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TORSION-FREE ABELIAN GROUPS TORSION OVER
THEIR ENDOMORPHISM RINGS

THEODORE G. FATICONI

We use a variation on a construction due to Corner 1965 to construct (Abelian)
groups A that are torsion as modules over the ring End (A) of group endomor-
phisms of A. Some applications include the failure of the Baer-Kaplansky Theorem
for Z[X]. There is a countable reduced torsion-free group A such that JA = A for
each maximal ideal I in the countable commutative Noetherian integral domain,
End (A). Also, there is a countable integral domain R and a countable R-module
A such that (1) R = End(4), (2) To ®r A # 0 for each nonzero finitely gener-
ated (respectively finitely presented) R-module Ty, but (3) T ®r A = 0 for some
nonzero (respectively nonzero finitely generated) R-module 7.

1. INTRODUCTION

All groups considered in this paper are Abelian. The construction of groups with
prescribed endomorphism ring originates with Corner’s work [6] where he shows that
each countable reduced torsion-free ring R is the ring of group endomorphisms of a
torsion-free group A. Inspection of the proof reveals that the group A is an extension
of R by a free QR-module. In [7], the free module is replaced by a direct sum of
cyclic modules that are discrete in a complete Hausdorff linear topology on R. Other
realisation Theorems show that each cotorsion-free ring R is the endomorphism ring
of a torsion-free group A, (8], and again A is an extension of a free R-module by
a free QR-module. These constructions do not allow us to vary some of the subtler
End (A4)-module structure of 4.

In [14, Theorem 3.1] we prove that if R is a torsion-free ring of finite rank and
if M is aleft R-module whose additive structure is a torsion-free group of finite rank
then under mild hypotheses on M there is an exact sequence

(1.1) 0—M—A4—QC—0

such that C is a doubley generated free left R-module and R = End(4). While this
construction allows us some flexibility in the End{A)-structure of 4, it still depends
upon the existence of a copy of R in M.
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To describe our results, we require some terminology. If M is a left R-module
whose additive structure is a countable reduced torsion-free group then M is called a
Corner R-module. Given the left R-module M such that anng (M) = 0, let T'(QM)
be the set of annhilators of finite subsets of QM. Then I'(QM) generates a Hausdorff
linear topology on QR. Let 67-?. denote the completion of QR under this topology,
and observe that QM is a left @-module. Finally, let

O(M) = {g€ QR | qM C M}.

Then M is a left O(M)-module, and we let T(M) denote the set of annihilators of
finite subsets of M in 5(M ). Our main result is

THEOREM 1.2. Let R be a ring and let M be a Corner R-module such that
anng (M) = 0. There is an exact sequence (1.1) of left R-modules such that

1. C is a direct sum of cyclic R-submodules of M(®) the direct sum of
countably many copies of M ;

2. There is a topological isomorphism O(M) = End(A) where O(M) is
endowed with the topology generated by T(M ) and where End(A) is
endowed with the finite topology.

When I'(QM) is discrete, (that is when 0 is the annihilator of a finite subset of
QM), then A is a self-small group and the construction is a generalisation of [14],
which borrowed heavily from [15]. The present comstructions will clone the elegant
technique used in [7] to construct the short exact sequence (1.1).

Specific constructions contrast the theory of Abelian groups with the theory of
modules over arbitrary integral domains. For example, let R = Z[X] and let L be a
torsion (as a Z[X]-module) Corner R-module. Then L is the torsion R-submodule of a
(strongly) indecomposable mized Corner R-module A. (A is mixed if A4 is not a torsion
module and A contains a nonzero torsion R-submodule.) This is in contrast to the fact
that no mixed group is indecomposable. Furthermore, each X-torsion Corner module
L imbeds in a (strongly) indecomposable X-torsion Corner module. As a consequence
of these examples, the Baer-Kaplansky Theorem is false for mixed Z[X]-modules and
for torsion Z[X]-modules.

Our constructions also illustrate the limits of some results from the literature. For
example, it is well known that if T' is a right R-module and if Ty ® g A = 0 for each
finitely generated R-submodule Ty C T then T®rA = 0. In 3.16 and 3.17 we construct
a countable local commutative integral domain R and a countable R-module A such
that (1) R = End (A4), (2) To®Rr A # 0 for each nonzero finitely generated (respectively
finitely presented) R-module To, and (3) T ®r A = 0 for some nonzero (respectively
nonzero finitely generated) R-module T'.
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Lastly, if A is a reduced torsion-free group of finite rank and if End (4) is either
local or commutative then A # A for each proper right ideal I C End (A4). However,
we construct a reduced self-small torsion-free group A such that A = A for each
maximal ideal I C End(A4) and such that End (A4) is a local commutative Noetherian
integral domain.

Our notation and terminology follow [3] and [15], and information on the finite
topology can be found in [15]. As usual, Z is the ring of rational integers, Q is
the field of rational numbers, and given a torsion-free group G, QG is the divisible
hull of G. We identify QG = Q ®z G. The notations Hom (and End) without
subscripts denote the group (ring) of group homomorphisms. Also anng(X) = {r €
R | rz = Oforeachz € X}. See [1] for the elementary properties of annp. We
mention that if £ = ) ;z; is an independent sum, (that is if rz = 0 implies rz; =0
for each i), then anng () = anng ({z: | i}). Also, because M is a torsion-free group
annp (kF) = anng (F) = [ anng(z) for each 0 # k € Z and subset F C M.

z€F

2. CORNER’S CONSTRUCTION
Throughout this paper, R denotes an associative ring with identity, the term mod-
ule means left R-module, and M denotes a Corner module, (that is Mt is a countable
reduced torsion-free Abelian group), such that anng (M) = 0. Similarly define Corner

ring and Corner group.
RELATIVISED FINITE TOPOLOGIES. Given a ring S and a left S-module L
(S, L) =T(L) = {anns (F) | F C L is finite}

is the base of open neighbourhoods of zero for a linear topology on S called the L-
topology on S. We shall identify the L-topology on S with I'(L). Observe that I'(L)
is Hausdorff if and only if anng (L) = 0, and T'(L) is discrete if and only if 0 € T(L) if
and only if there is a finite set F C I'(L) such that anng (F) =0.

Given a set I' of right ideals of S, the left S-module N is called I'-torsion if N
is a homomorphic image of a direct sum of cyclic modules of the form S/I for some
IeT. Clearly L is a I'(L)-torsion left S-module.

If T'(L) is Hausdorff then we let §;, denote the completion of § in I'(L). Further-
more, L is a left 3 r-module as follows:

2.1. Let 7€ S and z € L. There is a Cauchy net {rr} C S, (indexed by the finite
subsets of L), that converges to 7. Choose a finite set F C L such that z € F and
rg — rr € anng (z) for each finite set ¥ C E C L. Then (rf —rg)z = 0 so that
rpz = rgz. Define 7z = rpz. This makes L a unital left S-module. Observe that
anng (L) = 0.
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From the above discussion we have a linear topology T'(QM) = I'(QR, QM) on
QR called the QM- topology Because I‘(QM ) is Hausdorff and because QR is a dense
subring of the completion QRQM QR anngz % (QM) = 0.

Let

O(M) = End(M)NQR = {gc QR | M C M}.

Then M is left O(M)-module, and anng »p (M) = 0. The M-topology on O(M) is
generated by T'(M) = I‘((’)(M), M) . Observe that

anng,, (F) = anngy (F) N O(M)

for each subset F C QM . Thus, f(M ) is the relativised topology in 6(M ) as a subring
of @ We shall use this last observation without fanfare.

LEMMA 2.2. O(M) is complete in the M-topology.

PROOF: By the observations preceeding the Lemma, a Cauchy net {rr} C @(M )

is also a Cauchy net in 672, so {rr} converges to an element ¥ € 672, which clearly
satisfies M C M. 1

THE CONSTRUCTION OF A. To construct the exact sequence (1.1) we clone the process
used in [7, p.66]. Unlike the proofs in [14, p.10] and [15, p.233], the process in [7] does
not require a local/global argument.

There is an uncountable domain P C Z such that each element of P is a rational
multiple of a unit in P, [6, Section 2], and there is a countable subring I C P such
that the following Lemma is true.

LEMMA 2.3. Let L C P be a set that is linearly independent over II, and let
{za | AeL}c QM.

1. If 3 Azx =0 then zy =0 foreach A€ L.
AEL

2. anng (2 A:L‘,\) = anng ({z | A € £}).

AeL
The next Lemma constructs a direct sum of cyclic I'(M)-discrete modules.
LEMMA 2.4. There is a Corner submodule N C M such that

1. MNN=0;

2. For each finite set E C M there is ug € N such that anng(ug) =
anng (E); B

3. N is a direct sum of cyclic submodules of M(¥0),
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PRroOOF: Because M is countable the set Po(M) of finite subsets of M is countable,
and because P is uncountable, there is a countable set

L={1,Ag, | EEPy(M)andze€ E} CP
that is linearly independent over . Given E € Po(M) let

2.5 Uugp = Z Agzz,
z€EE

and let

Because L is linearly independent over II 2.3.1 implies that the sum )., Rug is
E€Po(M)

direct, and that M N N = 0. Thus N satisfies 2.4.1.
Fix E € Po(M), and consider the element ug € N given in 2.5. Because L is
linearly independent over II, anng (ug) = anng (E), 2.3.2, so that N satisfies 2.4.2.
Finally, given E € Po(M), 2.4.2 shows that there is an imbedding Rug — M(F)

such that ug — @ z. Then N can be imbedded in M(®) as required by 2.4.3. [
z€E

Throughout the sequel, N denotes the module constructed in 2.4.

2.6. In as much as M @ N is countable there exists a set of units
A={emn|meM,ne N}CP

that is algebraically independent over II. Let A be the pure subgroup of M generated
by M, N, and the Repy,,

A= (M, N, R(m ®n)emn |m € M,n € N).

meM,neEN

=ﬁﬂQ(M+N+ z R(men)emn).

Observe that A is a Corner submodule of M.
PROPOSITION 2.7. Let €, be asin 2.6.

1. Y. R(m®n)emn is a direct sum of cyclic submodules of M(¥o),
meM,neEN

2. A is aleft O(M)-module.
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PROOF: (1) The independence of the sum follows from 2.3.1. Because €5, is a
unit in P, Rim @ n)emn = R(m @ n) C M & N, and by 2.4.3 there is an imbedding
M&N - Mo M®Bo) = pr(R)

(2) Observe that QA is a left QR-module, so by 2.1 QA is a left @—module.
Because M is left O(M)-module, M is a left O(M)-module, and hence M N QA = A
is a left O(M)-module. 0

ENDOMORPHISMS OF A. The proof of the next Lemma is close to that in [7, p.67], so0
the process of comparing coefficients has been left to the reader.

LEMMA 2.8. Let n € End(A). Foreach m € M, n € N there is an r, € QR
such that n(m) = rmam and n(n) = rmpn.

PROOF: Let n € End(A). Because A is a pure subgroup of M, 7 lifts to a Z-
module homomorphism 5: MM , and because 4 is torsion-free 5 lifts to a Q-vector
space homomorphism 7: Q4 — QA.

Let me€ M, n € N. By 2.6 there is a finite subset E C M @ N such that

(1) ”((m @ n)emn) = ﬂ(m D n)emn

(2) =z + z 'l'mlnl(m' & n')em’n’
m'@n’'€E

(3) 17(m @ n’) =y+ Z 3m'nl(m' @ n')em:n:
m'@n'eE

where z,y € Q(M @ N) and 7,11, 8prr € QR. Assume without loss of generality
that m@®n € E. Asin (7], substitute (2) and (3) into (1) and then use 2.3.1 to compare
coefficients in (1) and (2) to prove that ¢ = r(m' @ n') =0 for each m' & n' € E,
Smim! (M @n')=0foreach mdn#m' ®n' € E, and rpa(mdn) =y =n(m dn).
Finally, because m @0, 0@ n € M@ N the above argument produces 7,,, r, € R
such that n(m) = rpmm, 9(n) = ran, and (MO n) = rpa(mdn) = rm G ran.
Because M @ N is a direct sum of modules, rpp,m = rp,m and rppn = ron. This
completes the proof. . 0

The rest of the proof is different enough from [7, p.67-68] that we give a more
detailed account. However, the idea is the same: realise a given endomorphism 7: 4 —
A as left multiplication by the limit of a Cauchy net (sequence) in R.

LEMMA 2.9. There is an isomorphism of rings O(M) = End (4).

PRoOOF: By 2.7.2 4 is an 5(M)-submodule of M. Inasmuch as 74 =0 implies
M =0 implies r =0 for r € 6(M), there is an imbedding of rings 5(M) — End (4).
We claim this imbedding is an isomorphism.
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Let 7 € End(A) and let E C M be finite. By 2.4.2 there is an element ug € N
such that anng (ug) = anng (E).

Next, 2.8 states that for each m € E there exists rp € QR such that n(m) =
rmem and n(ug) = rmpug. Let rg be any one of the ryg. Then rppup = n(uE) =
rgugp for each m € E, so that

TE — ’mE € anng (ug) = anng (E) C anng (m).

Then (rg — *mg)m = 0 shows that rgm = rmpm = n(m) for each m € E.

Subsequently, the set {rg | E C M is finite} is a Cauchy net in QR under the
QM-topology. Let 7 denote the limit in 61\2 of this Cauchy net. By 2.1 7m = rgm =
7(m) for each finite set E C QM and each m € E. Thus {n — #F}(M) = 0. Inasmuch
as A C M is a reduced group, we can proceed as usual (see for example [6, 7, 8, 13,
14, 15]), to show that n =7 € 6(M) Therefore, the imbedding O(M) — End (A4) is
an isomorphism. 0

The proof of the next lemma is identical to that given in [7, p.68-69], and is thus
left to the reader.

LEMMA 2.10. The M-topology on O(M) is equivalent to the relativised finite
topology on 6(M) as a subring of End (4).
PROOF OF THEOREM 1.2: Given the Corner module M construct N C M and
A asin 2.6. Let
C=No Z R(m @& n)emn.
meM,neN
Because M C AC M , A/M is a torsion-free divisible group, and thus A/M = QC as

modules. By 2.4.3 and 2.7.1 C is a direct sum of cyclic submodules of M(®0)  Thus
1.2.1 is satisfied.

Furthermore, by 2.9 and 2.10 there is a topological isomorphism 6(M ) = End (4),
where O(M) is endowed with the M-topology and where End (A) is endowed with the
finite topology. This completes the proof of Theorem 1.2. 0

The proof of the Corollary follows immediately from 2.6.

CoROLLARY 2.11. Let R be a ring, let M be a Corner module such that
anng (M) = 0, and let (1.1) be the sequence constructed by Theorem 1.2. Then the
exact sequence of left modules

0—QM —- QA — QC — 0

formed by applying Q @z - to (1.1) is split exact.
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SELF-SMALL GROUPS. A variation on the above construction produces modules A such
that End(A) is discrete in the finite topology. We begin by constructing a unimodular
element.

LEMMA 2.12. Let M be a Corner module. There is a u € M such that
anng (u) = anng (M).

PROOF: Because M is countable we can write M = {m; |1 =1, 2,...}. Choose
aset {A; |i=1,2,...} CP that is linearly independent over II, (see the remarks

00 — E
preceeding 2.3). Then u = Y p*Aim; is a convergent sumin M. Let upr = ¥ p*Aim;.

i=1 i=1

Given r € anng (u) and a positive k € Z then rup = ruy — ru € p*M. That

k 3
is, the p-height of ruy is at least k. However, because the finite sum Y p*A;m; is
. k=1
independent, 2.3.1, the p-height of ruj is at most the p-height of »(pA1m,;). We arrive

at a contradiction unless ru; = 0. But then by 2.3.2

r € n anng (M, ..., mi) = anng(my, my, ...) =annp (M) =0
k>0

as required by the Lemma. 1]

A group A is self-small if the natural imbedding Hom (4, A)(c) — Hom (4, A(C))
is an isomorphism for each cardinal c. Let

O(M)={q9€ QR | ¢M C M}.

The next Theorem extends [14, Theorem 3.1].
THEOREM 2.13. Let R bea countable ring and let M be a Corner module such
that anng (M) = 0. There is an exact sequence (1.1) of modules such that

1. C is a free module;
2. O(M)=End(A); and
3. A is self-small Corner group.
PROOF: By 2.12 there exists a u € M such that ann+g(u) = anng (M) =0, and
it follows from 2.3.1 that M N Ru = 0. Then M @ Ru C M. Because R and M are

countable, there is a set
A={em |meM}CP

that is algebraically independent over II. Let

C =Ru+ Z R(m ®u)em
meM

https://doi.org/10.1017/5S0004972700013654 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013654

[9] Torsion-free Abelian groups 185

and let A be the purification of M and C in ﬁ, A=(M,C).. Asin2.6 A isaleft R-
submodule of ]Tl\, and by 2.3.2 R =~ Ru = R(m & u)er, . Furthermore, because AU {1}
is linearly independent over II, 2.3.1, C is a free module. Inasmuchas M C A C M ,
A/M = QC, and hence A is the middle term of an exact sequence (1.1). Thus 2.13.1
is satisfied.

Because A is a left R-module and because anng(ar) (A) = anno(ar) (M) = 0 there
is an imbedding O(M) — End (A) that sends each r € O(M) to left multiplication by
r. We claim that this imbedding is an isomorphism.

As in 2.9 one proves that for each m € M there is a scalar r, € QR such that
n(m) = rmm and n(u) = rmu. Let ro be one of the r,,. Then for each m € M,
rot = 7(u) = rmu, so that 7o — rp, € annqpr(u) = 0. Hence 1y, =19 foreach me M
and therefore n(m) = rom for each m € M. Asin 2.9, n = ro € End(4), and hence
R = End (4).

Lastly, A is a countable group because M is countable, and because u € A the
finite topology on End (A) is discrete. Then by (5, Proposition 2.1] A is a self-small
group. This completes the proof. 0

3. EXAMPLES

We use 1.2 and 2.13 to construct examples of modules with various properties.

ENDOMORPHISM RINGS OF FAITHFULLY FLAT MODULES. In [14, Corollary 3.10] it is
shown that each finite rank Corner ring is the group endomorphism ring of a faithfully
flat Corner module of finite rank. This is extended in [9] to include all cotorsion-free
rings, but the cardinality of the faithfully flat Corner module is quite large. The next
few results verify that such large cardinalities can be avoided when R is a Corner ring.

LEMMA 3.1. Let R be aring, let M be a Corner module such that anng (M) =
0, and let (1.1) be the exact sequence constructed in 1.2. Assume C is a free left
R-module.
1. Given aright End (A)-module N and if N®gna(4)M # 0 then N®gna(a)
A#0.
2. K QC is a flat 5(M)-modu1e then A has flat dimension < k as a left
End (A)-module if and only if M has flat dimension < k as a left E(M)-
module.

PROOF: (1) Let E = End(A). If N®g A =0 then there is a short exact sequence
Torg (N, QC) — N®s M — NQg A=0.

Because C is free, QC is a flat left E-module, and so Torg (N, QC) = 0. Hence
N @ M = 0. This proves part 1.
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(2) Recall from 1.2 that E = O(M). Because QC is a flat left 6(M)-module, an
application of X ®g - to (1.1) produces the long exact sequence

Torkt? (X, QC) — Torkt! (X, M) — Torkt! (X, A) — Torkt! (X, QC)

in which the first and last terms are 0. Hence A has flat dimension < k as a left
E-module if and only if M has flat dimension < k as a left 6(M )-module. 0

The next result extends [14, Corollary 3.10] to Corner groups.

COROLLARY 3.2. Let R be a Corner ring. There is a self-small faithfully flat
Corner group A such that R = End (A).

PROOF: Let M be a nonzero free left R-module on at most countably many gen-
erators to construct A as in 2.13, and then apply 3.1.

DIMENSIONS OVER ENDOMORPHISM RINGS. Several papers on Abelian groups investi-
gate the existence of left R-modules 4 such that R = End(A) and such that A has
specified homological dimension. (See the references in [9].) The results in [9, Section
3] construct cotorsion-free groups of large cardinality with prespecified flat or projective
dimension over their endomorphism ring. If the techniques from [9] are combined with
our 1.2, then we can construct groups of small cardinality having prescribed dimension.

THEOREM 3.3. Let R be a Corner ring, and let n = wgd (R) denote the weak
global dimension of R.

1. If R possesses a left module of flat dimension k + 1 then there is a self-
small Corner group Ay such that R = End(Ax) and such that Ax has
projective dimension k over R.

2. Ifn < oo then for each 0 < k < n there is a self-small Corner group A
such that R = End (Ay) and such that A has flat dimension k over R.

3. If n = oo then there is a self-small Corner group Ao such that R =
End (Ax) and such that A, has flat dimension co over R.

THEOREM 3.4. Let R be a Corner ring, and let n = wgd (R) denote the left
global dimension of R.

1. If R possesses a left module of projective dimension k + 1 then there is
a self-small Corner group A; such that R = End (A;) and such that A,
has projective dimension k over R.

2. Ifn < oo then for each 1 { k < n there is self-small Corner group Ay
such that R = End(A;) and such that Ax has projective dimension k
over R.

3. If n = oo then there is a self-small Corner group Ao such that R =
End(Ax) and such that A, has projective dimension co over R.
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PROOF: To prove either of the above Theorems, proceed exactly as in the proofs
of [9, Theorems 3.1 and 3.8], but appeal to 2.13 instead of [9, Theorem 2.14]. The rest
carries over exactly. 0

COMMUTATIVE ENDOMORPHISM RINGS. Throughout the rest of this Section R denotes
a commautative ring, the term module means R-module, and M denotes a Corner module
that satisfies (i) and (ii) of 1.2. Moreover, S denotes a Corner integral domain, and X
is indeterminant over S.

We list the following terminology for the sake of clarity.

The S[X]-module L is an X-torsion S[X]-module if for each z € L there is an
integer k > 0 such that X*z = 0, L is an X-divisible S[X]-module if XL = L, and
L is an X-reduced S[X|-module if L does not contain a nonzero X-divisible S[X]-
submodule.

The S[X]-module L is a torsion S[X)-module if for each z € L there is a nonzero
p(X) € S[X] such that p(X)z =0, and L is a mized S[X]|-module if L is not a torsion
S[X]-module and L has nonzero torsion S[X]-submodule.

Given Y C R let (Y) denote the ideal generated by Y, and let (Y) be the pure
ideal of R generated by Y. That is (Y) is the ideal of R such that (Y)/(Y) is the
torsion subgroup of R/(Y).

TORSION SUBMODULES OF MIXED MODULES. In an abuse of terminology, we shall call
L a self-small module if L is a module whose additive structure is a self-small Abelian
group.

ProposiTION 3.5. If L is a Torsion Corner S[X|-module then L is the tor-
sion S[X]-submodule of a self-small mixed Corner S[X]-module A such that S[X]|=
End (4).

PROOF: Let R = S[X], (so that module refers to an S[X]-module.) Given the
torsion Corner module I notice that M = R @ L is a Corner module such that
anng (M) = 0. An application of 2.13 to M yields a self-small Corner module A
such that R = End(4) and A/M is a torsion-free module. (See 2.13.1.) Then L is
the torsion submodule of 4. 1]

ExXAMPLE 3.6. There is a self-small mixed Corner module A such that Z[X] = End (4)
and each cyclic Corner Z[X]-module imbeds as a Z[X]-submodule of A.

PROOF: Let R = Z[X] and let

M = @P{R/(p(X)) | p(X) € R}.

We claim that M is a torsion Corner module.
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Clearly M is a torsion module. Let 0 # I = (p(X)) C R. The usual argument
using the Euclidean division algorithm shows that R/I is generated as a group by the
finitely many cosets X* + I where k=0, ..., deg(p(X))— 1. Because these cosets are
linearly independent over Z, R/I is a finitely generated torsion-free group, and hence
M is a torsion Corner module, as claimed.

It is an easy matter to show that O(M) = R and that anng (M) = 0. Then use
3.5 to construct a self-small Corner module A such that M is the torsion submodule
of A and R = End(A4). Observe from the proof of 3.5 that R C A. Also, by the
definition of M each cyclic torsion Corner module imbeds in M C A. 1]

The next example gives an idea of the different types of endomorphism rings that
are realised by Theorem 1.2.

EXAMPLE 3.7. There is a torsion Corner Z[X]-module A such that End(4) =

II Z[X]/(p(X)) where p(X) ranges over the irreducible polynomials in Z[X].
?(X)

PROOF: Let R = Z[X] and let
M = ®{R/(p(X)) | p(X) € R is irreducible}.

As in 3.6 M is a torsion Corner module such that anng (M) =0.

Now, because QR is a pid the Chinese Remainder Theorem can be applied to
show that QR is a dense subring of Endgr (QM). Futhermore, it is evident that the
QM-topology on QR is equivalent to the relativised topology on QR as a subring of
Endqr (QM). Because Endqr (QM) is a complete Hausdorff space in finite topology
we have that QR = Endqr (QM).

Lastly, it can be shown that

Endqr (QM) = [[{QR/(»(X)) | p(X) € QR is irreducible},
and thus that
O(M) = [J{R/(p(X)) | p(X) € R is irreducible}.
Thus, by 1.2 there is an torsion Corner module A such that 6(M ) = End (4). 0

THE BAER-KAPLANSKY THEOREM. We use the following two X-torsion Corner S[X]-
modules to show that the Baer-Kaplansky Theorem is not true for Z[X]-modules.

3.8. M =ea{S[X]/(X*)|k=1,2,...}.

3.9. M is the S[X]-module whose additive structure is a free S-module with generators
{bi1, b2, ...}, and whose relations as an S[X]-module are given by Xby4; = by for k > 1
and Xb1 =0.

The proof of the next Lemma is an exercise.
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LEMMA 3.10.

1. The S[X]}-module given in 3.8 is an X -reduced X -torsion Corner S[X]-
module such that anngix) (M) =0, O(M) = S[X], O(M) = S[[X]}, and
T'(M) is the X-adic topology on S[[X]].

2. The S[X])-module given in 3.9 is an X -divisible X -torsion Corner S[X]-
module such that anngix) (M) = 0, O(M) = S[X], O(M) = S[[X]], and
T(M) is the X-adic topolgoy on S[[X]].

EXAMPLE 3.11. Let M be an X-torsion Corner S[X]-module such that O(M) = S[X].
(For example, take M to be the S[X]-module given in 3.8 or 3.9.) There is an X-torsion
Corner S[X]-module A such that M C A, End(A4) = S[[X]], and A/M is a divisible
group.

PROOF: Let R = S[X] and observe that if M is an X-torsion Corner $[X]-module
such that anng (M) = 0 then the M-topology equals the X-adic topology on S[X].
Thus QR = (QS)[[X]], the ring of power series over QS. It is readily- shown using 2.1
that 5(M ) = 8[[X]], so by 1.2 there is an X-torsion Corner S[X]-module A such that
M C A, End(A) = S[[X]], and A/M is a divisible group. 0

The groups constructed in 3.11 are examples of strongly indecomposable countable
groups with uncountable endomorphism rings. This refines a construction given in [13]
in answer to a question of Reid, [16).

The Baer-Kaplansky Theorem states that if A and B are torsion groups and
if End(A) = End(B) as rings then A = B. The following shows that the Baer-
Kaplansky Theorem is not true for torsion Z[X]-modules. Recall that if R = End(4)
is a commutative ring then End (4) = Endg (4).

PROPOSITION 3.12. There are X-torsion Corner S{X]-modules A and B
such that Endgix)(A) = Endg x| (B) as rings, but Homg;x; (B, 4) = 0.

PROOF: Let R = §[X], let K be the module given in 3.8, let M be the module
given in 3.9. By 3.11 there are X-torsion Corner modules A and B such that K C A4,
M C B, End(A) = End(B) = S[(X]) = R, and A/K and B/M are divisible groups.

Because R is commutative End (A) = Endgz(4), and by 2.1 Endgr(4) =
Endz (A4) = Endg (B).

However, Homp (B, A) = 0 as follows. Let f € Homg (B, A). Because M is
X-divisible and A is X-reduced, f(M) = 0. Then f(B), being a quotient of B/M, is
a divisible subgroup of A. Inasmuch as A is reduced, f(B) = 0.

By using 2.13 and the modules given in 3.8 and 3.9 we can construct self-small
mized Corner S[X]-modules A and B such that Endgsix) (4) = Endgx)(B) = S[X],
but HomS[X] (B, A) =0.
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TOTALLY INDECOMPOSABLE MODULES. The module A is totslly indecomposable if
Endg (A) has local classical ring of quotients. If Endg(A4) is a commutative inte-
gral domain then A is a totally indecomposable module. The (totally) indecomposable
reduced torsion groups A are the primary cyclic groups. The torsion-free Abelian group
A of finite rank is totally indecomposable if and only if given a direct sum B @ D and
a nonzero integer k such that kA C B® D C A then either B=0 or D = 0.

The modules A constructed in 3.11 show that these results do not extend to R =

Z[X].
EXAMPLE 3.13.
1. There is a self-small totally indecomposable mixed Corner S[X]-module.
There is a totally indecomposable X -torsion Corner S[X]-module 4 such
that XA C B® D C A for some nonzero S[X]-submodules B and D.

Proor: Let R = S[X].

(1) Use 3.5 and the module M given in 3.8 to construct a self-small mixed Corner
module A such that M is the torsion submodule of A and End(4) = R. Then 4 is
totally indecomposable.

(2) Let M be the module in 3.8. By 3.11 there is an X-torsion Corner module A
such that M C A and End (4) = S[[X]].

Now by 2.6.2 there is a submodule C = N + Zmn Répmn C M such that QA =
QM @ QC and by 3.8 QM = QB ® QB' where B~ R/(X). Then

@ QA=QB® QB ©QC
as modules. An application of X to (4) reveals that XQAN QB = 0. Hence XA C
B & XA C A, which completes the proof. 0

VANISHING TENSOR PRODUCTS. Let R be a (commutative) ring and let A be a module.
Because tensor products commute with direct limits, if T is a module such that Ty ®gr
A = 0 for each finitely generated submodule Ty C T then T®rA=0. The present
examples show that the converse is not true. We require a Lemma.

LEMMA 3.14. If R is a localisation of S[X| at a prime ideal I, if X € I, and
if INS = P then R is a subring of Sp[[X]| where S, is the localisation of S at the
prime ideal P. Moreover, Sp{[X]]/R is a torsion-free S-module, and Sp([X]] is the
completion of R in the relativised topology on R.

PROOF: Let R denote the localisation of S at the prime ideal I, suppose X € I,
and let INS = P. Then given ¢(X) € S[X]\I, ¢(0) € Sp is a unit in Sp. Thus g(X)
is a unit of Sp[[X]], and hence the universal property of localisations lifts the natural
imbedding S{X] — Sp[[X]] to an imbedding R — Sp[[X]]. Because S[X] C R, S[[X]]

is the completion of R.
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Moreover, assume there are p(X) € FSp{[X]] and s € S such that sp(X) € R.
Because R = S[X]; there are a(X) € S[X] and 5(X) € S[X]\ I such that sp(X) =
a(X)b(X)™!. Then p(X)b(X) = s~'a(X) € Q[X] N Sp[[X]] = Sp[X] C R, where
Q is the field of quotients of §. Inasmuch as 5(X) is a unit of R, p(X) € R which
completes the proof.

EXAMPLE 3.15. There is a local commutative Noetherian integral domain R and a
self-small Corner module A such that
1. R =End(4);
2. T, ®r A # 0 for each nonzero finitely generated right module T; but
3. There is a nonzero right module T such that T ®gr A =0.

PROOF: Let p € Z be a prime, let Z, denote the localisation of Z at p, and let R
be the localisation of Zp[X] at the maximal ideal (p, X). By 3.14 R is a pure subring
of Zy[[X]] and Q,[[X]] is the completion of R in the relativised X-adic topology on
R. Then the X-torsion Zp[X]-module M given in 3.8 is also a module such that
anng (M) =0. (Let S =Z, in 3.8.) Furthermore, by 3.10 and 3.14

O(M) = B(M)(QR = Z,[[X]][|QR = R.

An application of 2.13 to M shows that M is the torsion submodule of a self-small
mixed module A such that R = End (A) and such that A/M is a divisible group. Then
A satisfies 3.15.1.

Let J C R be the unique maximal ideal of R. To prove that A satisfies 3.15.2 it
is enough to show that JA # A. (See [10, Corollary 3.8(b)] or (2, Corollary 2.2].) By
3.8 M contains a direct summand isomorphic to the Corner module R/(X) = Z,, and
because (X) C J, J/(X) # R/(X). Thus JM # M, which by 3.1.1 implies JA # A.
Thus A satisfies 3.15.2.

Lastly, let T be an X-divisible p-torsion module. (For example, choose T' to be
the quotient field of R/pR.) Then T®g M = 0 because T is X-divisible and M is X-
torsion, while T®g A/M =0 because T is p-torsion and A/M is divisible. Therefore,
T ®r A =0, and the proof is complete. 1

It is natural to ask if T ® g A = 0 for each finitely generated module T' when
To ®r A = 0 for each finitely presented module Tj.

EXAMPLE 3.16. There is a local commutative integral domain R and a self-small Cor-
ner module A such that

1. R =End(A4);
2. Ty ®r A # 0 for each nonzero finitely presented module 7 ; but
3. T ®r A =0 for some nonzero finitely generated module T.
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PROOF: Let p € Z be prime, let Z; denote the localisation of Z at p, let
X1, X2,... be countably many indeterminants over Z,, and let R denote the
localisation of Z[X;, X», ...] at the maximal ideal (p, X;, X2, ...). Then R is a local
commutative integral domain, and as in 3.14 R is a pure subring of the completion of
Z,[X1, X2, ..] in the (X, X, ...)-adic topology. Let J denote the unique maximal
ideal of R and notice that pe J.

We shall construct a module M such that JM = M but IM # M for each finitely
generated proper ideal I C R.

For each positive integer k let Mj be the X;-divisible Xj-torsion Z,[Xj]-module

given in 3.9, and let
: M =P M..

k>0

Inasmuch as M} is a free Z,-module for each k > 0, 3.9, we have pM £ M.

Now, Mj is an X;-torsion Zp[[Xj]]-module. Furthermore, as in 3.14 one proves
that the ring homomorphism Z,[X,, X, ...] = Zp[[X]] such that Xz — X; and
Xj +— 0 for j # k lifts to a ring homomorphism R — Z,[[X}]]. Then M, is a torsion
module such that X; M =0 for each j # k.

3.17. Because My = X Mj and because X} € J we have JM = M. However, if
I C R is a finitely generated ideal then I C Iy = (p, Xy, ..., X,) for some integer
8. Because X;M, 1 =0 for each j = 1,..., s and because pM,;; # M,;; we have
IgM, 41 74 M,;1,and so IM C IgoM # M.

Now, because R is pure subring of S[[X;, X2, ...]] and because S[[X;, X,,...]] =
O(M) we have O(R, M) = S[[X1, X2, ...]] N QR = R. Then by 2.13 there is a self-
small mixed Corner group A such that M C A, R = End(A4), and A/M is a divisible
group.

Because JM = M, 3.1.1 and 3.17 imply that JA = A. Next,let I C R be a
finitely generated ideal. By 3.17 there is a finitely generated ideal I C Iy C R such
that R/I, is bounded and IyM # M. Then by 3.1.1 TAC IyA # A.

Finally, because A # A for each proper finitely generated ideal I C R, [10,
Corollary 3.8(a)] states that Tpo ® r A # 0 for each nonzero finitely presented module
To. Thus 3.16.2 is satisfied. The nonzero finitely generated module T' needed to satisfy
3.16.3is T = R/J. 0

If A is a torsion-free group of finite rank and if End (A) is a (sub)commutative ring
then A # A for each maximal right ideal I C End(A). If End(A) is a semi-prime
ring then A = A for at most finitely many maximal ideals I C End (4), [4, 11, 12].
The following example shows that this result is not true for self-small groups 4.

EXAMPLE 3.18. There is a self-small Corner group 4 such that

https://doi.org/10.1017/5S0004972700013654 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013654

(17) Torsion-free Abelian groups 193

1. End(A) is a countable commutative Noetherian integral domain; and
2. TA = A for each of the infinitely many maximal ideals I C End (4).

PROOF: Given a prime p € Z let R, denote the localisation of Z[X] at the
maximal ideal (p, X), and let

R= () R,

primes peZz

Then R is a countable ring and a maximal ideal of R is generated by {p, X} for some
p € Z is prime. Thus R has infinitely many maximal ideals. Furthermore, 3.14 shows
that we may view R, as a subring of Z,[[z]] for each prime p € Z. Then R is a subring
of Z{[X]], so that the X-torsion Z{X]-module M given in 3.9 is also a module.

Asin 3.15 R = O(M), so by 2.13 there is a self-small Corner module A such that
M C A, R = End(A), and A/M is a divisible group. Let I = (p, X) be an ideal in
R. Arguing as in 3.15 (with X = J) shows that JA = XA + pA = A. This completes
the proof. 0

THE BAER SPLITTING PROPERTY. Let ¢ and d be cardinal numbers, and consider a
surjection g: A(® — A of groups. The group A has the Baer splitting property if
g is a split surjection for each pair of cardinals (¢, d), A has the finite Baer splitting
property if g is a split surjection for each cardinal ¢ and integer d, and A has the
endlich Baer splitting property if g is a split surjection for each pair of integers (¢, d).
(See [2, 4, 10].)

It is clear that the Baer splitting property implies the finite Baer splitting property
implies the endlich Baer splitting property. The converses are not true for self-small
groups.

ExaMPLE 3.19.

1. There is a self-small Corner group that has the finite Baer splitting prop-
erty, but which does not have the Baer splitting property.
2. There is a self-small Corner group that has the endlich Baer splitting
property, but which does not have the finite Baer splitting property.
PROOF: (1) Let A be the self-small Corner group constructed in 3.15. Because
T ®gnd(a) A = 0 for some nonzero End (A)-module T, [2, Theorem 2.1] implies that
A does not have the Baer splitting property. However, because Ty ®Ena(a) 4 # 0 for
each nonzero finitely generated End(A)-module Tp, (2, Corollary 2.2] shows that A
has the finite Baer splitting property.
(2) Let A be the self-small Corner group constructed in 3.16. Because T ®gpd(4)
A = 0 for some nonzero finitely generated End (4)-module T, [2, Corollary 2.2] implies
that A does not have the finite Baer splitting property. However, because Tp ®gnd(4)
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A # 0 for each nonzero finitely presented End(4)-module T;, [10, Corollary 5.2] shows
that A has the endlich Baer splitting property. 0

The above Example is in contrast to [10, Corollary 7.2] where it is shown that
a torsion-free group of finite rank has the endlich Baer splitting property if and only
if it has the finite Baer splitting property. It is interesting to note that End(4) is a
local commutative Noetherian integral domain in 3.19.1, and that End(4) is a local
commutative integral domain in 3.19.2.

Arnold and Lady (4] show that if A is a torsion-free group of finite rank and
if End(A) is a commutative ring then A has the finite Baer splitting property, and
[12, Lemma 3.1] shows that A has the endlich Baer splitting property if End (4) is a
local ring. Then by [10, Corollary 5.2] the group constructed in 3.18 fits the following
description.

EXAMPLE 3.20. There is a self-small Corner group A such that End (4) is a local com-
mutative Noetherian integral domain, but A does not have the endlich Baer splitting
property.

A Theorem of Azumaya’s states that A has the exchange property if End(4) is a
local ring. Thus 3.19 and 3.20 show that

PROPOSITION 3.21. The Exchange Property does not imply the (endlich)
Baer splitting property.
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