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In order to deal with certain problems in the theory of interpolation spaces, 
it is convenient to consider operators of the following form: 

Let k be a non-negative measurable function on the half-line R+, and let 
/ b e a measurable function on R+ with 

J»oo 

k(s) \f(st)\ ds < oo for almost all t G R+. 
o 

Then the operator T is defined by 

J»oo 

k(s)f(st) ds for almost all t 6 R+, 
o 

with the domain of T, D(T), consisting of all / which satisfy (1). 
An important role is played by the averaging operator P , which is defined 

for locally integrable functions / by 

(Pf)(f) = jj(st) ds = J)(s) ds/1. 

Note that P commutes with all operators of the form (2) in the sense that 
if / G D(TP), then TPf = PTf. 

It is important to know when T is a bounded operator from a Banach 
function space X into itself. Some questions of this type are considered in 
(1). When X is the Lorentz space M(<j>), the situation is very simple, as 
Theorem 1 shows. 

The definition of M(<j>) is as follows: <t> is a non-negative, non-increasing 
function on R+, such that 

I <l>(s)ds < oo for all ^ < oo. 
Jo 

For any measurable function/ on R+,f * denotes the non-increasing rearrange
ment of / onto the half-line. That is, if m denotes Lebesgue measure on R+, 
f * is the non-increasing, non-negative, and left-continuous function for which 

™>{t\ | / (0 | > y} = m{t:f*(t) > y} for all y > 0. 

Received May 3, 1966. 

839 

https://doi.org/10.4153/CJM-1967-078-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-078-6


840 DAVID W. BOYD 

We define 

and 

(P<t>)(t) = J 4>(st) ds = \ <t>(s) ds f t, 

/ * * ( / ) = (Pf * ) ( / )= f / * ( * * ) * • 
«JO 

Let 
11/11 =SUP l>o/** ( 0 / ( ^ 0 ) (0 

and 

Then ikf (<£) is a Banach space of equivalence classes of almost everywhere 
equal measurable functions; see (3). 

We shall let [M(<j))] denote the space of bounded linear operators from 
M(<t>) into itself, and | | r | | denote the norm of an operator T £ [ilf (<£)]. The 
subset of M(<j>) consisting of non-increasing, non-negative functions will be 
denoted by ikf(0)+. 

THEOREM 1. Let the operator T be defined by (2). Then D(T) D M((/>), and 
T e [M((j>)]y with \\T\\ = c, if and only if (i) </> G D{T) and (ii) 7> G M(0), 
with \\T§\\ = c. 

For the proof, we need two lemmas. In each, T is as in the statement of 
Theorem 1. 

LEMMA 1. Suppose that f is a measurable function for which f* Ç D(T), and 
Tf* is locally integrable. Then f G D(T) and 

(Tf)**(t) < (Tf *)**(/). 

Proof. We recall that if E ranges over measurable subsets of R+, with 
m(E) = t, then (see (2)) 

(3) */**(') =sup*J* | / (s) |<fc . 

Let E be any measurable subset of R+, with m(E) = t. Then 

dx k(s) \f(sx)\ ds = k(s)ds \f(sx)\dx 
- E *s 0 *J 0 «̂  # 

J»oo /» t 

k(s) ds I f*(sx)dx (applying (3)), 
0 v 0 

J» « /»oo 

dx I k(s)f*(sx) ds 
o *J o 

= f (Tf*)(x)dx< oo, 

since 7J* was assumed locally integrable. 
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From (4) and (1), / 6 D(T), so that since Tf* is non-increasing, 

(5) (\Tf\(x)dx< V{Tf*){x)dx = t(Jf*)**{t). 

The desired result follows upon applying (3) to (5). 

LEMMA 2. Suppose that D(T) Z) M($)+, and that 

(6) sup, \\Tf\\ = c (J £ M(4>)+, |l/l[ < 1). 

Then D(T) D M(4>) and \\T\\ = c. 

Proof. L e t / € M(<t>). T h e n / * G M (*)+ C D(T) and, by (6), Tf* € Jlf (*), 
so that Tf* is locally integrable. Hence, by Lemma 1, / € -0(7") and 

(Tf)**(t) < (Tf*)**(t), 
so that | |P/ | | < | | r /* | | . 

Proof of Theorem 1. By Lemma 2, we need only consider / £ M(<j>)+, so 
t h a t / = / * . 

First, assume that <£ 6 D(T), with ||P<£|| = c. Then, since 

(7>)** = P 7 > = PP0, 
we have 

(7) (rp*)(o < ||r*||-(p*)(*) = c(p<t>)(t), 
by définition of the norm in M(4>). 

life M•(*)+, /**(/) = (p/)(o, so 
(8) (P/) (t) < [sups>„ (P/) (s)/(P<j>) (s)] (P0) (/) 

= 11/11- (P<t>)(t). 

Now, apply T to each member of (8) ; then, since k > 0, 

0) (rp/)(0< ll/ll-(rp*)(0 
<* 11/11-(p*X0, by (7). 

Since PTf = TPf, (9) implies that | |P/ | | < c ||/||, so that | |P | | < c. But, 
0 Ç M(<j>), with | |0| | = 1, and ||P</>|| = £, so we must in fact have | | r | | = c. 

Conversely, if T G [M{4>)]> with | |P | | = c, then | |2>|| = b < ||P[H|</>|| = c. 
By the first part of the proof, [|P|[ = b, and hence we must have c — b. 
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