithClause ::= WITH subexpr AT (subexpr subexpr) composeWithClause |
WITH subexpr AT (subexpr subexpr)

subExpr ::= Constant | ref | (expr)

infixOperator ::= + | − | * |/|AND|OR| = | > | < | . . .
unaryPrefixOperator ::= - |ROUND|ABS|WIDTH|HEIGHT|ERROR?| . . .
binaryPrefixOperator ::= APPEND | MATRIXSEARCHROW WHERE | . . .

ref ::= cellRef | Form.ID: cellRef

cellRef ::= SimpleCell.ID | Matrix.ID | Matrix.ID [subscripts] |
Abs.ID | Abs.ID [SimpleCell.ID] | Abs.ID [Matrix.ID] |
Abs.ID [Matrix.ID] [subscripts]

subscripts ::= matrixSubscript@matrixSubscript

matrixSubscript ::= expr

formula), but Forms/3 is a lazy language, and hence each value is actually computed

only as needed, and may be saved or discarded according to any arbitrary caching

strategy.

Some spreadsheet languages allow a cell’s visual attributes to be defined, like

values, via formulas. However, this is not necessary in Forms/3, because cell values

themselves can be highly graphical; hence cell attributes are defined solely via

constants. Cell attributes relate to a cell’s appearance and availability for user

editing.3

The name attribute raises the issue of scope. In this paper, most cells have been

given names, because this contributes to readability of the formulas. However, in the

absence of a name, a cell can still be referenced (by clicking on it); such a reference is

then reflected textually in a formula via the system-generated ID. The scope of cells’

3 The attributes are: cell position and cell size, specified by directly manipulating the cell’s position
and size, an optional cell name specified by typing the name under the cell, optional dataflow arrows’
visibility toggled by clicking on the cell, and the attributes on the pop-up checklist at the right side of
figure 1.
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names and IDs is local to the form unless qualified by the form’s ID; if qualified by

the form’s ID, they are accessible globally, in the spreadsheet tradition, unless the

visibility/information hiding mechanism discussed in the next section is employed.

The textual syntax of formulas is given in Table 2; some formulas can alternatively

be entered using a graphical syntax, as will be seen in the next subsection. Most of

the operators are straightforward, but a few require some explanation.

A formula of Blank results in ‘no value’. In some spreadsheet languages, ‘no

values’ are treated as being absent, so that additions, etc., can continue without type

errors. In Forms/3, however, ‘no value’ is actually a value of type noValue, with

the advantage (in our opinion) of raising type errors if inappropriate operations are

performed on it.

In a functional setting, the else-less ‘If subExpr Then subExpr’ syntax is unusual.

For now, we will slightly oversimplify and say that an else-less if is the equivalent

of the syntax ‘If subExpr Then subExpr Else Blank ’. This simplification will be

revisited when we introduce the Forms/3 model of time.

There are four ‘pseudo references’ not shown – I, J, LASTROW and LASTCOL –

that can be used in grid formulas. Including these in the grammar is straightforward

but tedious, and we have omitted them for brevity. I and J are ways for a cell in

a grid to refer to its own row number and column number respectively, as will be

seen in section 2.2.

2.1 Graphics as first-class types

Spreadsheet languages have not traditionally supported graphics, except as certain

kinds of output (namely, charts and graphs) and as non-semantic documentation

devices. Support for more sophisticated uses of graphics has been provided primarily

through macros or trapdoors to other languages. However, as this section demon-

strates, there is no inherent limitation in the spreadsheet paradigm that requires

such measures.

2.1.1 A simple programming example of graphical types

Forms/3 supports both built-in graphical types4 and user-defined graphical types as

follows. Types are defined on type definition forms. The type is defined by formulas

in cells on type definition forms, and an instance of a type is the value of an ordinary

cell that can be referenced just like any other cell. Built-in types are provided in

the language implementation but are otherwise identical to user-defined types. For

example, the built-in circle object shown in figure 1 is defined by cells defining its

radius, line thickness, color, etc.

Suppose a spreadsheet user such as a population analyst would like to define a

visual representation of data using domain-specific visualization rules that make use

4 Forms/3’s current implementation uses dynamic typing, and that is the version underlying discussions
of types in this paper. Dynamic typing is used by almost all spreadsheet languages. We also have work
in progress on an implicit static type system.
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(a)

(b) (c)

Fig. 2. (a) A spreadsheet under development to visualize population data. The formula shown

is shared by the 4× 1 dynamic matrix labeled graph. (The •s in the formula are miniaturized

drawings of the cells’ current values, which can optionally be displayed in formulas.) The

optional arrows show how the cells in graph depend on population. (b) To define the circle for

cell city, the population analyst first draws a circle gesture (1) in city’s formula edit window,

and then, (c) after clicking on the resulting circle to display its definition form (2) (in gray be-

cause it is a copy; white indicates formulas different from the original), the population analyst

specifies the fillForeColor formula via a popup menu (3). Each manipulation is immediately

reflected textually and graphically in city’s formula edit window (the left window in (c)).

of the built-in primitiveCircle type of figure 1. Figure 2(a) shows such a visualization

in Forms/3. The program categorizes population data into cities, towns, and villages,

and represents each with a differently sized black circle.

One valid syntax for the formulas in this example is the conventional textual
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formula syntax of Table 2. To use this syntax, the population analyst would make

a copy of the form shown in figure 1 and edit formulas on the copy as needed.

However, recall our design goal of directness. Defining a circle using a ‘•’ would

be more direct (i.e. closer to the task to be accomplished) than defining it using

integers and math. Thus, Forms/3 includes a graphical syntax for defining such

formulas, which includes sketching and direct manipulation. We term this alternative

syntax graphical definitions, to emphasize that it is a graphical way of defining

formulas.

In the example of figure 2, the population analyst defines the formulas for cells

city, town, and village by entering circle-shaped gestures in the formula window for

each, resizing as necessary to fine-tune the sizes. For example, to define the large

city circle, the population analyst first draws a circle gesture as in figure 2(b). This

defines the cell’s formula to be a reference to cell newCircle on a copy of the built-in

primitiveCircle definition form whose radius formula is defined to be the radius of

the drawn circle gesture. However, the analyst wants the circle to be solid black.

There are no gestures provided to specify fill color, because no obviously appropriate

gesture seems to exist for that characteristic of circles. In such cases, the population

analyst clicks on the circle to display its definition form, and then enters whatever

additional formulas are needed, in this example for cell fillForeColor as in figure

2(c).

There is an apparent similarity between some commercial programming environ-

ments’ ‘property sheets’, which allow maintenance of properties of visual objects,

and the spreadsheet in figure 2(c), but this similarity does not go beyond the surface.

The essential difference is that the cells in figure 2(c) can have arbitrarily complex

formulas that specify relationships, not just values as in property sheets.5 Thus, there

is a gentle migration path from the simple formulas that can be specified by an end

user via sketching and constant-valued formulas to the more complex formulas that

sophisticated programmers might want to use.

Referring again to figure 2(b), alternative graphical syntaxes are to click on the

circle icon, which produces a ‘representative’ value (here, a circle with radius 25),

which can then be resized via direct manipulation, or to refer to an existing circle

and then manipulate it to demonstrate how it differs from the existing one.

All three graphical ways of specifying the circles are syntactic sugar for the

more conventional way of entering formulas textually. However, they feature greater

directness by allowing the population analyst to define the desired graphics using

a syntax of graphics. An empirical study showed that use of this syntax was

linked with both significantly greater programming speed and significantly greater

programming accuracy than was use of the equivalent textual syntax (Gottfried and

Burnett, 1997).

5 If a circle depends on a cell whose value is time-varying, such as a reference in the radius cell’s formula
to the built-in cell containing the system clock, the result will be an animated circle. (This principle
also underlies the animated graphics of Fran (Elliott and Hudak, 1997), an add-on to Haskell (Hudak
et al., 1992).) We will return to a discussion of animations and other time-varying values later in this
paper.
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2.1.2 The model for (graphical) types

The above example shows how graphical types work in the case of circles. In fact, in

Forms/3, all types are considered to be graphical: in addition to the usual attributes

of types, all have appearances and optional interactive behaviors. In keeping with

this philosophy, in Forms/3 a type is the 4-tuple: (components, operations, graphical

representations, interactive behaviors). As the definitions in Table 1 suggest, a type

τ is defined via a type definition form Fτ. The form contains at least two cells: an

abstraction box with ID MainAbs, which is a cell group that defines the structure

of the type as the composition of cells placed inside it (the first element of the

4-tuple); and an image cell whose ID is Image and whose formula defines the type’s

appearance(s) (the third element of the 4-tuple). The other two elements of the

4-tuple, operations and interactive behaviors for type τ, are specified by additional

cells on Fτ. All cells inside abstraction boxes are hidden (private), and it is possible

to explicitly hide other cells as well.

Note that, in this model, there is no theoretical distinction between built-in

and user-defined types. Both are theoretically defined by the above 4-tuples, and

practically defined by their accompanying type definition forms. The only distinction

is implementation; that is, whether the type’s definition form has already been

provided by the language implementer.

Fτ’s distinguished abstraction box defines as its value a representative instance of

type τ, and each additional instance τi of τ is defined by the distinguished abstraction

box on a copy of Fτ, denoted Fτi , upon which formulas different from those on Fτ
can be defined to allow individual differences among instances of type τ. Instances

of type τ can be referred to by any cell but, except for cells on copies of Fτ, can

only be operated upon in more substantive ways via the non-hidden cells (public

operations) that have been defined on Fτ.

Form primitiveCircle6 in figure 1 is one example of a type definition form Fτ,

where τ is primitiveCircle. Because circles are a built-in type, primitiveCircle is

provided in the language implementation. The abstraction box is newCircle, and

the image cell is hidden because it is not useful to the user – its formula consists of

non-editable low-level code that draws a circle with the characteristics specified by

the other cells and formulas on the form. If the user copies FprimitiveCircle and changes

some formulas on the resulting form FprimitiveCircle1
’s cells, a different instance of a

circle is defined in FprimitiveCircle1
’s abstraction box newCircle. 175-primitiveCircle in

figure 2(c) is an example of FprimitiveCircle1
.

The mapping from gestures and icon clicks to textual spreadsheet formulas defined

using this model is given in Table 3. The mapping from direct manipulation of an

existing graphical object to textual formulas is given in Table 4.

6 In the previous section, we took some liberties with notation for the purpose of brevity. For example,
‘Form primitiveCircle’ really means ‘the form whose ID is primitiveCircle’. In general, we take
advantage of the notation of Table 2 as follows. Unless specifically used in the context of a formula
syntax example, we will use Table 2’s ‘ref’ syntax as an abbreviation for the forms and cells themselves.
For example, ‘form F ’ will be used as an abbreviation for ‘the form whose ID is F ’, and ‘F:A’ will be
used as an abbreviation for ‘the cell whose ID is A that is an element of the form whose ID is F ’.
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Table 3. The mapping from gestures and icon clicks to formulas for built-in types. In

each case, the result of the gesture is the formula that is a reference to an abstraction

box χ on a definition form copy Fτβ , where Fτβ = Fτ(DefSet), and DefSet is the set

of formula definitions for each cell defined differently on form Fτβ than on Fτ. The

notation for each element of DefSet is (X.formula = φ), denoting that cell X has the

formula φ

Graphical type Action Textual formula

draw circle of radius ρ primitiveCircle(radius.formula = ρ):

newCircleprimitiveCircle

click on circle icon primitiveCircle (radius.formula = 25):

newCircle

draw box of width ω and primitiveBox(width.formula = ω,

height η height.formula = η): newBoxprimitiveBox

click on box icon primitiveBox (width.formula = 50,

height.formula = 50): newBox

draw line with dx ξ and primitiveLine (deltax.formula = ξ,

dy ψ deltay.formula = ψ): newLineprimitiveLine

click on line icon primitiveLine (deltax.formula = 50,

deltay.formula = 50): newLine

Table 4. The mapping from direct manipulation of an object α to formulas for built-in

types. As in Table 3, the result of the gesture is the formula that is a reference to an

abstraction box on a definition form copy Fτβ , where Fτβ = Fτα(DefSet), and DefSet

is the set of formula definitions for each cell defined differently on form Fτβ than on

Fτα .

Graphical type Action Textual formula

primitiveCircle stretch edge of circle α to primitiveCircleα (radius.formula = ρ):

radius ρ newCircle

primitiveBox stretch corner of box α to primitiveBoxα (width.formula = ω,

width ω and height η height.formula = η): newBox

primitiveLine stretch line α’s endpoint primitiveLineα (deltax.formula = ξ,

to position (ξ, ψ) deltay.formula = ψ): newLine

In defining a mapping from direct manipulation of concrete values to general

formulas, there are three issues to be addressed: the basic strategy of such a

mapping, how to generalize direct manipulations into parameters that are more

complex than simple constants, and how to support direct manipulations on types

that are not built-ins. This section has discussed the basics of the approach, which
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demonstrates only the first of these three issues; in section 3, the remaining two of

these issues will be covered.

2.2 Dynamically-sized grids

As figure 2 shows, Forms/3 is not tied to the use of a grid – individual cells can

be placed in any location, and no grid is required. However, as the example also

shows, it is possible to include one or more grids on a form: location, population

and graph are all grids. In Forms/3 these grids are dynamically-sized matrices.

Forms/3 dynamic grids are similar to traditional matrices and to traditional

spreadsheet grids in that they are two-dimensional groups of cells that can be re-

ferred to in terms of their relative or absolute position. However, they are different

from traditional matrices in that they do not have a statically-determined contigu-

ous internal layout; instead, they are created dynamically and lazily. More to the

point from the spreadsheet user’s perspective, they are different from traditional

spreadsheet grids in these ways:

(1) The number of rows and columns in a dynamic grid is determined dynamically

by the formulas of its distinguished NumRows and NumCols cells.

(2) The size of a dynamic grid can be queried dynamically through references in

other formulas to the dynamic grid’s distinguished NumRows and NumCols

cells.

(3) Formulas can be specified for a contiguous region of the dynamic grid (which

contains zero or more cells), and this formula is shared by all the cells in the

region.

(4) Alternatively to item (3), a formula can be specified for the entire dynamic grid.

How this combination of features affects spreadsheet programming warrants

some discussion. The first two features allow grid size to be both determined by

and referred to by formulas. The third feature replaces the traditional ‘replicate’

mechanism common in commercial spreadsheet languages. The fourth feature is

simply an alternative to the third feature, useful for explicitly expressing relationships

at the granularity of entire grids. Advantages of the third (and fourth) feature directly

visible to the user are that it makes explicit the relatedness of cells with essentially the

same formula, and that it removes the maintenance problem of replicating formulas

(i.e. duplicating code). In combination with the first feature, it allows cells in a large

dynamic grid to be created lazily – since the regions determine the formulas, enough

information is present in the regions to dynamically create a cell in a region only if

and when it is actually needed. This advantage in turn allows the size of dynamic

grids to be time-varying, which will be discussed further in section 4.

Because of these features, Forms/3’s dynamic grids have the same functionality as

the lists commonly found in functional languages. Figure 3(a) shows an implemen-

tation of the basic list operations to demonstrate this. Forms/3 supports recursion,

as will be demonstrated in section 3, and these basic list operations can be combined

in the usual way with recursion to write more elaborate list operations. However,

for many list operations, recursion is not actually necessary, as is demonstrated by
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(a)

(b)

Fig. 3. (a) Forms/3’s dynamic grids can implement the basic list operations. The sample

input, aMatrix (top portion of the window), has been defined to have 1 row, 5 columns, and

to consist of two regions, which the user established by dragging the vertical bar from the

left border rightwards. The first region consists of the first cell, and the second consists of

all remaining cells. i and j in the second region’s formula are pseudo-references that refer

to a cell’s own row number and column number. If cell aMatrix[NumCols] (attached to the

upper right of aMatrix) is given a different formula such as “3 * 2”, then all the dependent

cells will (lazily) adjust themselves appropriately. (One formula in Cdr and two formulas

in ConsCarWithCdr have been displayed with the miniaturized drawings of the referenced

cells’ current values showing, such as the 5 for the reference to aMatrix[NumCols].) (b)

The 2-dimensional grid reversing reverses the single-row grid aMatrix. Reversing consists

of three regions – the left column, the top row except for the cell in the left column, and

the rest – and thus three formulas define the calculations of its interior cells. (One of these

formulas, the one for the top row, is blank.) In addition, the number of rows and number of

columns each has a formula. The answer is in the bottom row.

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


The boundaries of the spreadsheet paradigm 169

figure 3(b). In fact, dynamic grids in combination with time-varying operations can

be used to program a Turing machine simulator, without using either recursion or

traditional forms of iteration (see Appendix B). We chose dynamic grids over lists

because dynamic grids are based on traditional spreadsheet grids, thus allowing end

users familiar with spreadsheet grids a gentle slope to the advanced functionality

supported by dynamic grids.

Regions themselves have some similarity to the list comprehensions (Wadler, 1987)

used in some functional languages, but regions are less powerful than list compre-

hensions. List comprehensions consist of a generator and a filter. They produce a

list containing all the elements from the generator that satisfy the predicates in the

filter. Hence, the resulting list can be smaller than the input list from the generator.

Regions do not share this attribute; they include generator functionality, but no

filter – they always specify n output cells from n input cells, because a region formula

is simply a specification for the value of every cell in the region. The region’s size

itself is specified through mechanisms external to the region, namely by the user’s

manipulations of region boundary lines to establish the static position and size of

each region within a dynamic grid G, and by the evaluations of the formulas of

G[NumRows] and G[NumCols]. Hence, it is possible to achieve list comprehension

functionality by combining region formulas with recursion and dynamic grid sizing,

but it is not possible to do so using region formulas alone.

The three dynamic grids in the population example in figure 2 were set up as

follows: location is a dynamic grid with four rows and one column, with each cell

inside the grid having its own formula (such as ‘Portland’); population is a similar

grid, but with population[NumRows]’s and population[NumCols]’s formulas set up

as references to location’s corresponding cells; and graph is a dynamic grid with the

same number of rows and columns as population, and with the four interior cells

sharing the single region formula shown.

The pseudo-references i and j in the figures provide a general way for a cell to

refer to its own row and column; in object-oriented languages with a self pseudo-

variable, such a reference might be expressed as self.i. and self.j. Like self, these are

placeholder references that are general enough to allow a single region formula to be

applicable to all cells in that region. This is in contrast to zero-argument functions,

because if they were zero-argument functions, referential transparency would be lost.

Our approach to dynamic matrices has several features that are similar

to an approach proposed for Forms/3 by Viehstaedt and Ambler (1992). The

Viehstaedt/Ambler version is more powerful, allowing region sizes to be specified

via formula, and allowing multiple views as to how a single dynamic matrix is

divided into regions. We did not include these two capabilities in Forms/3 because

we thought they might detract from the understandability of dynamic matrix pro-

grams. The static representation of dynamic matrix formulas is also different in the

Viehstaedt/Ambler version. The Viehstaedt/Ambler approach to dynamic matrices

has since been developed further (Wang and Ambler, 1996) in the context of the

spreadsheet language Formulate (Ambler and Broman, 1998; Ambler, 1999).

When the approach to dynamic matrices was still in the design stage, we conducted

an empirical study comparing construction of matrix manipulation programs in
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Forms/3 (using a variation on the Viehstaedt/Ambler static representation) with

the same task in two textual programming languages (Pandey and Burnett, 1993).

The study was done using only pencil and paper. Its goal was to determine whether

the approach to dynamic matrices of Forms/3 would be used by the subjects

more accurately than when using more traditional approaches to writing matrix

manipulation programs. To do this, we compared 60 subjects’ correctness in writing

matrix manipulation programs in Forms/3 with their ability to write the same

programs in two textual languages. One of these languages was Pascal, because it

was representative of the most widely-used paradigm (imperative) and because it

was the language best known by the subjects (CS juniors) at the time the study was

done. The other language was a version of APL that had been modified to use an

English-like syntax. We chose APL because it was the most matrix-specific textual

language available, but we modified the syntax to use common words and symbols

and left-to-right reading order to allow the subjects to learn it quickly. Each subject

constructed two small matrix manipulation programs in all three languages, for a

grand total of six programs by each subject, done in varying order to balance any

learning advantage.

In total, significantly more of the programs were constructed correctly in Forms/3

than in the other two languages. This total came from the fact that in one of the

two problems, the Forms/3 and Pascal solutions were approximately the same in

terms of correctness and were significantly more correct than the APL solution; and

in the other problem, the Forms/3 and APL solutions were about the same degree

of correctness and significantly more correct than the Pascal solution. The extent

to which Forms/3 compared favorably with the other two languages was actually

quite remarkable, given that the subjects were already experienced in Pascal, and

that APL contains a built-in primitive that entirely solved one of the problems. Our

belief is that these results are due to directness and concreteness; that is, that subjects

programmed most correctly in Forms/3 because they were able to program using

a vocabulary consisting of matrix-oriented operators and concrete, visible matrices

and matrix elements, rather than using a vocabulary of loops, subscript arithmetic

and variables representing arbitrary matrices.

3 From concrete linked spreadsheets and graphical types to generalized abstractions

3.1 Procedural abstraction and automatic generalization

Applying dynamic grids to the population example yields a certain amount of

generality. For example, the original form, which includes Oregon cities, can be

copied for use on Nevada cities. Suppose three cities in Nevada are to be included

in the analysis. The user changes the formula for location[NumRows] on this copy

to ‘3’, enters the city names in the three remaining regions of the grid, enters the

corresponding figures in the population dynamic matrix, and the graph automatically

comes out correctly. This degree of generality is due to the dynamic sizing capability,

and to the use of regions to specify a formula for an entire section of a dynamic

matrix (see figure 4).
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Fig. 4. Copying the Oregon population form applies the graphical depiction to a different

state’s cities. The term ‘copy’ does not perfectly describe the relationship with this form and

the original: the non-white matrices on the ‘copy’ share the same formulas as the original;

the user edited the white cells to enter Nevada information, and hence their formulas are no

longer shared. If a bug is fixed in the original form, the fix will also be propagated to the

unedited corresponding (gray) cells on any copies.

As this example demonstrates, a form provides functionality similar to both a

(first-order) function and an instance of that function (i.e. an activation record),

and cells whose formula tabs have been left visible provide parameter-like func-

tionality. However, the approach does not seem to afford as much generality in

expressiveness as is usual with approaches to procedural abstraction in first-order

languages. The formulas for the cells in the example all refer to values that the

spreadsheet creator explicitly instantiated, either by entering them explicitly via con-

stant formulas, or by referring to cells on forms (analogous to visible activation

records) that he or she manually created. In contrast to this, conventional first-order

functions’ parameters can automatically generate the needed activation records at

runtime.

3.1.1 Generalization example: What the user does

Our solution to providing as much generality as is present with conventional first-

order functions is through automatically generalizing formulas through deductive

reasoning. Suppose that, instead of referencing only the pre-existing forms that

were set up while programming the city, town and village cells, the population

analyst would like for the circles to more closely reflect population differences,

by defining each circle’s radius to be a fraction of the corresponding population.

To create this program, the analyst copies the primitiveCircle form to create a

new copy (say, 250-primitiveCircle), edits cell radius on that copy to be ‘1 +
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Fig. 5. A more general version of the population program is in progress. The concrete formula

(i.e., the way the user programmed it) is shown in the top half of the formula window; it is

underlined to indicate that generalization has occurred. To see the results of generalization,

the user clicked the arrow at the right of the formula, causing the generalized formula to be

shown below the concrete one.

(population:population[i@j]/10000))’7 and references the resulting circle in graph’s

region formula. The system immediately responds by displaying a sample result

calculated using population[1@1].

The analyst’s task is finished, but the system still needs to generalize further. If

it did not generalize, all the cells in graph would be the same size, because they

would all refer to newCircle on the same copy, namely 250-primitiveCircle. After

the system generalizes, using the method described next, the formula shown at the

bottom right of figure 5 is produced, which says that each reference in graph’s

formula is to cell newCircle on an appropriate copy of primitiveCircle.

3.1.2 The generalization method

Concrete sample values and directly pointing to the objects of interest are strategies

common in programming languages that aim to promote directness, especially lan-

guages using demonstrational techniques (Cypher, 1993), and these features usually

lead to the need for generalization. Forms/3 shares this need because it makes use of

concrete programming features, which are central to its ability to provide immediate

visual feedback incrementally after every formula edit (i.e. liveness).

An approach to generalization in programming languages can be either explicit

or implicit. In an explicit approach, the user would provide the generalized interpre-

tation explicitly, such as by manually typing in the legend shown in figure 5. Implicit

approaches, which are common in demonstrational languages, derive the generalized

version (such as that shown in the legend) automatically. If an implicit approach

7 Another alternative would be to have the area be directly proportional to population via a radius
formula along the lines of ‘ceiling (sqrt (population : population[i@j]/1000))’.
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for generalization employs inference,8 which is the case in many demonstrational

languages, there is a possibility of guessing wrong. The probability of doing so is

often reasonable in domain-specific languages, in which the number of possibilities

are relatively small, and a number of domain-specific languages have successfully

employed this technique. (See Cypher (1993) for several examples.) However, this

kind of inference has not proven to be viable in general-purpose languages, because

the probability of guessing wrong has been too high.

Fortunately, in spreadsheet formulas, the operators are already fully general; only

the operands must be generalized. This makes the implicit generalization problem

much easier than in entirely demonstrational languages; in fact, there is enough

information to allow generalization to be entirely implicit9 while still requiring only

deductive reasoning, without the need for inference that employs guesswork.

Even the operand is already partly general: the cell part of the operand has been

specified in a general way by the user. The only aspect of an operand that actually

needs to be deduced is an abstract specification of how to generate an appropriate

copy of a form when needed. Let Fα be a form, let Fαi be a copy of Fα instantiated

directly by a user pressing the copy button, and let DefSetαi be a set of elements of

format ‘X.formula=φ’, where each X is a cell on Fαi whose formula has been edited

to be φ. Thus, just as before in Table 3, it is possible to abstractly specify copy Fαi
by enumerating how its cell relationships differ from those in Fα:

Fαi = Fα(DefSetαi)

Given Fα, this description is sufficient for the system to automatically generate

copies exactly the same as Fαi at future runtimes. More important, by substituting

IDs of different copies and/or different grid element subscripts in Fα(DefSetαi), this

description is sufficient to generate additional, similar, copies of Fα such as the

additional copies of primitiveCircle needed to support rows 2–4 of grid graph in

figure 5.

3.1.3 The granularity issue

The above generalization reasoning is at the granularity of entire forms, and thus

suffices for supporting the traditional call-return structure of one function invocation

calling another, as found in traditional applicative languages, allowing even recursive

programs to be programmed in the above concrete manner and then generalized

correctly. If the technique were intended only for programmers, it would not be

necessary to improve upon this level of support.

8 In much of the artificial intelligence literature, the term inference includes both sound reasoning
techniques such as deduction, and techniques employing guesswork. However, in literature about
demonstrational programming languages, the term is normally used to mean only reasoning techniques
employing guesswork. In this paper, we follow this latter convention.

9 Commercial spreadsheet languages are partially explicit; the user must enter a special character (often
a ‘$’) with a cell reference to make it an ‘absolute’ reference. The implicit (‘relative’) references are
generalized based solely on spatial relationships in the grid. For spreadsheet languages not tied to
a single grid, it is necessary to base generalization of implicit references at least in part on logical
relationships.
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However, one of the goals of this research is to explore ways to support end

user programming of spreadsheets, and it may not be reasonable to expect end

users to structure their programs to follow such a traditional call-return structure.

The use of multiple forms that reference one another (the same idea as linked

spreadsheets) supports not only call-return structures, but in fact any arbitrary non-

circular cell referencing pattern. For example, dataflow paths that follow a linear

pipeline of spreadsheet cells are possible in linked spreadsheets, as in the relationship

among the three N cells in figure 6. Some of these non-traditional structures require

reasoning at a finer granularity than entire forms, because when cells in two copies

of the same form reference each other, the form referencing pattern appears circular

even when the cell referencing pattern is not. In this example, the pipeline of Ns

combined with recursive formulas of Ans and tree shows such apparent circularity

at the granularity of forms – 137-Fibonacci:N references 127-Fibonacci:N, yet 127-

Fibonacci:tree incorporates 137-Fibonacci:tree. Here, reasoning at the granularity of

forms would be problematic if the user edited cell Ans in the two copies, because then

each copy’s DefSet would have to be described in terms of the other copy’s DefSet.

Our solution is to reason only about the portions of a form that actually affect

the cell whose formula is currently being generalized. Suppose X is the cell whose

formula is currently being generalized. Let AffectsSetαi be {(Y .formula = φ) |Y +→X},
where Y → X denotes a reference in X’s formula to Y (the arrow is drawn in the

direction of dataflow),
+→ is the transitive closure of →, and φ is any formula. Using

this definition, we modify the description of a generalized version of some concrete

reference Fαi:Y in X.formula to be:

Fαi:Y = Fα(DefSetαi ∩ AffectsSetαi):Y

We will say that the generalized version of a reference in cell X’s formula is

correct if replacing the concrete reference with the generalized reference results in

the same value in cell X as with the concrete reference. As we have pointed out before,

replacing every reference Fαi:Y with Fα(DefSetαi):Y would have been correct in this

sense, since Fα(DefSetαi) completely describes Fαi by enumerating every difference

between Fαi and Fα. Further, a cell not in AffectsSetαi cannot possibly have any

effect on X’s value; hence a reference to Fα(DefSetαi ∩AffectsSetαi):Y must produce

the same result in X as a reference to Fα(DefSetαi):Y . Since the system enforces

that references among cells are non-circular (even though relationships may seem

circular when viewed at the granularity of whole forms), this approach adds the

generality needed to support even non-traditional cell referencing structures such as

in figure 6.

Generalization is performed lazily, i.e. is invoked only when the existing concrete

formula will not suffice. The concrete formula will not suffice if the formula has grid

references of the sort in figure 5; if, left ungeneralized, calculation of the answers on

the displayed version cannot terminate due to seemingly circular references, as in

figure 6; or if the concrete information is about to be separated from a portion of

the program, as is the case when the spreadsheet creator decides to save only some

of the forms (part of the program) to disk.
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Fig. 6. To program this recursive selection of the Nth number from the Fibonacci sequence,

the programmer creates the main form (1) and puts the three cells on it, giving N (2) the

formula ‘3’ to provide a sample value. Next the programmer tells the system to copy the form

twice, enters the formulas for the N cells on the two copies (3), and then enters the concrete

formula for the original cell’s Ans (4), which refers to Ans on the copies. The programmer has

clicked on Ans to display the optional dataflow arrows depicting Ans’s data dependencies.

The tree cell sketches the relationships in the Fibonacci sequence. A non-traditional feature

of the structure of this program is that it produces two answers, Ans and tree, either or both

which can be referenced as needed without the special packaging and de-packaging constructs

required in most other types of applicative languages.

Even after generalization, a concrete version of the reference can always be viewed.

If no concrete version is already in the system, it is automatically generated upon

request. For example, in figure 6, the references to cells on form 127-Fibonacci are

concrete, and the user can click on the reference to have the copy (127-Fibonacci

in this case) spring into view if it is not already present on the display. If no

concrete copy remained in the system, this concrete name would have been changed

by the system to an abstract name, such as ‘Fibonacci-a’; in that case, if the user

clicks on the reference, a concrete example of form Fibonacci-a with the same

DefSet ∩ AffectsSet as that of form 127-Fibonacci will spring into view.

3.2 Data abstraction in the spreadsheet paradigm

The graphical model of types described in section 2, combined with the informa-

tion hiding and generalization capabilities, provides the features necessary for a

spreadsheet-based approach to data abstraction.
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Fig. 7. The Tree definition form’s accessible cells (1–3) and gestures (4), plus the hid-

den cells used in the implementation of these accessors. Cells inside abstraction boxes (1)

are by definition hidden (private). The image cell (5), which is also hidden, defines the

appearance of instances of this type; whenever an instance t of type Tree needs to be

displayed, a demand is generated for the image cell on t’s copy of form Tree (namely,

Tree(inputTree.formula = t):Image). Cell Image was specified by arranging the cells and

rubberbanding the arrangement, and then editing the x-coordinates to refer to widths of the

components. The underlined references refer to the (generalized) instances of the Tree form

that recursively construct the left and right subtrees.

3.2.1 An introductory example: implementing a tree type

We have said that Forms/3 is a ‘gentle slope’ language. This implies that the linked-

spreadsheet-like mechanism supporting built-in types an end user might wish to use,

such as circles and boxes, needs to extend to the kinds of user-defined types that a

sophisticated programmer might like to use, such as binary trees. The example in

this section demonstrates this end of the slope.

To implement a new type, the programmer creates the type definition form,

placing abstraction boxes and ordinary cells on it as needed and defining their

formulas. Programmers will often use more than one abstraction box, placing an

input abstraction box, other cells, and one or more output abstraction boxes on the

definition form. However, recall (from Table 1, Definition 3) that there is always

one distinguished abstraction box on the definition form, and it is known behind

the scenes by the ID MainAbs.

For example, the way the tree’s implementer implements a binary search tree type

is shown in figures 7 and 8, and the view of the Tree definition form as seen by
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Fig. 8. The formulas defining how trees are constructed. (The accessor cells have been moved

aside to make room for these formulas to be displayed.) leftWidth, rightWidth and fullWidth

will be hidden; they are helper cells used by Image’s formula.

Fig. 9. View of Tree for use by other spreadsheets. The hidden cells are no longer visible

because they are not accessible outside this form. Most of the cells shown here report

information about the incoming tree (1). Tree gestures are enumerated at the top (2).
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Table 5. The mapping from an action applied to object α of type τ to formulas. A

represents the distinguished abstraction box (MainAbs) and χ represents the cell to

be referenced on Fτβ , which is a copy of Fτα . The programmer explicitly specifies

which cell is χ when defining the new gesture’s semantics. InputDefSet is the set

{celli.formula = formulaSpeci}, for all celli that are ‘input cells’ (non-hidden cells

whose formula tabs have been left visible) in Fτβ .cellSet − {A}, and formulaSpeci is

a formula the programmer defines using the formula specifications in Table 6

Action Textual Formula

draw gesture, or Fτβ (InputDefSet ∪ {A.formula = α}): χ
click on gesture icon

other programmers who may wish to use the Tree type (i.e. the public interface to

type Tree) is shown in figure 9. As these figures show, the form contains an input

abstraction box inputTree (the distinguished abstraction box) intended to contain

an incoming tree, input cell newElement for an element to be inserted into the tree,

and output abstraction box newTree to define a tree into which the new element

has been inserted. Other cells providing operations for the tree (such as the predicate

reporting whether the incoming tree is empty, and a cell reporting the top element)

are also present. Just as with the primitiveCircle type, multiple instances of type

Tree can be instantiated using multiple copies of the Tree form.

3.2.2 Direct manipulation and gestures as operations on user-defined types

In section 2, we described how a user can use direct manipulation and gestures to

program directly in the graphical vocabulary of circles, such as by selecting a circle

and stretching it. Supporting these capabilities for built-in types such as circles was

a way of addressing our language design goal of directness. Here we describe how

to extend the same directness to user-defined types.

As one would expect, the semantics for gestures on user-defined types are a

generalization of the semantics for built-in types, as can be seen by comparing Table

5 with Table 3 and Table 4. (Direct manipulations can be viewed as gestures in the

context of an existing instance of a type, and hence their semantics do not really

need to be separated, although they were in Tables 3 and 4 for clarity.)

To provide the formulaSpecs in Tables 5 and 6 that map the desired gestures

to the Tree definition form’s cells and formulas, the programmer must first train

the gesture itself by drawing several examples of it. When the gesture training is

complete, our implementation adds a miniature of the gesture to the top of the

type definition form, such as the gesture miniatures at the top of figure 9. The

programmer then specifies the gesture’s semantics, i.e. the mapping from the gesture

to a collection of cell formulas, such as in figure 10.

We have mentioned an empirical study evaluating use of gestures mapped in

this way to formulas (Gottfried and Burnett, 1997). For one of the tasks in that

study, subjects were required to use the tree data structure described in this section
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Table 6. Explicit formula specifications. The programmer defines the formulaSpec of

Table 5 as a one-to-many mapping from a gesture G on some graphical object α to

formulas for cells (one of which is X) on form Fτβ using the specification types shown

in this table. Xα is the cell on form Fτα corresponding to cell X on form Fτβ . For

the user dialog formula specification (bottom row), the keyword ask followed by the

prompt ‘string’ causes a dialog box to be displayed when the user makes the gesture;

the user’s response becomes the formula for cell X

Type of formula Formula specification Formula defined for X

specification for a cell X

on form copy Fτβ

height height of user’s gesture

width width of user’s gesture

gesture attribute radius radius of user’s gesture

dx dx of user’s gesture

dy dy of user’s gesture

‘same’ same Xα

constant anything formula specification value

(i.e. same as previous column)

user dialog ask ‘string’ the user’s response

Fig. 10. Defining the ‘new’ gesture for type Tree. In this figure, the programmer is specifying

that the new gesture means the same as a reference to cell newTree on a copy of the Tree

definition form whose newElement formula is the user’s input from a dialog.

to program a search. The advantages of using the graphical techniques over using

strictly textual referencing were particularly pronounced in this task. In fact, each

of the subjects who used the graphical programming techniques completed the tree-

based program faster than any subject who used strictly textual referencing, and

detailed analysis of the data showed that this speed was due at least in part to

greater avoidance of logic errors.

4 Time and GUI I/O

We have been somewhat vague to this point about the values of cells. Rather

than each cell having an atomic value, the ‘value’ element of cells provided in the

definitions prior to this point is actually a sequence of values over logical time.

This time-oriented concept of cells and their values adds significant power to the

dynamic grid and graphics capabilities. To show this, we first present the model
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of time, and then show how it can be exploited, particularly regarding spreadsheet

programming of interactive and animated graphics.

4.1 A simple model of time

Forms/3’s concept of time is based on a discrete, global notion of logical time. In

Forms/3, logical time is viewed as a dimension, and each computed value has a

fixed, permanent position along that dimension’s axis. Thus, a cell’s formula defines

a sequence of values positioned along that axis. Even a constant formula such as a

text string is formally defined as a one-element sequence first defined at logical time

1.

Let logical time be defined by (T , t1, tmax, next, onOrAfter), where time axis T is

a sequence of ‘time’ elements from any domain in which binary operators <,= and

> are total functions (e.g. N+); where ∀ti, tj ∈ T , ti < tj iff i < j; t1 is the minimum

and tmax the maximum element of T; next is a function that, given a time ti, returns

ti+1; and onOrAfter can be any function that, given a subsequence S of T, returns a

time no smaller than any tj ∈ S . tmax is not really necessary, but is present for clarity

and flexibility; in Forms/3, max is infinity.

Under this model, we redefine a simple cell to be a tuple (cellID, formula, tv, visual

attributes), where the cell’s temporal vector, tv, replaces the value element in our

previous definition. Similar redefinitions are made for radio button cells, option cells,

dynamic matrices, and abstraction boxes. A temporal vector10 is a set of vt-tuples

(v, defTime), where v is a value and defTime ∈ T is the time at which v becomes

defined. A vt-tuple (v, defTime) and its value v for a cell X are said to expire at

time defTime′ if there exists another vt-tuple (v′, defTime′) for cell X such that

defTime′ > defTime. A vt-tuple is valid from the time v is defined until it expires.

Since a vt-tuple is valid until it expires, a temporal vector can be sparsely populated

while still containing vt-tuples valid for every moment in logical time.

The vt-tuples that make up a temporal vector are subject to the following con-

straints:

(1) Uniqueness of defTimes: if (v, defTime) ∈ cell x ’s temporal vector, then there

exists no other vt-tuple (v′, defTime′) ∈ cell x ’s temporal vector such that

defTime = defTime′.
(2) Constants’ defTimes: if cell x ’s formula is a constant, then its temporal vector

consists of a single vt-tuple with defTime = t1.

(3) The past does not depend on the future: given a vt-tuple (v, defTime), then

∀(v′, defT ime′) such that v′ is needed to compute v, defT ime > defTime′.

The purpose of constraint (1) is to prevent a cell from having two values at the

same time. Constraint (2), which says constants are defined immediately, provides

a base for defining values that depend on other values. Constraint (3) is a general

10 The term ‘temporal vector’ was chosen to emphasize the static association between values and in-
dices along axis T, as distinguished from the implications of element movement, production, and
consumption, normally assumed under stream-based terminology.
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Table 7. Extending the grammar from Table 2 to include the Forms/3 operators

related to time

formula ::= Blank | expr

expr ::= Constant | ref | infixExpr | prefixExpr | ifExpr | composeExpr

| timeExpr | (expr)

. . . (all the expr’s specified in Table 2) . . .

timeExpr ::= EARLIER subExpr | EARLIER subExpr optionalParts |
subExpr FBY subExpr | subExpr FBY subExpr untilPart

optionalParts ::= initialPart | untilPart | initialPart untilPart

initialPart ::= INITIALLY subExpr

untilPart ::= UNTIL subExpr

constraint for defining values that depend on other values: it prevents defining the

past or present in terms of the future. This property is useful in supporting debugging

using time travel, which will be discussed in section 4.6. It also prevents cyclical

relationships across time, i.e. involving more than one time in T. ‘Spiral’ relationships

are, however, allowed, such as a vt-tuple of a cell X depending on another, earlier

vt-tuple of X. Note that constraint (3) is not sufficient to prevent cyclic relationships

involving multiple cells’ vt-tuples at one time t, and another language following

this model could choose to allow them, but the Forms/3 language implementation

prevents them through other mechanisms.

The only information that can be extracted from two elements of T is whether

one element is before or after the other. Thus, in Forms/3, there is no guarantee that

the time steps are equally spaced, and it is not possible to subtract one from another

to compute a length of time. Rather, a logical time step occurs when it is needed,

either due to the arrival of some event of interest, or due to formula dependencies

on previous moments in time. However, there is a built-in cell whose temporal vector

reports the value of the system clock at each position on the T axis, and this cell’s

vt-tuples’ values can be subtracted to compute elapsed clock-on-the-wall time.

Forms/3 provides two formula operators related to logical time. The syntax for

these operators is shown in Table 7. The earlier operator allows reference to the

value of a cell that was defined at an earlier moment of logical time, thus supporting

time shifting as well as non-destructive, single-level iteration. The optional initially

modifier allows specification of a value for the cell’s vt-tuple at t1 and the until

modifier allows a specification that, at the first time t at which the test in the until

clause becomes true, the expression’s vt-tuple that is unexpired as of time t will

never expire. For example, if a cell named foo had the formula ‘earlier (foo + 1)

initially 1 until (foo > 5)’, foo’s temporal vector would be 〈(1, t1), (2, t2), (3, t3), (4, t4),

(5, t5), (6, t6)〉, and its vt-tuple at time t6 would never expire.

Fby is a syntactic alternative to earlier inspired by Lucid (Wadge and Ashcroft,

1985), and in fact is internally implemented using earlier. It simply allows the initial

value to precede the operator without a keyword, thus specifying an initial value

for time t1 and a sequence beginning at time t2. For example, ‘1 fby earlier (foo +

1) until (foo > 5)’ specifies the same temporal vector as the example in the previous

paragraph, and ‘1 fby 2’ would define the temporal vector 〈(1, t1), (2, t2)〉.
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In the context of this model of time, the complete behavior of the else-less version

of if, namely ‘If subExpr Then subExpr’, now can be presented. For a cell foo with

such a formula, if the predicate subexpression defines a vt-tuple (false, t), then foo’s

temporal vector is defined to contain no vt-tuple at time t. Hence, foo’s preceding

vt-tuple remains valid at time t, because the absence of a vt-tuple at time t means

the previous one does not yet expire. This is one way temporal vectors that are

sparse can be defined. Through this facility of one temporal vector being sparser

than another, a programmer can control the relative rates of speed of different cells’

computations, which is useful for applications such as animations and GUI I/O.

4.2 GUI input

In traditional spreadsheet languages, inputs are not delayed until the execution

of some get-like function; rather, input values are simply constants specified by

static formulas. Forms/3 supports this input model. In addition, in order to support

spreadsheet programming about sequences of event inputs such as mouse events,

there is a temporal form of input.

In Forms/3, event queues record sequences of GUI events. An event queue is

a special kind of cell that resides on the distinguished form System, and has the

constraint that for any two vt-tuples (eventi, defT imei) and (eventj , defT imej) in its

temporal vector, defTimei < defTimej iff eventi happened at a ‘real’ (clock-on-the-

wall) time before eventj . Event queues are activated when they are associated with

other cells by virtue of a cell’s formula referencing an event receptor, whose purpose

is to define and report activity in the associated event queue. An event receptor

is similar to some languages’ non-blocking input operators, such as those used for

input polling.

The events an event receptor can report are determined by a tuple: (name,

eventsOfInterest, transparent, shape), where name associates the event receptor with

an event queue, eventsOfInterest is the collection of event types that should be

considered ‘interesting’ to the associated event queue, transparent is a Boolean

specifying whether events are allowed to propagate to event receptors that are

spatially covered by this event receptor, and shape defines the event-sensitive area

(note: this is geometrical area, not screen location). By the principle of referential

transparency, if two instances of event receptor have identical tuples, then they are

identical; hence they are associated with the same event queue and report identical

events.

Event receptors, like other primitive types such as primitiveCircle, are defined

on built-in type definition forms. Thus, as with other types, multiple instances of

event receptors can be created by making copies of the eventReceptor form, and

instances of event receptors can be composed with values of other types. Figures

11 and 12 show a thermometer application that makes use of event receptors.

The thermometer displays the temperature entered in the input cell. The user can

press the F<–>C button in order to toggle the thermometer between displaying

in Fahrenheit or Celsius. The formula for the button contains a reference to cell

eventReceptor, which is an abstraction box on the primitive eventReceptor form
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Fig. 11. The thermometer application, shown from the user’s point of view. A formula tab

has been left visible to show where the user is expected to provide an input formula.

Fig. 12. The thermometer form with all formulas shown. Button (cell) F<–>C references

eventReceptor, shown in figure 13.

(shown in figure 13). The clicked? cell in figure 12, which is normally hidden from the

user, detects F<–>C button clicks given the low-level event information reported by

the event receptor, which is used in turn by the Scale cell to toggle the temperature

scale.

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


184 M. Burnett et al.

Fig. 13. Mouse and keyboard events can be referenced by referring to cells on this event

receptor form. Formula tabs are present on the modifiable cells. Cell eventReceptor (bottom

right) is the abstraction box.

4.3 Sequencing interactive I/O: an ‘interactive deadlock’ problem

Appropriate sequencing of I/O is often necessary for successful communication

with the user. However, as Wadler eloquently explains in his discussion of functional

I/O, correctly interleaving the sequence of interactive I/O has long been a problem

for applicative languages (Wadler, 1997). The earliest ‘pure’ approach, synchronous

streams (Landin, 1965; Stoye, 1986), used for example in one version of Haskell,

relied upon dependencies to implicitly control sequence. Unfortunately, it was often

difficult for programmers to interleave inputs and outputs correctly with only this

implicit mechanism for controlling sequence, resulting in waits for input before

the prompts appeared and similar problems. Because of this difficulty, many other

approaches to I/O have been developed for applicative languages.

Some of these approaches have been: imperative side-effecting constructs as in

SML (Milner et al., 1990), linear logic (Wadler, 1990; Achten and Plasmeijer, 1995),

continuations (Perry, 1989; Hudak et al., 1992) and monads (Peyton Jones and

Wadler, 1993; Launchbury and Peyton Jones, 1994; Wadler, 1997). Monads in

combination with concurrency can be used to extend monadic I/O sequencing to

the concurrent needs of GUIs, as has been shown by Haggis (Finne and Peyton

Jones, 1996), a framework for writing GUIs in Concurrent Haskell (Peyton Jones
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et al., 1996) via explicit use of monads. A related approach is that demonstrated

by the Fudgets system (Carlsson and Hallgren, 1993; Hallgren and Carlsson, 1995).

Fudgets are processes that communicate by message passing, via communication

paths created using combinators.

Despite their successes for some situations, none of these approaches seemed

viable for Forms/3. ML’s side-effecting approach violates referential transparency,

which we would like to preserve in Forms/3. Linear logic works by allowing no

more than one interaction on a single state variable, thus enforcing a linear sequence

on I/O actions. However, if placed in a spreadsheet setting, a ‘state-oriented’ cell

could only be referenced by at most one other cell, which would be inconsistent with

common spreadsheet practices. Monads and continuations do not seem viable for

spreadsheet languages because many programmers of spreadsheet languages are end

users, who are not likely to have experience working with continuations, monads or

the higher-order functions employed by these approaches.

In understanding the possible solution space for the problem of interleaving

interactive I/O correctly, it is useful to view the problem as a deadlock problem. If

I/O operations are not sequenced correctly, a situation we term interactive deadlock

can occur. To understand how the concept of deadlock applies to interactivity, think

of the user as filling the role traditionally held by a process running in a computer

system, with the application program being another process in the same system.

Recall the four classical conditions necessary for deadlock: mutual exclusion, no

preemption, hold and wait, and circular wait (these can be found in most textbooks

on operating systems (e.g. Silberschatz and Galvin, 1998). Deadlock in the context

of interactive I/O then, can occur if an incorrect program waits for input before

producing any output (holding all output while waiting for input), while the user

waits for some prompt-like output before realizing that input is expected (holding

the input while waiting for the prompt).

Viewed from the perspective of interactive deadlock, previous I/O sequencing

mechanisms have all been aimed at removing circular wait. If sequencing can be

explicitly controlled by the programmer, the application program can be written to

always release the prompt before waiting for the input, thereby preventing circular

wait.

Giving the programmer mechanisms to prevent circular wait is not the only

possible solution to interactive deadlock. Removing any of the other three conditions

can also solve the problem, and Forms/3 does so by removing the ‘hold and wait’

condition. Although Forms/3’s temporal vectors are much like synchronous streams,

user interaction can be supported without requiring the programmer to explicitly

sequence operations. The Forms/3 approach is to spread the interaction over space

concurrently – via multiple streams, each monitored in the language implementation

with its own concurrent thread, at least in theory – instead of solely over time

implemented by only one thread. (Forms/3’s implementation does not really create

a different thread to monitor each cell, but that would be one possible way to

implement the behavior we describe here, and pretending that it is implemented

in this way helps to illustrate the essence of the approach.) This allows the ‘fill in

the blanks’ approach of commercial spreadsheet input entry to be generalized to
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event-based I/O, i.e. giving control over most I/O sequencing to the ultimate user of

the spreadsheet instead of to the spreadsheet’s programmer, as advocated in Dix’s

proposal (Dix, 1987).

Key to the Forms/3 approach is the fact that Forms/3 input is non-blocking.

Even computations dependent on an un-entered input are not blocked, because in

our model of time there is always a value defined. From this and from the presence

of liveness, it follows that output is always possible, even before important inputs

have been entered.

For example, first consider the traditional spreadsheet approach to input. Suppose

some cell A’s formula is ‘Enter total income on line 1’ and cell line1’s formula is

blank. Here, the prompt is always present when cell A is on the screen, and the

user can provide the input in cell line1 whenever it is convenient, by modifying

line1’s formula. One reason it is possible for the user to choose the time to provide

the input is because in Forms/3, as in traditional spreadsheets, cell line1 has a

value even before the user changes its formula – in Forms/3 it is the distinguished

value noValue. Now suppose cell A’s formula is ‘Click the F<–>C button to toggle

between Fahrenheit and Celsius’, and cell F<–>C’s formula is as in figure 12. As in

the ‘Enter total. . . ’ example, the prompt is always present, and the user can provide

the input whenever it is convenient to do so, this time by clicking the F<–>C button

rather than by changing a formula. Also as in the ‘Enter total. . . ’ example, all the

cells have values even before the user provides inputs: for example, the value in the

visible vt-tuple of figure 13’s cell whatEvent?, whose temporal vector reports the

user’s interactions with the F<–>C cell, is NO-EVENT. This vt-tuple’s defTime is t1,

and it will not expire until the user interacts with the button at some time ti (i > 1 by

the constraint of section 4.2). If the user’s interaction with the button was a leftdown

event, then a new vt-tuple (leftdown, ti) will be defined for cell whatEvent?.

As is demonstrated in both of the examples in the above paragraph, the system

neither holds (the output) nor waits (for input). This technique allows straightforward

programming of GUI objects, such as the use of the F<–>C button, and of a variety

of business applications, in which fill-in-the-blanks paper forms are simply mimicked

by a spreadsheet.

There are some programs, however, in which interleaved sequencing of input

versus output over time is required due to direct dependencies between them, such

as needing to vary a particular cell’s value after each mouse movement. This case is

handled in a straightforward way via formula dependencies on the event receptors.

For example, to produce output dependent on interactive input, a cell could be given

a formula such as:

if (123-EventReceptor:whatEvent? <> “:motion-notify”)

or (123-EventReceptor:when? > System:time11 + 10)

then “Please move the mouse” else “Thank you!”

11 Form System’s cell named Time provides access to the system clock: Time’s temporal vector is the
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4.4 Dynamic graphical output: the implications of liveness

As the examples to this point have shown, like other live spreadsheet languages,

Forms/3 automatically maintains the display of the values of all on-screen cells.

Thus, output is implicit: there is no call to a put-like function; rather the language

automatically evaluates visible cells whenever doing so is necessary to ensure that

the display is up-to-date. For example, since figure 12’s cell Temperature directly

references cell input and transitively references cell whichButton?, then whenever

input has a new vt-tuple due to a formula edit or whenever whichButton? has a

new vt-tuple due to a mouse click, then Temperature by definition also has a new

vt-tuple, which will be computed if needed. If input’s formula were changed to

monitor temperature readings coming in from a satellite, then cell Temperature’s

display would be animated. Thus, Forms/3’s output is simply a by-product of level

4 liveness.

Level 4 liveness can be modeled abstractly by the tuple (S, E, MT , Whenever),

where S is the current state including a program as defined in Table 1, all values,

and a display state; E is a sequence of input and/or edit events such as mouse clicks

and formula edits; MT is a model of time such as that presented in this paper; and

Whenever is a never-ending function that takes state S and the most recent event of

E and produces a new state S ′ according to MT , and then invokes itself again on S ′
when the next event arrives. If MT were not included, this model of liveness would

also describe traditional spreadsheet languages’ liveness level 3. This model makes

clear that the effects of liveness on a language are fundamental, since liveness’s

Whenever function both supercedes the use of traditional output constructs and

generates computational behaviors for the purpose of maintaining the display state.

At first glance, the Whenever function may seem to be inherently eager, but this

is not the case – it is entirely compatible with lazy evaluation. As in non-live lazy

languages, all demands for computation start at the outputs, but in a live language,

everything on the screen is an output. Hence, demands are concurrently generated

for all on-screen values, which then propagate backwards through dataflow paths

in the usual way. Thus, everything on the screen is demanded, plus the off-screen

values needed to produce those on-screen values, but off-screen values not needed

for the on-screen values are not demanded.

It is the Whenever function that transforms a spreadsheet’s collection of formulas

from a single-threaded sequence of ‘function calls’ into a partially-ordered network of

one-way, equality constraints. This relationship between spreadsheet programming

and one-way equality constraint programming, when considered in the realm of time-

varying interactive graphics, suggests that the successes in using one-way equality

constraints for straightforward GUI specification (e.g. Bharat and Hudson, 1995;

Carlson et al., 1996; Hill, 1993; Hudson, 1994; Myers et al., 1990, 1996; Vander

Zanden and Myers, 1995; Vander Zanden and Venckus, 1996) can potentially be

brought to bear on the problem of functional I/O.

sequence of times reported by the system clock. (This approach to the system clock preserves referential
transparency for all programs run within a single Forms/3 session.)
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Fig. 14. An animation form for one element of the selection sort animation. The parameters

are established in cell formulas at the top and middle (through a flexible combination of text

and/or drawing), and the result is at the bottom. Automatic generalization of the formula

that references this form causes, on a lazy basis, a copy of this form to be created to animate

whichever element is actively being sorted.

4.5 An application of dynamic graphics: software visualization

We have pointed out that the presence of temporal vectors and the ability to see

them evolve over time on the screen leads naturally to the support for animated

graphics. A primary interest to us in supporting animation has been as a dynamically-

computed documentation mechanism for supporting program understanding. This

is an example of the subarea of research known as software visualization.

Forms/3 has several graphical devices intended to aid in program understanding,

but we focus here only on animation as dynamically-computed documentation.

Animation in Forms/3 is straightforward, due to the full support of graphical

types in combination with the model of time and liveness. As has already been

demonstrated, some animation is possible in Forms/3 without additional features,
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Fig. 15. A sort animation shows the elements of the unsorted group at the top being moved

one at a time to the sorted group at the bottom. The final element is moving from the top

left corner to the bottom right at this point in the animation.

but Forms/3 provides additional animation functionality through an animation type

via an animation form (figure 14). For example, to provide animated documentation

of a selection sort, a programmer may wish to emphasize the ‘move’ portion of the

algorithm, having each element step across the screen to its new location. To specify

such an animation, the programmer gives formulas for the intermediate positions

through which a graphical depiction of an element should travel, either by specifying

straight/clockwise/counter-clockwise and the start, end, and number of steps, or by

directly drawing the path (middle of figure 14). When this form is used to create

an animation of one element of a dynamic matrix, it is automatically generalized

for the other elements of the dynamic matrix (Carlson et al., 1996). After this

generalization of figure 14, the result is as shown in figure 15. For animation effects

other than spatial movement, the programmer can select options on the animation

form to specify paths through ‘visibility space’ (for fade-in/fade-out sequences),

through ‘color space’ (for gradual color transitions), or through ‘intensity space’ (for

brightening/dimming transitions). It is possible to imagine additional options for

‘orientation space’ (for rotations) and ‘magnification space’ (for scaling), but we have

not implemented these.

Since the ‘input’ cells for one animation (upper left of figure 14) can reference

the result cell (bottom of figure 14) of another animation, animation effects can be

composed in arbitrary ways. This effect is transitive; that is, other cells referring

to a cell whose (textual or graphical) values vary over time will also be animated

over time. Thus, any cell referencing the result cell on an animation form, or in fact

referencing any other time-varying cell, will also vary over time.

This transitivity is also present in other time-varying languages such as those

termed ‘synchronous’ or ‘reactive’ languages, such as Lucid (Wadge and Ashcroft,

1985; Du and Wadge, 1990) and related languages such as Chronolog, Esterel
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and LUSTRE (Orgun and Wadge, 1992; Liu and Orgun, 1996; Halbwachs, 1993);

however, these languages did not extend support to the realm of graphics and

animations. Fran (Elliott and Hudak, 1997) is a recent Haskell-based system that

supports graphics and animations through constraint-like relationships such as

Forms/3’s, but is based upon a continuous model of time as opposed to our discrete

approach. The Fran approach, as well as Haskell’s earlier approaches to I/O, have

some similarities to Arya’s seminal work on functional animation (Arya, 1989). Fran,

Haskell and Arya’s work all use devices not present in the spreadsheet paradigm

such as higher-order functions and monads. The visual dataflow language Viva

(Tanimoto, 1990) was perhaps the first first-order language specifically aimed at

visually working with images that vary over time, though Viva was not aimed at

generating animations, but rather at responding to changes in image data as they

arrived from the data source.

4.6 Time travel and steering

The model of time just presented, when combined with referential transparency and

liveness, provides an opportunity for an environment to support time travel, the abil-

ity for a spreadsheet programmer to return to (or move ahead to) a previous (future)

step of a time-based computation. Forms/3 takes advantage of this opportunity, and

with it provides the ability to steer programs. This term comes from the scientific

visualization community, and means the ability for the programmer to interactively

modify any portion of the source code at any time, and immediately see the effects

without restarting the computation (McCormick et al., 1987).

Steering can be thought of as an extension of interpreter functionality. Standard

interpreters allow code to be replaced and execution to be resumed, but the under-

lying system state after such a change may be contradictory, and worse, the display

screen after such a change is usually inconsistent with the underlying system state.

Steering in Forms/3 eliminates these inconsistencies through the liveness that imple-

ments each formula as a live constraint that must be maintained. It also eliminates

programmer effort switching between programming mode and debugging mode (see

the discussion of viscosity in Appendix A).

Note that, following the model of time of Forms/3, previous moments in time

are not historical (like ‘undo’), but rather the way values at previous positions in

logical time would have been under the current collection of formulas. The ability

to traverse historical time is the kind supported by version control systems, by a few

visual programming languages’ undo capabilities such as KidSim/Cocoa (Cypher

and Smith, 1995), and by a few visual debuggers such as PROVIDE (Moher, 1988).

On the other hand, Forms/3’s time travel backward through logical time is closer to

that of the debugger for Tolmach and Appel’s concurrent extension of Standard ML,

which has reversible logical time (Tolmach and Appel, 1991, 1993). Other related

approaches include Baker’s reversible Lisp (Baker, 1992), the Transparent Prolog

Machine (Brayshaw and Eisenstadt, 1991), which provides graphical visualizations

of Prolog queries that can be viewed at variable speeds forward and (if viewed

post-mortem, but not live) in reverse, and SPYDER (Agrawal et al., 1993), which
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Fig. 16. The slider used for time travel in Forms/3. This device allows interactive navigation

through the on-screen cells’ temporal vectors.

is an example of how backwards time travel can be supported for debugging in

an imperative language. However, the closest approach to Forms/3’s time travel

capability is ZStep (Lieberman and Fry, 1995, 1997), a visual debugger for a subset

of Common Lisp, which provides support for time travel, for viewing how values

and code are related, and for live graphical stepping.

From the view of debugging as a ‘locate-fix-verify’ process, the differences between

these prior approaches and Forms/3’s are that prior systems use time travel but not

steering, thereby supporting only the ‘locate’ step of debugging, whereas Forms/3

also facilitates the ‘fix’ step by allowing the bug to be corrected in context, and

facilitates the ‘verify’ step by automatically and immediately redisplaying values of

all on-screen cells affected by the ‘fix’ step.

For example, consider again the thermometer example in figures 12 and 13.

It contains a bug: some mouse clicks do not cause the Scale value to toggle.

A spreadsheet programmer can begin debugging by using time travel to try to

understand this behavior. Having gained an understanding of the cause (the ‘locate’

step), the programmer can, via the steering capability, edit in the necessary changes

without losing context (the ‘fix’ step), receiving immediate feedback as to the effects

of these changes (the ‘verify’ step). The details of such a debugging session might

proceed as follows.

The formulas for Scale and the F<–>C button are hidden from end users, but the

programmer can interactively unhide the formulas. The programmer examines the

two formulas, and sees that the Scale cell depends on a hidden cell, named clicked?,

and that both clicked? and the button make use of the eventReceptor in figure 13.

Bringing this form onto the screen, the programmer travels backward and forward

through time using the slider shown in figure 16 to explore how the behavior of the

eventReceptor might be affecting the Scale cell. Looking at the eventsOfInterest

cell, the programmer sees that an irrelevant event type – Motion-Notify – is being

attended to by the button, separating Button-Press, the first half of a click, from

Button-Release, the other half (see figure 17). This is the bug. The programmer

edits the formula of eventsOfInterest to remove Motion-Notify.

To find out if this edit fixed the bug, the programmer explores the now-redefined

history via time travel. It is inherent for the program’s entire history to be redefined

according to this change because cells’ histories are defined solely by their formulas

and attributes. This is another way liveness is used to support debugging – as soon

as a change is made, all affected histories are automatically (but lazily) redefined

and all affected on-screen values are automatically recomputed and redisplayed,

maintaining consistency between the system state and the display state. Thus, time
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Fig. 17. An annotated sequence of screen shots depicting the sequence of values in time for

cells on form eventReceptor. The programmer travels through time by manipulating the time

slider.

travel now reflects history as computed under the new version of the program. This

allows the programmer to explore the program to determine whether the values

changed as expected. The programmer is spared the usual effort of mode switching:

re-running the program repeatedly, instrumenting the program with breakpoints or

diagnostic statements, recompiling and reconstructing the context in which the bug

occurred before. In this example, the programmer sees that the clicks are now all

recognized, and the bug is fixed.

To preserve liveness’s immediacy of feedback, time travel must be efficient. Our

approach allows tunability by the language installer regarding the emphasis on space

versus time efficiency. Regarding space efficiency, in Forms/3, all of a cell’s sequence

(history) is completely defined via its current formula and attribute set, making the

storage of the actual values unnecessary for correctness. The only information in

addition to a cell’s formula and attributes that absolutely must be stored are the user

events (mouse clicks, etc.). (In fact, in our implementation, we store only a subset of

user events – the user events of types and locations declared to be of interest to an

event receptor – which is sufficient unless the formulas are edited to express interest

in new types of events or in larger spatial areas, in which case the system loses

backward time travel capability for events before the edit.) This definition-based

approach means that the history of a Forms/3 program can be stored using only

the amount of space required for the source code plus the relevant user events.

Time efficiency is aided by laziness. In the above example, when the programmer

edits eventsOfInterest, Scale is the only cell that needs to be recomputed from
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the beginning of time, because it is the only one that depends upon its own earlier

values. There are other cells affected by the programmer’s edit (via dependencies on

eventsOfInterest or on Scale), but their vt-tuples at earlier moments in time are not

needed for output and hence are not computed: the only vt-tuples that are needed

for these other cells are those on display at the current time and whichButton?’s

vt-tuple just before (to decide if a click has occurred).

Caching also provides time efficiency opportunities: although the system need not

save unchanged cells’ temporal vectors for correctness, clearly response time can

be improved if it does cache at least some of them. For example, without caching,

a programmer traveling back and forth through time could force the program to

re-display the same values many times, generating duplicate computations. To solve

this problem, as much cache space as desired can be used to reduce the number

of duplicated computations via lazy memoization (Hughes, 1985), an adaptation of

memoization (Michie, 1968) for lazy evaluation. Although management of the cache

itself requires time, it has been shown both theoretically and practically to be far

less than the time required to maintain the display without saved values (Burnett et

al., 1998).

5 Related work

5.1 Related work on spreadsheet languages

Two widespread limitations in prior spreadsheet languages have been in the limited

types supported and the lack of abstraction capabilities. For example, commercial

spreadsheet languages support graphics as decorations or as outputs based upon

spreadsheet values, but many do not support interactive graphics or graphical

types as first-class values that may be incorporated into other computations, and

do not support user-defined graphical types. Commercial spreadsheet languages

that do support computations on graphics have done so through devices that are

incompatible with the value rule, namely via imperative macro languages and escapes

to traditional imperative languages.

One of the pioneering research spreadsheet languages to address graphics in

spreadsheets was NoPumpG (Lewis, 1990) and its successor NoPumpII (Wilde

and Lewis, 1990), two early spreadsheet languages designed to support interactive

graphics without macros or other non-formula devices. The design goal of these

languages was to provide the capability to create low-level graphical primitives while

adding as little as possible to the basic spreadsheet paradigm. Thus, NoPumpG and

NoPumpII include some built-in graphical types that may be instantiated using cells

and formulas, and support limited (built-in) manipulations for these objects, but do

not support complex or user-defined objects.

Several research projects have aimed at extending spreadsheet language function-

ality through imperative devices. Penguims (Hudson, 1994) is an environment based

on the spreadsheet model for specifying user interfaces. Its goal is to allow interactive

user interfaces to be created with little or no traditional programming. Its support

for abstraction is similar to Forms/3’s – it provides the capability to collect cells

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


194 M. Burnett et al.

together into ‘objects’ – but unlike Forms/3, it employs several techniques that do

not conform to the spreadsheet value rule, such as interactor objects that can modify

the formulas of other cells, and imperative code similar to macros. Action Graphics

(Hughes and Moshell, 1990) is a spreadsheet language for graphics animations.

It too provides some support for complex objects. Animation in Action Graphics

is performed through functions that cause side-effects. Smedley, Cox and Byrne

have incorporated the visual programming language Prograph and user interface

objects into a conventional spreadsheet system in order to provide spreadsheet users

with graphical interface capabilities (Smedley et al., 1996). The Prograph approach

includes imperative devices and side effects. SIV (Spreadsheet for Information Vi-

sualization) is a recent spreadsheet research effort aimed at supporting information

visualization (Chi et al., 1998). SIV formulas are state modification oriented: the

syntax for formulas is ‘command result–cell arguments’. SIV formulas and cellnames

can also employ general Tcl code/variables, an approach also followed by Levoy’s

Spreadsheet for Images (Levoy, 1994).

C32 (Myers, 1991) is a spreadsheet language that uses graphical techniques to

specify user interfaces. Unlike the other spreadsheet languages described here, C32

is not a full-fledged spreadsheet language; rather, it is a front-end to the underlying

textual language Lisp used in the Garnet user interface development environment

(Myers et al., 1990). C32 is a way of viewing one-way constraints, but does not

itself feature the graphical creation and manipulation of graphical objects. Instead,

this function is performed by the demonstrational system Lapidary (Vander Zanden

and Myers, 1995), which is another part of the Garnet package. The combination of

C32 and Lapidary (and the other portions of the Garnet package) features strong

support for direct manipulation of built-in graphical user interface objects, but not

for any other kinds of objects, which must be written and manipulated in Lisp.

Forms/3 is a descendent of two earlier languages that explored ways to expand

the spreadsheet paradigm, Forms (Ambler, 1987) and Forms/2 (Ambler and Burnett,

1990). The spreadsheet language Formulate (Ambler and Broman, 1998; Ambler,

1999) is another descendent of these two languages. Formulate has been used

primarily as a vehicle to research the support of matrix-oriented computations

using multiple levels of formulas (Viehstaedt and Ambler, 1992; Wang and Ambler,

1996). Recent work on Formulate also incorporated the use of voice, handwriting,

and gestures as input modalities for fine-grained entry of spreadsheet formula

operands and operators, all three of which modalities can be mixed in the entry of

a single formula (Leopold and Ambler, 1997). On the other hand, Forms/3’s foci

have been primarily on abstraction, such as in combining data abstraction with

direct manipulation, and on the use of a logical time dimension in spreadsheet

programming.

5.2 Related work on visual languages

Forms/3 has been influenced by work in several types of visual programming

languages, especially by demonstrational programming languages (Cypher, 1993),

which support programming by direct manipulation of objects. Of these, the most
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closely related to our work are those featuring a declarative approach, which to date

have followed either the rule-based or the constraint-based paradigm. KidSim/Cocoa

(Cypher and Smith, 1995) and Visual AgenTalk (Repenning and Ambach, 1996)

are demonstrational systems that use direct manipulation to specify declarative

graphical rewrite rules. Although the approaches used by these systems have some

similarity to ours in their support for directness using a declarative mechanism, they

do not provide full-featured, declarative specification of objects and attributes.

The multi-way constraint systems TRIP3 (Miyashita et al., 1992) and IMAGE

(Miyashita et al., 1994) also use direct manipulation as a means of specifying relations

declaratively. In these systems a visual example defines a relationship between the

application data and its visual representation. One fundamental difference from

Forms/3 is that the purpose of TRIP3 and IMAGE is to provide a visual interface to

traditional textual programming languages, while Forms/3 aims to extend the power

of the spreadsheet paradigm without involving any other programming language.

Another fundamental difference is that that TRIP3 and IMAGE use multi-way

constraints, which are not consistent with the spreadsheet value rule. To see why,

imagine specifying the formula for cell X to be a box whose width is a reference to

cell W (whose formula is cell A plus cell B). If the user then selects and stretches

the box in X, what does that mean for cells W, A, and B? If any of these were

automatically changed, the value rule would be violated for the changed cell(s);

if they were not changed, the multi-way nature of the constraints would not be

maintained.

6 Continuing and future work

A continuing theme of this research has been scalability, a problem suffered by

many visual and end-user languages (Burnett et al., 1995), and we have been

working on that problem from both language design and software engineering

directions. One of our projects in the area of language design has been to devise

an approach to exception handling that extends the ‘error value’ model followed

by most commercial spreadsheet languages to allow user-defined exceptions and

to support ‘replacement value’ exception handling (Burnett, Agrawal and von Zee,

2000). Another feature in progress is a new, fine-grained approach to inheritance

termed similarity inheritance (Djang and Burnett, 1998). Similarity inheritance is

similar to copy/paste, but maintains relationships among duplicated formulas; it

is intended to bring some of the benefits of traditional inheritance to spreadsheet

users who are not trained in traditional inheritance. One of the challenges with

this fine-grained, relatively unstructured approach is that extensive support from the

language and environment seems necessary to make it usable. As in many other

applicative languages, type information can be used to help with this task. The

current implementation of Forms/3 is dynamically typed, but we are working on a

model of static type inference that can operate at the fine-grained level necessary to

support similarity inheritance (Djang et al., 2000).

Regarding software engineering issues, we are currently working to explicitly

support debugging and testing of programs written in spreadsheet languages. We

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


196 M. Burnett et al.

began that work by conducting an empirical study to learn more about how liveness

affects debugging in this paradigm (Wilcox et al., 1997; Cook et al., 1997). We are

in the process of building upon that work by developing a new methodology for

testing spreadsheets that can help with both testing and debugging (Rothermel et al.,

1997, 1998; Burnett et al., 1999; Reichwein et al., 1999). Our methodology includes

several test adequacy criteria and low-cost incremental program analysis techniques,

and uses them to track how thoroughly tested each cell is according to the selected

criterion. The cell’s ‘testedness’ status is updated automatically after each user action,

and the visual feedback mechanism continuously communicates this status using the

border color of each cell.

Debugging support relates strongly to the ability to see any value at will, both

intermediate and final answers. Spreadsheet languages generally already support

this capability over space, and we have shown how Forms/3 also supports it along

the time dimension. In fact, another way of looking at support for time travel

is that it simply extends the capabilities already available in spatial dimensions

in spreadsheet languages to another dimension (time). Looking at time travel in

this way has recently led us to develop a continuum of temporal programming

and visualization models that make various trade-offs between supporting time

as just another dimension in the spreadsheet world, versus allowing programming

of specifically temporal attributes such as speed relationships (Burnett, Cao and

Atwood, 2000).

7 Implementation status

Forms/3 is currently implemented in Liquid Common Lisp with the Garnet user

interface system (Myers et al., 1990). We also have a Java version in process. The

Forms/3 implementation is publicly available at:

http://www.cs.orst.edu/∼burnett/Forms3/forms3.html

8 Conclusion

One of the primary goals of the research for which Forms/3 serves as a prototype

is to test the limits of the spreadsheet paradigm, both from the perspective of

language design issues such as computational power and expressiveness, and from

the perspective of human-oriented issues such as usability and directness. As the

results presented in this paper show, it is possible to leverage the spreadsheet

paradigm far beyond the current state of practice to include features such as the

following:

• Graphical types: the support of both primitive and user-defined graphical

types as first-class types allows them to be created and accessed in formula

calculations.

• Gestural programming: the ability to ‘call’ operations using contextual direct

manipulations and gestures promotes directness. An empirical study indicated

that this type of syntax improved programming speed and accuracy.

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


The boundaries of the spreadsheet paradigm 197

• Dynamically-sized grids: dynamically-sized grids provide the functionality of

both lists and traditional matrices, allowing a wider range of calculations to be

specified than has been possible using the statically-sized, statically-referenced

grids of commercial spreadsheet languages.

• Generalized abstractions: both procedural abstraction and data abstraction are

possible in the spreadsheet paradigm without employing function definitions

or other devices from traditional languages, instead using only a variation of

linked spreadsheets coupled with an entirely deductive approach to general-

ization.

• Graphical I/O: combining a simple model of time with graphical types and

liveness allows event handling and animations to be supported without the use

of higher-order functions, and without the synchronization problems of prior

stream-based approaches. This allows a straightforward, yet fully declarative

approach to GUI I/O and animated graphics without requiring the addition

of higher-order functions to a spreadsheet language.

• Time travel and steering: the declarative semantics combined with the live

evaluation model makes advanced programming environment features such

as steering programs (modifying source code in context while observing

resulting changes) viable. These features are of particular relevance to

debugging.

Most important, these features are possible without the use of impure solutions

such as imperative macro languages or trapdoors to traditional programming lan-

guages, thereby opening the possibility of the use of these features by several different

kinds of populations, including not only professional programmers, but also end

users.
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Appendix A: HCI research and spreadsheet language design

A beneficial side-effect of the focus of the spreadsheet paradigm on end users has

been that it has brought extensive Human-Computer Interaction (HCI) research to

bear upon spreadsheet language design (e.g. Nardi (1993); Hendry (1995); Hendry

and Green (1993)). Four features for which there has been work that is of particular

relevance to spreadsheet languages are (1) directness, (2) viscosity, (3) immediate

visual feedback, and (4) hidden dependencies.

The term directness as used in the HCI community expands upon the term direct

manipulation, first coined by Shneiderman to describe three principles: continuous

representation of the objects of interest; physical actions or presses of labeled buttons

instead of complex syntax; and rapid incremental reversible operations whose effect

on the object of interest is immediately visible (Shneiderman, 1983). Hutchins, Hollan

and Norman expand upon these notions, suggesting that the degree to which a user

interface feels direct is inversely proportional to the cognitive effort needed to use

the interface (Hutchins et al., 1986). They describe directness as having two aspects.

The first aspect is the distance between one’s goals and the actions required by the

system to achieve those goals. In traditional spreadsheet programming, distance is

fairly small because the goals, which traditionally have to do with finance-oriented

mathematics, can be accomplished using a mathematical vocabulary. For example,

the goal ‘what is the sum of column A’ is expressed via the formula ‘sum(A1 : A12)’

instead of requiring recursion or a vocabulary of loops and state modification.

In contrast to spreadsheet languages, Green and Petre enumerate several examples

showing the unfortunate lack of this aspect of directness (termed closeness of mapping

in their work) in commonly-used programming languages (Green and Petre, 1996).

The second aspect of directness is a feeling of direct engagement: ‘the feeling that

one is directly manipulating the objects of interest’. Nardi sees direct engagement as

a critical element in spreadsheet languages’ usability, due in part to the freedom from

low-level programming minutiae in favor of task-specific operations (Nardi, 1993).

The notion of aiming for directness as a programming language design goal has in

recent years begun to influence other kinds of end-user programming languages and

domain-specific languages as well.

Green et al.’s research into how the structure of a programming language or en-

vironment’s characteristics relate to cognitive issues in programming provides useful

insights into the difficulties and advantages of various language or environmental

devices. Two of the characteristics studied, viscosity and feedback, are of particular

relevance in the realm of spreadsheet languages. Viscosity is programmer effort

required to change a program. There is research showing that programmers iter-

atively create their programs, making change after change throughout the entire

process (Green and Petre, 1996). If a programming environment does not allow

these changes to be easily inserted, the programmer must exert considerable extra

effort devoted solely to the mechanics of change. For example, in traditional pro-

gramming environments, to change a program and validate the correctness of the

change, a programmer must enter the change using an editor in one step, recompile

the program in another step, and re-run the program (re-entering the inputs) to test
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the result. The traditional requirement that programmers manually switch among

several tools and modes is an example of high viscosity, and spreadsheet systems

eliminate much of this viscosity through the use of a unified, relatively modeless

environment that guarantees an incrementally runnable program with immediate

visual feedback after each change.

The aspect of feedback most relevant to spreadsheet language design is how dif-

ferent liveness levels affect people’s abilities to program and debug. Green and others

have pointed out both positive and negative aspects of feedback but, particularly for

novice programmers, more positives than negatives have been reported. (In Green’s

work, liveness at levels 2 and above when applied to partially-completed programs

are called progressive evaluation.) For example, in a study comparing the compre-

hension differences in debugging between novice and expert programmers (Gugerty

and Olson, 1986), it was shown that self-evaluating their progress frequently (via

frequent executions as a program evolves) was essential for novice programmers

and that, while it was not essential for experts, the experts actually use execution of

partially-completed programs even more frequently while debugging than novices

do. Maximizing liveness reduces the amount of effort a programmer must exert to

self-evaluate an unfinished program in this fashion. A more recent study evaluating

how liveness affected programmers’ ability to debug in Forms/3 also reported more

positive outcomes than negatives associated with liveness (Wilcox et al., 1997; Cook

et al., 1997).

The fourth feature that has been investigated extensively in spreadsheet languages

is hidden dependencies. Hidden dependencies are dependencies that are not fully

visible (explicit) in the program (Green and Petre, 1996). For example, in many

traditional languages, side effects are possible, so named because they are not

visible in a procedure or method call; thus they are hidden in that they are not

present in the programmer’s communication with the procedure/method. Hidden

dependencies arise in many spreadsheet languages because formula dependencies

are usually partially hidden. For example if A’s formula references B, which in

turn references C, which in turn references D, one can examine B’s formula to

see cells that directly affect it (C), but not to see that D transitively affects it or

which cells B itself affects (A). Hidden dependencies are linked with bug presence

and debugging time per bug in programming languages in general and spreadsheet

languages in particular. To solve this problem, some spreadsheet languages have

incorporated devices to make hidden dependencies explicit (Hendry, 1995; Hendry

and Green, 1993; Yang et al., 1997). Forms/3 devices aimed at this problem that are

demonstrated in this paper include arrows that can be toggled on and off to show

dataflow and copy dependencies, and gray shading supplemented with legends to

indicate copy dependencies.

Appendix B: Turing machine simulator

Figures B1 through B4 show a basic Turing machine simulator written in Forms/3.

Given Forms/3’s support for recursion, its Turing completeness is not surprising.

However, the implementation given here does not use recursion; rather, its func-
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Fig. B1. Form TuringProgram allows a user to specify the Turing machine’s properties. In the

Transitions dynamic matrix, the first row is the index of tape symbols, and the first column

is the index of states. The proper transition is found by accessing the dynamic matrix element

found in the row containing the current state as its index, and in the column containing the

current tape symbol. The transitions are expressed as triples, consisting of the next state, the

symbol to write on the tape, and a direction to move. Every cell on this form is an ‘input’,

that is, the user has entered its value directly via a constant formula, such as the formula ‘7’

for cell NumStates.

tionality is achieved through spreadsheet formulas that specify groups of cells in

dynamic grids over time.

Shown in figure B1 is Form TuringProgram, which allows specifying the properties

of a Turing machine. This particular Turing machine performs a classic textbook

example (e.g. Linz (1996)); it takes a string of binary digits as input and produces

that string concatenated with itself. Form TuringCompute in figure B2 carries out the

computations according to this specification, and form TuringAnimation in figure

B3 provides animated output, such as that shown in figure B4.

The logic of the version of TuringProgram provided to solve this problem is as

follows (state transitions are included in parentheses):

1. From the initial state (q0), traverse the original string from left to right, replacing

each ‘0’ with an ‘x’ and each ‘1’ with a ‘y’ (when finished, transition to state q1).

2. Return to the left end of the string (and transition to state q2). Then replace the

first letter with its corresponding numeral (and transition to state q3 or q4).

3. Move to the first blank to the right of the string and write the same numeral as

written in step 2 (and transition to state q5).

4. If any letters remain on the tape, (transition to state q1 and) repeat from step 2.

Otherwise, stop (transition to final state q6).

https://doi.org/10.1017/S0956796800003828 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003828


The boundaries of the spreadsheet paradigm 201

Fig. B2. TuringCompute performs the calculations specified by the Turing machine’s Turing-

Program (figure B1). RealInitialTapePosition is an implementation convenience, to abstract

away the fact that the actual operation of the Turing machine places a ‘Blank’ in the first

Tape position. Note the use of the else-less if expression in cell NextState: only at times at

which the if test succeeds are new vt-tuples defined in NextState’s temporal vector.

Fig. B3. TuringAnimation provides the animated output. This is the programmer’s view.

Cell Indicator has been moved farther down than normal to allow room for displaying the

formulas. CurrentGlyph is the graphic to use in the animation.
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(a)

(b)

Fig. B4. (a) The animated output as seen by the user, partway through the program’s

execution. Only the features visible to the user are shown; cells containing implementation

details have been hidden by the programmer, as have the formula tabs, borders, and labels;

(b) the animation as it appears when the final state is reached.
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