A CLASS OF OPERATORS ON THE LORENTZ SPACE M(ϕ)

DAVID W. BOYD

In order to deal with certain problems in the theory of interpolation spaces, it is convenient to consider operators of the following form:

Let k be a non-negative measurable function on the half-line R^{+}, and let f be a measurable function on R^{+}with

$$
\begin{equation*}
\int_{0}^{\infty} k(s)|f(s t)| d s<\infty \quad \text { for almost all } t \in R^{+} \tag{1}
\end{equation*}
$$

Then the operator T is defined by

$$
\begin{equation*}
(T f)(t)=\int_{0}^{\infty} k(s) f(s t) d s \quad \text { for almost all } t \in R^{+} \tag{2}
\end{equation*}
$$

with the domain of $T, D(T)$, consisting of all f which satisfy (1).
An important role is played by the averaging operator P, which is defined for locally integrable functions f by

$$
(P f)(t)=\int_{0}^{1} f(s t) d s=\int_{0}^{t} f(s) d s / t
$$

Note that P commutes with all operators of the form (2) in the sense that if $f \in D(T P)$, then $T P f=P T f$.

It is important to know when T is a bounded operator from a Banach function space X into itself. Some questions of this type are considered in (1). When X is the Lorentz space $M(\phi)$, the situation is very simple, as Theorem 1 shows.

The definition of $M(\phi)$ is as follows: ϕ is a non-negative, non-increasing function on R^{+}, such that

$$
\int_{0}^{t} \phi(s) d s<\infty \quad \text { for all } t<\infty
$$

For any measurable function f on R^{+}, f^{*} denotes the non-increasing rearrangement of f onto the half-line. That is, if m denotes Lebesgue measure on R^{+}, f^{*} is the non-increasing, non-negative, and left-continuous function for which

$$
m\{t:|f(t)|>y\}=m\left\{t: f^{*}(t)>y\right\} \quad \text { for all } y>0
$$

Received May 3, 1966.

We define

$$
(P \phi)(t)=\int_{0}^{1} \phi(s t) d s=\int_{0}^{t} \phi(s) d s / t
$$

and

$$
f^{* *}(t)=(P f *)(t)=\int_{0}^{1} f^{*}(s t) d s
$$

Let

$$
\|f\|=\sup _{t>0} f^{* *}(t) /(P \phi)(t)
$$

and

$$
M(\phi)=\{f:\|f\|<\infty\}
$$

Then $M(\phi)$ is a Banach space of equivalence classes of almost everywhere equal measurable functions; see (3).

We shall let $[M(\phi)]$ denote the space of bounded linear operators from $M(\phi)$ into itself, and $\|T\|$ denote the norm of an operator $T \in[M(\phi)]$. The subset of $M(\phi)$ consisting of non-increasing, non-negative functions will be denoted by $M(\phi)^{+}$.

Theorem 1. Let the operator T be defined by (2). Then $D(T) \supset M(\phi)$, and $T \in[M(\phi)]$, with $\|T\|=c$, if and only if (i) $\phi \in D(T)$ and (ii) $T \phi \in M(\phi)$, with $\|T \boldsymbol{\phi}\|=c$.

For the proof, we need two lemmas. In each, T is as in the statement of Theorem 1.

Lemma 1. Suppose that f is a measurable function for which $f^{*} \in D(T)$, and $T f^{*}$ is locally integrable. Then $f \in D(T)$ and

$$
(T f)^{* *}(t) \leqslant\left(T f^{*}\right)^{* *}(t)
$$

Proof. We recall that if E ranges over measurable subsets of R^{+}, with $m(E)=t$, then (see (2))

$$
\begin{equation*}
t f^{* *}(t)=\sup _{E} \int_{E}|f(s)| d s \tag{3}
\end{equation*}
$$

Let E be any measurable subset of R^{+}, with $m(E)=t$. Then

$$
\begin{align*}
\int_{E} d x \int_{0}^{\infty} k(s)|f(s x)| d s & =\int_{0}^{\infty} k(s) d s \int_{E}|f(s x)| d x \tag{4}\\
& \leqslant \int_{0}^{\infty} k(s) d s \int_{0}^{t} f^{*}(s x) d x \quad \text { (applying (3)) } \\
& =\int_{0}^{t} d x \int_{0}^{\infty} k(s) f^{*}(s x) d s \\
& =\int_{0}^{t}\left(T f^{*}\right)(x) d x<\infty
\end{align*}
$$

since $T f^{*}$ was assumed locally integrable.

From (4) and (1), $f \in D(T)$, so that since $T f^{*}$ is non-increasing,

$$
\begin{equation*}
\int_{E}|T f|(x) d x \leqslant \int_{0}^{t}\left(T f^{*}\right)(x) d x=t\left(T f^{*}\right)^{* *}(t) \tag{5}
\end{equation*}
$$

The desired result follows upon applying (3) to (5).
Lemma 2. Suppose that $D(T) \supset M(\phi)^{+}$, and that

$$
\begin{equation*}
\sup _{f}\|T f\|=c \quad\left(f \in M(\phi)^{+}, \quad\|f\| \leqslant 1\right) \tag{6}
\end{equation*}
$$

Then $D(T) \supset M(\phi)$ and $\|T\|=c$.
Proof. Let $f \in M(\phi)$. Then $f^{*} \in M(\phi)^{+} \subset D(T)$ and, by (6), Tf $* \in M(\phi)$, so that $T f^{*}$ is locally integrable. Hence, by Lemma $1, f \in D(T)$ and

$$
(T f)^{* *}(t) \leqslant\left(T f^{*}\right)^{* *}(t)
$$

so that $\|T f\| \leqslant\|T f *\|$.
Proof of Theorem 1. By Lemma 2, we need only consider $f \in M(\phi)^{+}$, so that $f=f^{*}$.

First, assume that $\phi \in D(T)$, with $\|T \phi\|=c$. Then, since

$$
(T \phi)^{* *}=P T \phi=T P \phi,
$$

we have

$$
\begin{equation*}
(T P \phi)(t) \leqslant\|T \phi\| \cdot(P \phi)(t)=c(P \phi)(t) \tag{7}
\end{equation*}
$$

by definition of the norm in $M(\phi)$.
If $f \in M(\phi)^{+}, f^{* *}(t)=(P f)(t)$, so

$$
\begin{align*}
(P f)(t) & \leqslant\left[\sup _{s>0}(P f)(s) /(P \phi)(s)\right](P \phi)(t) \tag{8}\\
& =\|f\| \cdot(P \boldsymbol{\phi})(t) .
\end{align*}
$$

Now, apply T to each member of (8); then, since $k \geqslant 0$,

$$
\begin{align*}
(T P f)(t) & \leqslant\|f\| \cdot(T P \phi)(t) \tag{9}\\
& \leqslant c\|f\| \cdot(P \phi)(t), \quad \text { by }(7)
\end{align*}
$$

Since $P T f=T P f$, (9) implies that $\|T f\| \leqslant c\|f\|$, so that $\|T\| \leqslant c$. But, $\phi \in M(\phi)$, with $\|\phi\|=1$, and $\|T \phi\|=c$, so we must in fact have $\|T\|=c$.

Conversely, if $T \in[M(\phi)]$, with $\|T\|=c$, then $\|T \phi\|=b \leqslant\|T\| \cdot\|\phi\|=c$. By the first part of the proof, $\|T\|=b$, and hence we must have $c=b$.

References

1. D. W. Boyd, The Hilbert transformation in rearrangement invariant Banach spaces, Ph.D. thesis, University of Toronto, 1966.
2. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190.
3. G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math., 1 (1950), 411-429.

University of Toronto

