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Symplectic Geometry of the Moduli Space of
Flat Connections on a Riemann Surface:
Inductive Decompositions and Vanishing
Theorems
Lisa C. Jeffrey and Jonathan Weitsman

Abstract. This paper treats the moduli spaceMg,1(Λ) of representations of the fundamental group of a Rie-
mann surface of genus g with one boundary component which send the loop around the boundary to an
element conjugate to expΛ, where Λ is in the fundamental alcove of a Lie algebra. We construct natural line
bundles overMg,1(Λ) and exhibit natural homology cycles representing the Poincaré dual of the first Chern
class. We use these cycles to prove differential equations satisfied by the symplectic volumes of these spaces.
Finally we give a bound on the degree of a nonvanishing element of a particular subring of the cohomology of
the moduli space of stable bundles of coprime rank k and degree d.

1 Introduction

LetΣ be a compact Riemann surface of genus g, and G a compact connected Lie group with
maximal torus T. The moduli space M(Σ) = Hom

(
π1(Σ),G

)
/G of equivalence classes

(under conjugation) of representations of the fundamental group of Σ in G has an open
dense subset equipped with the structure of a smooth symplectic manifold of dimension
(2g−2)(dim G). This space has an alternative characterization in algebraic geometry, where
it appears as a moduli space of semistable holomorphic bundles over Σ.

This paper continues our study of Hamiltonian group actions on appropriate subsets
of M(Σ), which was initiated in [19] and continued in [20] and [21]: our previous work
focused on the case G = SU(2). The theme of this paper is to study the functions Sg,1(·)
encoding the volumes1of the moduli spaces Mg,1(Λ) of representations of the fundamen-
tal group of a Riemann surface of genus g with one boundary component, where the loop
around the boundary is constrained to lie in the conjugacy class of exp(Λ). The volume
Sg,1(Λ) of Mg,1(Λ) is a piecewise polynomial function of Λ: this follows straightforwardly
from the Duistermaat-Heckman theorem [5], since Mg,1(Λ) is the reduced space at the
orbit OΛ of an extended moduli space M̃g,1 equipped with a Hamiltonian action of G
(see [14]). One would like to know the degree in Λ of the piecewise polynomial func-
tion Sg,1(Λ). This degree may be studied by observing that there is a differential operator L

1In this paper the term ‘volume’ refers to the symplectic volume, or more generally to the integral of the top
exterior power of a presymplectic form.
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of degree n+ (the number of positive roots of G) such that L2Sg,1 is equal to Sg−1,1 times a
constant depending only on the group G.

The operator L is studied using results of one of us [31], in which it was observed that
Mg,1(Λ) is equipped with a natural torus bundle V (1)

g,1 (Λ) and homology cycles representing

the Poincaré dual to line bundles associated to V (1)
g,1 (Λ) were identified. This method is

developed further in Section 3 below.
Finally we use information about the degree of the function Sg,1 to obtain informa-

tion about the cohomology of the moduli space M(k, d) of semistable holomorphic vec-
tor bundles of coprime rank k and degree d and fixed determinant over Σg

0: this moduli
space may equivalently be described as the space of representations of π1(Σg

1) into G which
send the element of π1(Σg

1) represented by a loop around the boundary to the central ele-
ment e2πid/k diag(1, . . . , 1) (generating the center of SU(k)). The rational cohomology of
the space M(k, d) has a natural collection of generators {ar, b

j
r , fr} (for r = 2, . . . , k and

j = 1, . . . , 2g) [1]; the classes ar, b
j
r and fr have degrees 2r, 2r − 1 and 2r − 2 respectively.

Explicit formulas for the intersection numbers of powers of these generators were discov-
ered by Witten [33] and proved recently by one of us in joint work with F. Kirwan [18];
nevertheless alternative approaches may shed considerable light on the origins and conse-
quences of these intersection formulas. Knowledge of the degree of Sg,1 turns out to imply
vanishing theorems for certain subrings of the rational cohomology of M(k, d).

Our proof of the vanishing theorems is achieved using an argument due to Donaldson
and Witten (spelled out in the case of rank 2 bundles in [4, Section 6, after (18)]): there
is a suitable range of Λ for which Mg,1(Λ) fibers over M(k, d) with fiber a coadjoint orbit
OΛ−c̃ (for suitable c̃ ∈ t). The symplectic form on Mg,1(Λ) is equal to the pullback of the
symplectic form on M(k, d) plus a term linear in Λ − c̃. One finds that the coefficients in
the polynomial in Λ − c̃ which encodes the symplectic volume of Mg,1(Λ) enable one to
extract information about certain intersection pairings in the cohomology of M(k, d). In
particular, knowledge of the degree of the function Sg,1 enables us to conclude:

Theorem 4.11 The product

am2
2 · · · a

mk
k

vanishes if
∑

r≥2 rmr > (2g − 2)n+.

Theorem 4.22 There is a nonvanishing element β in H∗
(
M(k, d)

)
of the form am2

2 · · · a
mk
k

with
∑

r≥2 rmr = (2g − 2)n+.

Theorem 4.22 tells us that Theorem 4.11 gives a sharp bound on the degree of a nonva-
nishing class of the form

∏
r amr

r .
The ring generated by the a2, . . . , ak has as a subring the Pontrjagin ring, in other words

the ring generated by the Pontrjagin classes of the tangent bundle of M(k, d). Theorem 4.22
provides a counterexample to a conjecture of Ne’eman [26], which is that the Pontrjagin
ring vanishes above dimension 2gk2− 4g(k− 1) + 2. We prove that there is a nonvanishing
element β of degree (2g − 2)k(k − 1): this exceeds Ne’eman’s conjectured bound when g
is chosen sufficiently large. In fact one may find a nonvanishing element of the required
degree which is in the Pontrjagin ring: see Remark 4.23.
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Remark Earl and Kirwan have independently obtained the above vanishing theorem for
the Pontrjagin ring and the sharpness of the bound, by directly using the formulas for
intersection numbers in the cohomology of M(k, d) given in [18]. We are grateful to them
for providing us with a prepublication copy of their paper [7]. A different approach to
these spaces, using heat kernel methods, is due to K. Liu [24], whose results give a different
proof of the vanishing of the pairings of elements of the Pontrjagin ring with powers of the
symplectic form ([24, Corollary 1, p. 575]; our Proposition 4.10 below).

The layout of this paper is as follows. In Section 2 we define the moduli spaces of rep-
resentations that form the subject of this paper, and their construction via reduction of
extended moduli spaces. In Section 3 we construct natural line bundles on Mg,1(Λ) (fol-
lowing [31]): in a construction similar to the construction given in [31], we exhibit natural
homology cycles representing the Poincaré duals to the first Chern classes of these line bun-
dles. Characterization of these cycles enables us to prove differential equations satisfied by
the functions Sg,1(Λ) = vol

(
Mg,1(Λ)

)
: these are given at the end of Section 3, and gener-

alize corresponding differential equations proved in [21] for the case G = SU(2). Finally
in Section 4 we give a bound on the degree of a nonvanishing element of the ring gener-
ated by the classes a2, . . . , ak in the cohomology of M(k, d), and show that there exists a
nonvanishing element of this degree (in other words the bound is sharp).

2 Moduli Spaces of Representations

2.1 Preliminaries

Let G denote a compact connected semisimple Lie group with maximal torus T. The Lie
algebras of G and T will be denoted g and t respectively, and their duals g∗ and t∗; we
introduce the Weyl group W . Let d = dim(G) and l = dim(T). Let us fix a (closed) funda-
mental Weyl chamber t+ in t, and correspondingly the dual fundamental Weyl chamber t∗+
in t∗. Their interiors are denoted to

+ and (t∗+)o.
The integer lattice ΛI in t is the kernel of the exponential map exp: t → T. Its dual

lattice is the lattice Λw in t∗ (the weight lattice).
We introduce the standard alternating character ε : W → {±1} on W .
The canonical pairing t⊗ t∗ → R is denoted (·, ·).

Definition 2.1 (The Open Alcove) Let Do
+ be the interior of the fundamental alcove in to

+:
Do

+ is the subset of t cut out by the intersection of the half spaces

{ξ : (α j , ξ) > 0},

{ξ : (αmax, ξ) < 1}.

Here, α j run over the simple roots of G, and αmax is the highest root (the highest weight of
the adjoint representation).

Definition 2.2 (The Closed Alcove) Let D+ ⊂ t+ denote the closure of Do
+ in t.

Definition 2.3 An element Λ ∈ D+ is regular if it is in Do
+.
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The alcove is a fundamental domain for the action on t of the affine Weyl group Waff ,
which is the semidirect product of the ordinary Weyl group and the integer lattice ΛI . (See
[29, Section 5.1].)

Definition 2.4 (Inversion map) IfΛ ∈ Do
+ we define Λ̄ to be the element of Do

+ for which

exp Λ̄ = (expΛ)−1 = exp(−Λ).

Often we shall implicitly identify D+ with t/Waff (in other words with T/W ), and the
equivalence class of Λ̄ in t/Waff is the equivalence class of−Λ.

The following are immediate:

Lemma 2.5

(a) Let q denote the quotient map T → T/W , and let exp : t → T denote the exponential
map. Then the map r : D+ → T/W defined by r = q ◦ exp is surjective.

(b) The restriction of the map r to Do
+ is a local diffeomorphism.

Part (b) follows from the formula for the differential of the exponential map (see [11,
Theorem II.1.7]); this formula shows that the differential at Λ is surjective if αi(Λ) /∈ Z for
all roots αi , which is true for Λ ∈ Do

+. The set of conjugacy classes of G is in bijective cor-
respondence with T/W ; the conjugacy classes of regular elements in G (those in a unique
maximal torus) are in bijective correspondence with Do

+, or equivalently with its image in
T/W under the exponential map.

We shall introduce an Ad-invariant inner product 〈·, ·〉 : g⊗ g→ R whose restriction to
a Weyl-invariant inner product on t will also be denoted 〈·, ·〉. We shall sometimes use this
inner product to identify a subset of t∗+ with D+ ⊂ t+. If G is simple, the invariant inner
product 〈·, ·〉 is unique up to multiplication by a positive constant.

Remark 2.6 Throughout this paper we shall make use of a collection of parameters Λ ∈
D+. For the purposes of Section 2, these parameters could equivalently be replaced by their
images expΛ under the exponential map, which parametrize conjugacy classes in G. Later
in the paper, however, we shall recall that the presymplectic structure defined on a class
of presymplectic spaces (the extended moduli spaces: see Section 2.3) naturally identifies
the parameter Λ ∈ D+ with the value of the moment map for a torus action on these
moduli spaces; from Section 3 onward we shall focus on the symplectic volumes of reduced
spaces with respect to these torus actions, which are piecewise polynomial functions of the
value of the moment map Λ ∈ D+. We shall be particularly interested in the degrees of
these polynomials. For this reason it is convenient for us to work with parameters Λ taking
values in the fundamental alcove D+, a subset of the vector space t (so that volumes of
reduced spaces are polynomial functions on open regions which are the complement of
finitely many hyperplanes in D+) and not in terms of their images under the exponential
map: we keep this notation throughout the paper.
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2.2 Definitions of Moduli Spaces

Let Σg
n denote an oriented two-manifold of genus g with n oriented boundary components

S1, . . . , Sn.

Definition 2.7 LetΛ = (Λ1, . . . ,Λn) be a collection of n values in D+. The moduli space
of representations is defined by

Mg,n(Λ) = Rg,n(Λ)/G,

where

Rg,n(Λ) = {ρ ∈ Hom
(
π1(Σg

n),G
)

: ρ([Sa]) ∈ Cl(expΛa), a = 1, . . . , n}(2.1)

and G acts on Rg,n(Λ) by conjugation. Here, Cl(expΛa) denotes the conjugacy class of
expΛa in G.

The fundamental group of Σg
n is the free group on 2g + n generators with one relation:

π1(Σg
n) =

〈
x1, . . . , x2g , c1, . . . , cn :

g∏
j=1

[x j , x j+g] =
n∏

r=1

cr

〉
.

Thus we have

Mg,n(Λ) =
{

(h1, . . . , h2g , β1, . . . , βn) ∈ G2g+n :

g∏
j=1

[h j , h j+g] =
n∏

r=1

βr, βr ∈ Cl(expΛr)
}
/G.

(2.2)

The regular set Mo
g,n(Λ) is the quotient by the G action of the subset Ro

g,n(Λ) of Rg,n(Λ)
where the action of G/Z(G) is free. We remark that the set Mo

g,n(Λ) is a smooth manifold,
and is an open dense subset of Mg,n(Λ). In this article we shall chiefly be concerned with
the case n = 1.

2.3 Extended Moduli Spaces

The spaces Mg,1(Λ) arise as reduced spaces of a class of spaces equipped with G-actions,
the extended moduli spaces [14] (see also [10], [12], [15] and references in these articles):
the parameter Λ is the value of the moment map for a torus action on the extended moduli
space.

2.3.1 The Definition of Extended Moduli Spaces

The definition of the extended moduli spaces is as follows.
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Definition 2.8 ([14, (5.6)]) The extended moduli space associated to the Riemann sur-
face Σg

1 is

M̃g,1 =
{

(h1, . . . , h2g ,Λ) ∈ G2g × g :
n∏

j=1

[h j , h j+g] = eΛ
}
.

The action of G is defined in (5.9) and (5.10) of [14]. An element σ in G acts on M̃g,1

by sending

h j �→ σh jσ
−1 for j = 1, . . . , 2g

Λ �→ σΛσ−1.

2.3.2 Abstract Moment Maps and Presymplectic Forms

Recent work of Karshon [23] has made it possible to enlarge the class of manifolds equipped
with Hamiltonian group actions to include manifolds equipped with a 2-form which is
closed but not necessarily nondegenerate. This subsection summarizes some of her results
pertinent to the study of extended moduli spaces.

Let M be a smooth manifold equipped with the action of a compact group G.

Definition 2.9 (Karshon) An abstract moment map for the action of G is a smooth func-
tion Φ : M → g∗ satisfying the following conditions:

(i) Φ is G-equivariant (where G acts on g∗ by the coadjoint action).
(ii) For any subgroup H of G, inducing a projection πH : g∗ → h∗, the value of the map
πH ◦ Φ is constant on each component of the fixed point set MH ⊂ M.

Karshon studies manifolds M equipped with an abstract moment map. She proves

Lemma 2.10 ([23, Lemma 7.1]) Let M be a smooth manifold equipped with the action of a
torus T and an abstract moment mapΦ : M → t∗. Then if ξ is a regular value ofΦ, the action
of T on Φ−1(ξ) is locally free.

Thus it is possible to define reduced spaces Mξ = Φ−1(ξ)/T whenever M satisfies the hy-
potheses of the Lemma; if additionally the moment map Φ is proper, these reduced spaces
are compact orbifolds for all regular values ξ.

An important example is the case when M is equipped with a 2-form ω which is closed
but not necessarily nondegenerate: such a 2-form is called a presymplectic structure or
presymplectic form on M.

Definition 2.11 Suppose M is a smooth manifold equipped with the action of a compact
Lie group G, an abstract moment map Φ : M → g∗, and a closed 2-form ω. Then Φ is
Hamiltonian with respect to ω if for every element X ∈ g generating a vector field X# on
M, we have

ι#Xω = dΦX,(2.3)

where ι denotes the interior product and

ΦX(m) =
(
Φ(m),X

)
.
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Remark 2.12 The idea of presymplectic reduction occurs also in [28] (Proposition 11).

Remark 2.13 If M is a smooth manifold equipped with a presymplectic form ω, a G-
action and a smooth G-equivariant mapΦ : M → g∗ for which (2.3) is satisfied with respect
to ω, then condition (ii) of Definition 2.9 is an immediate consequence of (2.3). In other
words, G-equivariant maps that are Hamiltonian with respect to a presymplectic form ω
are always abstract moment maps, even when ω is degenerate.

If the abstract moment map Φ is Hamiltonian with respect to a closed 2-form ω, then
ω+Φ is an equivariantly closed 2-form and hence defines an equivariant cohomology class
(see [2, Chapter 7]).

If M is a presymplectic manifold equipped with the action of a torus T and a proper ab-
stract moment map Φ, Karshon proves [23, Proposition 11.1] that the formula expressing
the symplectic volume v(ξ) of the reduced space Mξ in terms of fixed point data generalizes
to this situation. This formula shows that under these hypotheses, the volume is a piece-
wise polynomial function of ξ with discontinuities at the images under Φ of the set in M
where the action of T is not locally free. Karshon’s proof shows that the result that v(ξ) is
piecewise polynomial (which is one part of the Duistermaat-Heckman theorem) depends
neither on the assumption that M is compact nor on the assumption that ω is nondegen-
erate: it results from a local argument in a neighbourhood of a regular value ξ of Φ, and
requires only that there be a neighbourhood of Φ−1(ξ) in M on which Φ is Hamiltonian
with respect to ω.

2.3.3 Extended Moduli Spaces Viewed as Presymplectic Manifolds

The results of Section 2.3.2 may straightforwardly be applied to the case of extended moduli
spaces. We define a map J : M̃g,1 → g to be minus the projection onto g: in other words, if
we denote the points in M̃g,1 by (h,Λ) where h = (h1, . . . , h2g), then

J(h,Λ) = −Λ.

One may additionally define spaces

M̃T
g,1 = J−1(t+);

M̃T
g,1 is equipped with an action of T.

Let M̃(s)
g,1 ⊂ G2g × g be the smooth locus of the extended moduli space M̃g,1.

Lemma 2.14 The space M̃(s)
g,1 is equipped with a smooth closed 2-form ω with respect to

which the map J : M̃(s)
g,1 → g is Hamiltonian.

Proof For the construction of the 2-formω and the proofs thatω is closed and that the map
J is Hamiltonian with respect to ω, see [15] and [16] (in the case n = 1); the generalization
to Riemann surfaces with more then one boundary component is given in [13].

Lemma 2.15 The function J is an abstract moment map in the sense of Definition 2.9.
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Proof Equivariance of J is immediate from the definition. By Remark 2.13, the result
follows from Lemma 2.14.

The condition for a point in M̃g,n to be smooth is a straightforward consequence of the
regular value theorem: when n = 1 it takes the following form [14, Theorem 5.1].

Proposition 2.16 A point (h,Λ) of M̃g,1 is smooth when

z(h)⊥ ⊗ C + t⊗ C +
⊕
α∈�Λ

Xα = g⊗ C.

Here, z(h) is the Lie algebra of the centralizer of h under the conjugation action of G, while�Λ
is the set of roots α of g for which either α(Λ) = 0 or exp 2πiα(Λ) �= 1, and Xα ⊂ t⊥ ⊗ C is
the eigenspace of the adjoint action of T corresponding to the root α.

A similar (though stronger) condition guarantees smoothness for J−1(t+)
def
= M̃T

g,1 (see
[14, Theorem 5.2]):

Proposition 2.17 A point (h,Λ) of M̃T
g,1 is smooth when

z(h)⊥ + t = g.

It follows that if Λ is regular, (h,Λ) is smooth (since the stabilizer of Λ is T, so the
stabilizer of h must be contained in T).

The 2-form ω is nondegenerate on an open dense set of M̃(s)
g,1, but we are unable to

find a sufficient condition for nondegeneracy at the point (h,Λ) which is weaker than the
condition (which is a sufficient condition in the case n = 1) that the stabilizer of h under
the conjugation action of G is finite. In view of Karshon’s results, however, we need not
restrict our analysis to points where ω is nondegenerate, but only to the smooth locus M̃(s)

g,1

of M̃g,1. We shall refer to the space J−1(OΛ)/G as the reduced space of M̃g,1 at OΛ provided

that J−1(OΛ) ⊂ M̃(s)
g,1, even when ω is degenerate at some points in J−1(OΛ)/G. Likewise

we shall refer to the evaluation ∫
Mg,n(Λ)

exp(ωΛ)

as the volume of Mg,n(Λ) even if ω is degenerate for some points in the preimage J−1(Λ) ⊂
M̃T

g,1.

Proposition 2.18 If J−1(OΛ) ⊂ M̃(s)
g,1, then the reduced space

J−1(OΛ)/G

of the space M̃g,1 is given by Mg,1(Λ); if Λ is regular it is also given by the reduced space
J−1(Λ)/T of the space M̃T

g,1.
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3 Line Bundles on Moduli Spaces

In this section we shall define certain natural line bundles over the moduli space Mg,n(Λ)
when (Λ1, . . . ,Λn) ∈ (D+)n satisfy appropriate hypotheses. We shall then study the
Poincaré dual of the first Chern class of such a line bundle, by identifying a homology
cycle representing it. This will be done by identifying the Poincaré dual of the first Chern
class with the zero locus of a transversal section of the line bundle: this zero locus is then
equipped with a canonical orientation. The procedure for specifying the orientation is re-
viewed in Section 3.1. In Section 3.2 we construct line bundles over the moduli spaces,
while in Sections 3.3 and 3.4 we identify homology cycles representing the Poincaré dual
to the first Chern classes of these line bundles. Section 3.4 contains the construction for
general compact semisimple G, while Section 3.3 contains an alternative but more straight-
forward construction in the case G = SU(k), which avoids the use of roots and weights. (In
fact the intersection of the cycles representing the Poincaré duals of the line bundles con-
structed in Section 3.4 is the same as that for the line bundles constructed in Section 3.3:
see Remark 3.13.) Finally in Sections 3.5 and 3.6 we identify the intersections of homol-
ogy cycles representing Poincaré duals of Chern classes of the line bundles constructed in
Section 3.2.

3.1 Identification of the Chern Class Using the Zero Locus of a Transversal Section

It is well known (see for instance Section 12 of [3]) that the Poincaré dual of the top Chern
class of a C∞ vector bundle E (over a compact manifold M) with fibres Ex

∼= Cm is given by
the homology class of the zero locus of a C∞ section s : M → E provided that s(M) (viewed
as a submanifold of the total space E) is transverse to the zero section of E.

Proposition 3.1 Let M and N be compact oriented manifolds and let f : M → N be a C∞

map. Let y be a regular value of f . Then f−1(y) is an oriented manifold whose orientation is
determined by the exact sequence

0→ Tx

(
f−1(y)

)
→ TxM

d fx
−→ T f (x)N → 0.(3.1)

The exact sequence (3.1) determines a canonical isomorphism

max∧
TxM ∼=

max∧
Tx

(
f−1(y)

)
⊗

max∧
T f (x)N.(3.2)

Recall that a section s of a complex vector bundle E→ M is transverse to the zero section
if and only if in any oriented local trivialization

E|U ∼= U × Cm

for which we may write s locally as a map s|U : U → Cm, we suppose that zero is a regular
value of s|U .

Corollary 3.2 ([3, Proposition 12.8]) Let M be an oriented manifold and let E → M be
an (oriented) complex vector bundle of dimension m; suppose s is a section of E transverse to
the zero section. Then the zero locus of s is an oriented submanifold of M oriented via the
conditions of Proposition 3.1, which represents the Poincaré dual of cm(E).
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Remark 3.3 The bundle E appearing in Corollary 3.2 is assumed simply to be a C∞ bun-
dle: we are not assuming the base space is a complex manifold, much less that the bundle
carries a holomorphic structure.

In fact we shall make use of the following special case:

Corollary 3.4 Suppose M1 and M2 are compact oriented manifolds and f : M1 → M2 a
C∞ map. Let U be an open neighbourhood of f−1(m) for some regular value m of f , and let
V → U ⊂ M1 be a family of principal T-bundles with fiber a torus T and s : V → CN a family
of T-equivariant maps, where T acts on C by a collection of weights α j ∈ Hom

(
T,U (1)

)
,

j = 1, . . . ,N. Suppose 0 is a regular value of s : V → CN . Then the zero locus of the
corresponding section of the complex line bundle V ×T CN is the base space of the principal
T-bundle

s−1(0) ∩ f−1(0)→ s−1(0) ∩ f−1(0)/T,

where the orientation of s−1(0) ∩ f−1(0) ⊂ V is given by Proposition 3.1 and Corollary 3.2
using

(d f , ds) : TxV → T f (x)M2 ⊕ CN .

A choice of orientation on T then yields an orientation on s−1(0) ∩ f−1(0)/T.

3.2 Line Bundles and Homology Cycles in Moduli Spaces

Let Mg,n(Λ) denote the moduli space of representations of the fundamental group of a
two-manifold with n boundary components, defined as in Section 2.2. This moduli space
is equipped with a collection of natural complex line bundles (equivalently, principal circle
bundles) which were constructed in [31]: we summarize this construction here.

For m = 1, . . . , n we define

V (m)
g,n (Λ) = {ρ ∈ Hom

(
π1(Σg

n),G
)

: ρ([S j ]) ∈ Cl
(
exp(Λ j)

)
and ρ([Sm]) = exp(Λm)}.

(3.3)

Definition 3.5 The space V (m)
g,n (Λ) is T-regular if the action of T/Z(G) by conjugation is

free at all points of V (m)
g,n (Λ).

If V (m)
g,n (Λ) is T-regular, then it fibers over Mg,n(Λ) with fiber T/Z(G).

Example If n = 1, the set ofΛ for which V (1)
g,1 (Λ) is T-regular is the complement of a finite

set of hyperplanes in D+: it includes some points of the boundary of D+.
Let α ∈ t∗ be a weight of T, in other words α(ΛI) ⊆ Z, so α exponentiates to

α̃ ∈ Hom
(
T,U (1)

)
. Then we may use α to define a complex line bundle V (m)

g,n,α(Λ) over
Mg,n(Λ):

V (m)
g,n,α(Λ) = V (m)

g,n (Λ)×T,α C(3.4)

where T acts on V (m)
g,n (Λ) on the right by conjugation, and t ∈ T acts on C on the left via

α̃(t−1).
The following is well known (see for instance [9]):
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Proposition 3.6 Suppose L is the total space of a principal T-bundle L → L/T. Then the
element κ(α) of H2(L/T) representing the equivariant cohomology classα ∈ H2

T(pt) in H2
T(L)

is the first Chern class of the complex line bundle

L×T,α C→ L/T

associated to L by the weight α.

Here, we have used the map2

κ : H∗T(pt)→ H∗T(L) ∼= H∗(L/T).(3.5)

To determine homology cycles representing the Poincaré dual of c1

(
V (m)

g,n,α(Λ)
)

we choose
one of the generators Y ∈ {x1, . . . , x2g , c1, . . . , ˆcm, . . . , cn} and identify a submanifold of
real codimension 2 which is the zero locus of a transversal section of V (m)

g,n,α(Λ). We shall
pay particular attention to the case when the weight α is a root.

3.3 Poincaré Duals to Chern Classes: The Case G = SU(k)

Let G = SU(k), in its standard representation as k × k unimodular complex matrices of
determinant 1; we represent its maximal torus T as diagonal k × k complex matrices of
determinant 1 with values in U (1).

Throughout this section we shall assume all subsets V (m)
g,n (Λ) are T-regular. We shall

treat the case when the weight α introduced in the previous subsection is a root γi j of G,
given for (v1, . . . , vk) ∈ t by

γi j(v1, . . . , vk) = vi − v j

or the corresponding element γ̃i j ∈ Hom
(

T,U (1)
)
:

γ̃i j(u1, . . . , uk) = uiu
−1
j

(for (u1, . . . , uk) ∈ T: in other words the u j are complex numbers of norm 1 and
u1 · · · uk = 1). Correspondingly we get complex line bundles Li j = V (m)

g,n,γi j
(Λ) over

Mg,n(Λ), as in Section 3.2.
In this section we shall determine homology cycles representing the Poincaré dual to the

first Chern class of these line bundles. Essentially this construction was first given in [31,
Section 5]: the details of the presentation here are slightly different.

Proposition 3.7 The homology cycle Dm,γi j (Y ) corresponding to the line bundle V (m)
g,n,γi j

(Λ)

lifts to the following cycle D̃m,γi j (Y ) in V (m)
g,n (Λ), for any Y ∈ {x1, . . . , x2g , c1, . . . , ˆcm, . . . , cn}:

D̃m,γi j (Y ) = {ρ ∈ V (m)
g,n (Λ) : ρ(Y )i j = 0}.

The orientation of D̃m,γi j (Y ) is determined as in Corollary 3.2.

Proof For any Y ∈ {x1, . . . , x2g , c1, . . . , ˆcm, . . . , cn}, a section s(Y )
γi j

of V (m)
g,n,γi j

(Λ) is defined

which has Dm,γi j (Y ) as its zero locus: the section s(Y )
γi j

is specified by the T-equivariant map

s from V (m)
g,n (Λ) to C sending ρ ∈ V (m)

g,n (Λ) to ρ(Y )i j .

2In this paper all cohomology groups and equivariant cohomology groups will have complex coefficients.
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3.3.1 Normalization and Orientation of the Zero Locus of a Transversal Section

In this section let G = SU(k); we continue to assume V (m)
g,n (Λ) is T-regular. We identify the

Poincaré dual of the Chern class of the line bundle

V (m)
g,n,γi j

(Λ)

as the zero locus Dm,γi j (Y ) of a section of a line bundle, in the case when Y is one of
the generators x1, . . . , x2g . The definition of the moduli space Mg,n(Λ) given at (2.2) is
Mg,n(Λ) = F−1(expΛ1)/T where

F = F1F2(3.6)

and F1 and F2 are maps G2g × Cl(expΛ2)× · · · × Cl(expΛn)→ G defined by

F1 : (h̄, β̄) �→

g∏
j=1

[h2 j−1, h2 j](3.7)

and

F2 : (h̄, β̄) �→ β−1
n · · ·β

−1
2 .(3.8)

Here, h̄ = (h1, . . . , h2g) ∈ G2g while

β̄ = (β2, . . . , βn) ∈ Cl(expΛ2)× · · · × Cl(expΛn).

For any values (Λ2, . . . ,Λn) ∈ Dn−1
+ , it follows from Sard’s theorem that the set of Λ1 for

which exp(Λ1) is a regular value of F is dense in D+.
The section s(x1)

γ corresponding to the generator Y = x1 and the root γ = γi j cor-
responding to a pair of positive integers i < j are defined by the T-equivariant map
V (m)

g,n (Λ)→ C given by

s(x1)
γi j

(h̄, β̄) = (h1)i j .(3.9)

We see that zero is a regular value of this map. The exact sequence

0→ T → g2g ⊕
n⊕

j=2

T(OΛ j )
(dF,ds(x1)

γ )
−−−→ g⊕ C→ 0(3.10)

is used to orient the tangent space T to the zero locus (s(x1)
γ )−1(0) (as in Proposition 3.1).

The map ds(x1)
γ is the projection from the first copy of g ∼= t ⊕ Cn+ onto the copy of C

corresponding to the root γ = γi j .
This construction may be applied also to the section s(x2)

γ corresponding to Y = x2. This
construction will be used in Section 3.7 to orient and normalize the intersection of the
zero loci of the sections s(x1)

γ and s(x2)
γ as γ runs over positive roots parametrized by pairs of

integers (i, j) with 1 ≤ i < j ≤ k: this is a copy of T × T ×Mg−1,n(Λ).
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3.4 Poincaré Duals to Chern Classes: The Case of General G

In this section we give a construction of Poincaré duals to Chern classes of certain line
bundles over Mg,n(Λ), in the case when G is a general compact connected semisimple Lie
group. This construction is a generalization of the construction given in the previous sec-
tion when G = SU(k).

Let n+ denote the number of positive roots. Let t⊥ = {
∑2n+

k=1 skγk, sk ∈ R} be the
orthocomplement of t in g, which is the R-linear span of the (positive and negative) roots. A
choice of positive Weyl chamber identifies t⊥ with the C-linear span of the positive roots γ j ,
j = 1, . . . , n+. Then exp(t⊥) is a subset of G whose image under the natural map G→ G/T
is an open dense subset of G/T. This follows from the following two standard results about
the KAN decomposition, replacing negative roots by positive roots in the obvious way.

Proposition 3.8 ([11, Chap. IX.2, Cor. 1.9]) Let N̄ be the subset of the complexification GC

of the compact semisimple Lie group G consisting of exp(n̄) where n̄ consists of the linear span
over C of the negative roots. Let GC = GAN be the standard3 decomposition of GC, so that
every element g ∈ GC is given by

g = k(g) exp H(g)n(g).

Then the map N̄ → G/T defined by n̄ �→ k(n̄)T is a diffeomorphism of N̄ onto an open
submanifold of G/T whose complement consists of finitely many disjoint manifolds of lower
dimension.

Proposition 3.9 ([30, Theorem 3.6.2]) In the notation of Proposition 3.8, the exponential
map

exp : n̄ �→ N̄

is a diffeomorphism.

The following is an immediate consequence of the previous two propositions.

Proposition 3.10 The subset

{
exp
( n+∑

k=1

zkγk

)
h : zk ∈ C, h ∈ T

}

is an open dense subset of G, and this parametrization is unique: in other words, if

exp
(∑

k

z1
kγk

)
h1 = exp

(∑
k

z2
kγk

)
h2

then z1
k = z2

k for all k = 1, . . . , n+, and h1 = h2.

3This decomposition is usually referred to as the KAN decomposition, where K (here denoted G) is the maximal
compact subgroup of a complex semisimple Lie group (here denoted GC).
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It follows that if y ∈ T then

y

(
exp
(∑

k

zkγk

)
h

)
y−1 = exp

(∑
k

zkγ̃k(y)γk

)
h.

Definition 3.11 Let Y be one of the generators {x1, . . . , x2g , c1, . . . , ˆcm, . . . , cn} of π1(Σg
n).

Let D̃m,γ j (Y ) ⊂ V (m)
g,n (Λ) be defined by

D̃m,γ j (Y ) =
{
ρ ∈ V (m)

g,n (Λ) ⊂ Hom
(
π1(Σg

n),G
)

:

ρ(Y ) = exp
( n+∑

k=1

zkγk

)
h for some h ∈ T with z j = 0

}
.

Proposition 3.12 Assume V (m)
g,n (Λ) is T-regular. The image Dm,γ j (Y ) of D̃m,γ j (Y ) under the

quotient map V (m)
g,n (Λ)→Mg,n(Λ) is a submanifold of Mg,n(Λ) of real codimension 2, which

is the zero locus of a transversal section of the line bundle V (m)
g,n,γ j

(Λ).

Proof A section s(Y )
γ j

of the bundle

V (m)
g,n,γ j

(Λ) = V (m)
g,n (Λ)×T,γ j C

is equivalent to a T-equivariant map

s(Y )
γ j

: V (m)
g,n (Λ)→ C,

defined as follows: if ρ ∈ V (m)
g,n (Λ) and ρ(Y ) = exp(

∑
k zkγk)h for some h ∈ T, we define

s(Y )
γ j

(ρ) = z j .(3.11)

Remark 3.13 We note that if we sum over all the positive roots we obtain a section of
a vector bundle which is the direct sum of all the line bundles V (m)

g,n,γ(Λ); this section is

equivalent to a T-equivariant map s(Y ) : V (m)
g,n (Λ)→ t⊥. It is easy to see that the zero locus

(s(Y ))−1(0) is the same as the zero locus of the direct sum of the sections
⊕

i< j s(Y )
γi j

con-

structed in Section 3.3 when G = SU(k). Furthermore the differentials ds(Y ) and
⊕

i< j ds(Y )
γi j

agree on the zero locus. Our primary purpose in studying these homology cycles is to iden-
tify this intersection: we thus see that for this purpose the construction given in the present
section generalizes that given in the previous section.
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3.5 Intersections of Homology Cycles

In this section we identify the intersection of homology cycles representing the Poincaré
duals of the line bundles V (m)

g,n,γ(Λ) as γ ranges over the positive roots. Throughout this

section we continue to assume V (m)
g,n (Λ) is T-regular. Without loss of generality we take

m = 1.
Define homology cycles Dγ(x2g−1) by (s

(x2g−1)
γ )−1(0) where s

(x2g−1)
γ is defined by (3.11).

Proposition 3.14 The homology cycle

DD2 =
⋂
γ>0

Dγ(x2g−1) ∩ Dγ(x2g) ⊂Mg,n(Λ)

represents the Poincaré dual of the class

κ(D2) ∈ H∗
(
Mg,n(Λ)

)
(3.12)

which comes from D2 ∈ H∗T(pt) via the map κ : H∗T
(
V (m)

g,n (Λ)
)
→ H∗

(
Mg,n(Λ)

)
defined

in (3.5). The orientation of (s
(x2g−1)
γ )−1(0) is specified by the exact sequence (3.10). We have

defined D ∈ H∗T(pt) ∼= S(t∗) by

D =
∏
γ>0

γ,

in other words D is the product of the positive roots.

Proof This follows since Dγ(x2g−1) and Dγ(x2g) are both homology cycles representing the

Poincaré dual of κ(γ), by Proposition 3.7, and since the section
⊕
γ(s

(x2g−1)
γ ) ⊕

⊕
γ(s

(x2g )
γ )

is a transversal section.

Proposition 3.15 Suppose V (m)
g,n (Λ) is T-regular. Then the homology cycle DD2 ⊂Mg,n(Λ)

is identified with Mg−1,n(Λ) × T × T by a diffeomorphism which identifies the respective
(pre)symplectic forms.

Proof By Proposition 3.10, Definition 3.11 and Proposition 3.12, the homology cycle DD

may be represented in V (m)
g,n (Λ) by

D̃D = {ρ ∈ V (m)
g,n (Λ) : ρ(x2g−1) ∈ T},

with the orientation determined by Corollary 3.4. Thus D̃D2 may be represented by

{ρ ∈ V (m)
g,n (Λ) : ρ(x2g−1) ∈ T, ρ(x2g) ∈ T} = V (m)

g−1,n(Λ)× T × T,

again with the orientation determined by Corollary 3.4. The image of D̃D2 under the nat-
ural quotient map V (m)

g,n (Λ)→Mg,n(Λ) is the homology cycle

DD2 =Mg−1,n(Λ)× T × T.
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It is not hard to see that the orientation of Mg−1,n(Λ) × T × T (where the orientation
of T × T is obtained from the identification of (x2g−1, x2g) as a symplectically dual pair
under the intersection form on H1(Σg

0) induced by the cup product) agrees with that of
DD2 = F−1

g

(
exp(−Λ1)

)
∩ s−1(0), where

Fg := F : G2g × Cl(expΛ2)× · · · × Cl(expΛn)→ G

was defined by (3.6), (3.7) and (3.8), and

s : G2g × Cl(expΛ2)× · · · × Cl(expΛn)→ Cn+ ⊕ Cn+(3.13)

was defined (in Section 3.3.1) by

s : (h1, . . . , h2g , β2, . . . , βn) �→
⊕
i< j

(h2g−1)i j ⊕
⊕
i< j

(h2g)i j ,(3.14)

or in Section 3.4 (replacing Cn
+ by t⊥) by

s : (h1, . . . , h2g , β2, . . . , βn) �→ z2g−1 ⊕ z2g(3.15)

if hi = ti exp(zi) for i = 2g − 1 or i = 2g. Zero is obviously a regular value of (F, s). The
exact sequence (very similar to (3.10))

0→ T ′g → g2g ⊕ (t⊥)n−1 (dFg ,ds)
−−−→ g⊕ t⊥ ⊕ t⊥ → 0(3.16)

determines the orientation of s−1(0) ∩Mg,n(Λ); here T ′g is the tangent space to s−1(0) ∩

F−1
g (0). It is related to the direct sum of the three exact sequences

0→ Tg−1 → g2g−2 ⊕ (t⊥)n−1 dFg−1
→ g→ 0(3.17)

and
0→ t⊕ t→ t⊕ t→ 0→ 0

and
0→ 0→ t⊥ ⊕ t⊥ → t⊥ ⊕ t⊥ → 0;

here, Tg−1 is the tangent space to Rg−1,n(Λ) (in the notation of Definition 2.7). This yields
an exact sequence

0→ Tg−1 ⊕ t⊕ t→ g2g−2 ⊕ (t⊕ t⊥)⊕ (t⊕ t⊥)⊕ (t⊥)n−1 (dFg−1,ds)
−−−→ g⊕ t⊥ ⊕ t⊥ → 0.

(3.18)

Here, the sequence (3.17) determines the orientation of Mg−1,n(Λ). Closer examination
reveals that these sequences determine the same orientation on T ′g

∼= Tg−1⊕ t⊕ t: although
the operator dFg in the exact sequence (3.16) is different from the corresponding operator
appearing in (3.18), their difference is a linear map coming from the terms dFg(X2g−1) and
dFg(X2g) (where X2g−1 and X2g are tangent vectors to the (2g − 1)-th and (2g)-th copies of
G in G2g), which takes nonzero values only on the subspace (t ⊕ t⊥) ⊕ (t ⊕ t⊥) (see for
instance (3.23) below); and examination of (3.23) shows that addition of this map does not
change the sign of the determinant corresponding to the exact sequence.

Remark Proposition 3.15 generalizes Proposition 4.3 and Proposition 3.5 of [31].
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3.6 Riemann Surfaces with More than One Boundary Component: Normalization and
Orientation of Poincaré Duals of Chern Classes

In this section we shall study the intersection
⋂
γ>0

Dm,γ(cm ′)

for some m ′ �= m. Throughout this section we continue to assume V (m)
g,n (Λ) is T-regular.

Without loss of generality we take m = 1 and m ′ = 2.
We shall prove

Theorem 3.16 Suppose V (1)
g,n (Λ) is T-regular. Then we have

⋂
γ>0

D1,γ(c2) =
∑

w2∈W

ε(w2)ε(w(w2,Λ1,Λ2)
1 )Mg,n−1

(
w(w2,Λ1,Λ2)

1 (Λ1 + w2Λ2),Λ3, . . . ,Λn

)
,

(3.19)

where w(w2,Λ1,Λ2)
1 is the element of W for which exp w(w2,Λ1,Λ2)

1 (Λ1 + w2Λ2) ∈ exp D+. (This
element is unique provided Λ1 + w2Λ2 is not fixed by the action of any nontrivial element of
the Weyl group.)

Proof The space Mg,n(Λ) is defined as F−1
(
exp(−Λ1)

)
where

F = F1F2 : G2g × Cl(expΛ2)× · · · × Cl(expΛn)→ G,(3.20)

and as in Section 3.3.1 we have

F1 : (h1, . . . , h2g , β2, . . . , βn) �→

g∏
j=1

[h2 j−1, h2 j](3.21)

while

F2 : (h1, . . . , h2g , β2, . . . , βn) �→ β−1
n β

−1
n−1 · · ·β

−1
2 .(3.22)

Thus we have

dF = dF1F2 + F1dF2 = F1F2

(
Ad F−1

2 (F−1
1 dF1) + F−1

2 dF2

)
.

We identify the tangent space ThG with g by identifying hX ∈ ThG with X ∈ g. Hence we
see that

F−1
1 dF1 : (X1, . . . ,X2g)

�→

g∑
j=1

Ad
(∏

l> j

[h2l−1, h2l]
)−1(

Ad(h2 jh2 j−1)(X2 j − X2 j−1)

+ Ad(h2 jh2 j−1h−1
2 j )X2 j−1 − Ad(h2 j)X2 j

)
.

(3.23)
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If β j = Ad(g j)eΛ j , we identify the tangent space to the conjugacy class Cl(eΛ j ) at the
point β j (regarding the conjugacy class as a submanifold of G) by identifying t⊥ with
β j Ad(g j)t⊥. (Notice that g j is well defined up to right multiplication by an element of
T, and Ad(g j)t⊥ depends only on the coset g jT.)

We then find that

−F−1
2 dF2(Y2, . . . ,Yn) = Ad(β2 · · ·βn)Yn + · · · + Ad(β2β3)Y3 + Ad(β2)Y2.(3.24)

(This expression is well defined since the β j are elements of G and the Y j are elements of
Ad(g j)t⊥ ⊂ g.)

A section of
⊕
γ>0 V (1)

g,n,γ(Λ) is given by the T-equivariant map

s : (h1, . . . , h2g , β2, . . . , βn) �→
∑
γ>0

(β2)γ,

where we define (β2)γ = zγ if β2 = exp(
∑
γ>0 zγγ)h for some h ∈ T (as in (3.11)) and

zγ ∈ C.
We see that s(h1, . . . , h2g , β2, . . . , βn) = 0 if and only if β2 is in T, in other words if and

only if β2 = exp(w2Λ2) for some w2 ∈ W . Thus w2 lifts to an element g2 ∈ N(T). In this
case Y2 ∈ t⊥ and

ds(h,β2,...,βn)(X1, . . . ,X2g ,Y2, . . . ,Yn) = Ad(g2)Y2.

Zero is clearly a regular value of (F, s). We note that Ad(g2) changes the orientation of t⊥

by ε(w2).
Our Poincaré dual thus decomposes as

∐
w2∈W

ε(w2)
{

(h1, . . . , h2g , β3, . . . , βn) ∈ G2g × Cl(expΛ3)× · · · × Cl(expΛn) :

g∏
j=1

[h2 j−1, h2 j]β
−1
n · · ·β

−1
3 = exp(Λ1 + w2Λ2)

}/
T.

Since exp(Λ1 + w2Λ2) is not necessarily in exp t+, it is necessary to identify each component
with a space

{
(h1, . . . , h2g , β3, . . . , βn) ∈ G2g × Cl(expΛ3)× · · · × Cl(expΛn) :

g∏
j=1

[h2 j−1, h2 j]β
−1
n . . . β

−1
3 = exp w(w2,Λ1,Λ2)

1 (Λ1 + w2Λ2)
}/

T,
(3.25)

where w(w2,Λ1,Λ2)
1 is chosen so that exp w(w2,Λ1,Λ2)

1 (Λ1 + w2Λ2) ∈ exp t+. This identification

changes the orientation by ε(w(w2,Λ1,Λ2)
1 ). We thus find that the exact sequence

0→ T → g2g ⊕ (t⊥)n−2 (dF,ds)
−−−→ g→ 0(3.26)
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used to orient the space in (3.25) is obtained from the exact sequence

0→ T → g2g ⊕ (t⊥)n−1 (dF,ds)
−−−→ g⊕ t⊥ → 0(3.27)

except that the orientations differ by a factor ε(w2)ε(w(w2,Λ1,Λ2)
1 ). This completes the proof.

3.7 A Differential Equation for the Volumes

Define a differential operator L by

LΛ =
∏
γ>0

(Dγ)Λ.(3.28)

Here, (Dγ)Λ is the first order differential operator

(Dγ)Λ = γ(∂Λ),

where, if a weight α ∈ Λw is given in coordinates specified by a basis on t∗ by α =
(α1, . . . , αl), we define

α(∂Λ) =
∑

r

αr∂λr ,

in terms of coordinates Λ = (λ1, . . . , λl) on t determined by the dual basis of the basis on
t∗ which was used to determine the coordinates (α1, . . . , αl).

Lemma 3.17 Assume V (m)
g,1 (Λ) is T-regular. Then for any class η ∈ H∗

(
Mg,n(Λ)

)
we have

γ(∂Λ)

∫
Mg,1(Λ)

eωΛη =

∫
Mg,1(Λ)

c1

(
Lγ(Λ)

)
eωΛη.(3.29)

Proof The moduli spaces Mg,1(Λ) are obtained from the extended moduli spaces M̃g,1 by
reduction at the coadjoint orbit OΛ parametrized by Λ. Let ωΛ denote the symplectic form
on Mg,1(Λ). Then by the Duistermaat-Heckman theorem4 we have that

γ(∂Λ)ωΛ = c1

(
Lγ(Λ)

)
.

This immediately yields the Lemma.

Theorem 3.18 Assume V (m)
g,1 (Λ) is T-regular. Then we have

(LΛ)2Sg,1(Λ) = CSg−1,1(Λ)

where C = volω(T × T). Here, the differential operator LΛ was defined in (3.28).

4This version of the Duistermaat-Heckman theorem may be proved without requiring that the 2-form ω is
nondegenerate: see Section 2.3.2. It is a consequence of the role played by ω in equivariant cohomology, and
requires only that Λ be T-regular.
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Proof Applying Lemma 3.17 repeatedly we find that

(LΛ)2Sg,1(Λ) =

∫
Mg,1(Λ)

⋃
γ>0

(
c1

(
Lγ(Λ)

))2
eωΛ

=

∫
Mg,1(Λ)

κ(D2)eωΛ

=

∫
DD2∩Mg,1(Λ)

eωΛ

=

∫
Mg−1,1(Λ)×T×T

eωΛ

(3.30)

by Proposition 3.15. This gives the result.

Remark 3.19 The value of C (which is the integral of the symplectic form over T × T)
has been calculated in [18, Section 10], as the determinant of the Cartan matrix of G; for
SU(k) we have C = k.

Remark 3.20 For G = SU(2), Theorem 3.18 was proved in [21, Proposition 10].

4 A Vanishing Theorem in the Cohomology of M(k, d)

In this section let G = SU(k) and let d be coprime to k. Then

c = e2πid/k diag(1, . . . , 1)

is a generator of Z(G). Let M(k, d) denote the space of representations ρ : F2g = π1(Σg
1)→

G for which ρ([S1]) = c, where S1 =
∏g

j=1[x2 j−1, x2 j] is the product of commutators

of the generators x j of F2g . Then M(k, d) is a smooth symplectic manifold: it appears in
algebraic geometry as the moduli space of semistable holomorphic vector bundles on Σg

0

of rank k, degree d and fixed determinant. In this section we shall prove the vanishing of
a subring R(k, d) of H∗

(
M(k, d)

)
above degree (2g − 2)k(k − 1), and prove also that this

estimate is sharp (in other words that there is a nonvanishing element of R(k, d) in degree
(2g− 2)k(k− 1)). These results have been obtained independently by Earl and Kirwan [7].

The material in this final section is related to that in Section 3 since the key tool being
used is the formula for Sg,1(Λ) (see (4.36)). The function Sg,1 is given as a Fourier series:
given the formula for S1,1 and the differential equation in Theorem 3.18 relating Sg,1 to
Sg−1,1, one would be able to integrate the recurrence relation for the volume functions and
obtain the formula for Sg,1.

One reason for the importance of the ring R(k, d) is that it contains the Pontrjagin ring
of M(k, d) (that is, the ring generated by the Pontrjagin classes of the tangent bundle).

4.1 Fibrations and Parabolic Bundles

Let c̃ ∈ t be an element of the closed fundamental alcove D+ satisfying exp c̃ = c. We have
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Theorem 4.1 There is a neighbourhood U of c̃ in t such that if Λ ∈ U then there is a
fibration π : Mg,1(Λ)→ M(k, d) with fiber OΛ−c̃ .

Further, the induced symplectic form ωΛ on Mg,1(Λ) satisfies

ωΛ = π
∗ωk,d + Ω̃Λ−c̃(4.31)

where ωk,d is the symplectic form on M(k, d) and Ω̃Λ−c̃ restricts on each fiber of π to the
standard Kirillov-Kostant symplectic form ΩΛ−c̃ on the coadjoint orbit OΛ−c̃ .

Proof This follows by general results regarding symplectic fibrations associated to reduc-
tion at a regular value: see [14, Theorem 6.1] for a proof. (Note that M(k, d) is obtained
by reducing an appropriate extended moduli space at a regular value of the moment map
and that the 2-form ω is nondegenerate in a neighbourhood of the preimage of this regular
value under the moment map: see Proposition 5.5 of [14].)

A set of generators of the rational cohomology of M(k, d) is denoted

ar ∈ H2r
(
M(k, d)

)
,

b j
r ∈ H2r−1

(
M(k, d)

)
,

fr ∈ H2r−2
(
M(k, d)

)

(for r = 2, . . . , k and j = 1, . . . , 2g). The class f2 ∈ H2
(
M(k, d)

)
is the cohomology class

of the symplectic form ωk,d on M(k, d). (See [1, Section 2].)

Remark 4.2 Here the notation Mg,1(Λ) refers to Mg,1([Λ]) where [Λ] is the equivalence
class in D+ = t/Waff of the element Λ ∈ t.

Definition 4.3 Let R(k, d) denote the subring of H∗
(
M(k, d)

)
generated by the a2, . . . , ak.

The Pontrjagin ring of M(k, d) (the ring generated by the Pontrjagin classes of M(k, d))
is then a subring of R(k, d): see [27] for a proof of this. An explicit characterization of this
ring in terms of the generators of R(k, d) has been given by Earl in [6, Lemma 7].

We now relate powers of the symplectic form of Mg,1(Λ) to the fibration given by The-
orem 4.1, using standard properties of the cohomology of flag manifolds (see for example
[3, Section 21]:

Proposition 4.4 If Λ is a regular element of t∗, the coadjoint orbit OΛ is diffeomorphic to
the homogeneous space G/T so its cohomology is given by

H∗(OΛ) ∼=
S(t∗)

S(t∗)W
,(4.32)

in other words the quotient of ring of polynomials on t by the subring of symmetric polynomials.
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Proposition 4.5 The space Mg,1(Λ) is symplectomorphic to a splitting manifold for the uni-
versal bundle U |M(k,d)×{pt} over M(k, d)× {pt} ⊂ M(k, d)× Σg

0: in other words

π∗(U |M(k,d)×{pt}) = L1 ⊕ · · · ⊕ Lk

where c1(L j) = e j for a collection of classes e j in H2
(
Mg,1(Λ)

)
(for j = 1, . . . , k). Here, when

j = 1, . . . , k − 1, e j restricts on the fibers of π to the generator α j ( j = 1, . . . , k − 1) of
H2(G/T,Z) ∼= H1(T,Z) corresponding to the j-th fundamental weight of SU(k) (an element
of Hom

(
T,U (1)

)
, which is isomorphic to H1(T,Z)) and ek = −(e1 + · · · + ek−1).

Proof This follows from the algebro-geometric description of the moduli space of para-
bolic bundles (see for instance [25]): it is the moduli space parametrizing holomorphic
bundles over Σg

0 together with a flag in the fiber of each bundle over a basepoint ({pt}) ∈
Σ

g
0. The flag structure enables us naturally to split the universal bundle into a sum of

holomorphic line bundles.

We have the following Proposition:

Proposition 4.6 If τr is the r-th elementary symmetric polynomial (for r = 2, . . . , k) then
τr(e1, . . . , ek) = π∗ar, where ar = cr(U |M(k,d)×{pt}).

Proof See [3, Section 21, p. 284] for results on the properties of splitting manifolds and flag
bundles. There, it is proved that for a complex vector bundle E over a complex manifold M
with splitting manifold Fl(E), we have

H∗
(
Fl(E)

)
=

H∗(M)[e1, . . . , ek]∏k
i=1(1 + ei) = c(E)

,(4.33)

where the e j ∈ H2
(
Fl(E)

)
restrict (for j = 1, . . . , k) on the fiber U (k)/U (1)k ∼= G/T

(where G = SU(k) and T is its maximal torus) to the images under the coboundary map (in
the Leray-Serre spectral sequence) of the elements H1

U (1)k ({pt},Z) = Hom
(
U (1)k,U (1)

)
given by a basis for the weight lattice of U (1)k.

The following is a standard result (see for instance [2, Lemma 7.22]):

Proposition 4.7 Let α1, . . . , αk (subject to
∑k

j=1 α j = 0) be the basis for H2
T({pt}) (the

second equivariant cohomology group of a point for the maximal torus T of SU(k)) which was
introduced in Proposition 4.5. Then the standard Kirillov-Kostant symplectic form ΩΛ−c̃ on
OΛ−c̃ is given by

ΩΛ−c̃ =
k∑

j=1

(Λ− c̃) jα j .

We thus have the following result:
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Proposition 4.8 Let Λ ∈ U where U is as in Theorem 4.1. Then we have

τ2(∂Λ)m2 · · · τk(∂Λ)mk Sg,1(Λ) = vol(OΛ−c̃)

∫
M(k,d)

eωk,d am2
2 · · · a

mk
k

∑
s≥0

βs,(4.34)

where for s ≥ n+

∫
Mg,1(Λ)

[Ω̃Λ−c̃]s

s!

n∏
r=2

π∗ar =

∫
Mg,1(Λ)

[Ω̃Λ−c̃]n+

n+!
π∗βs

n∏
r=2

π∗ar,(4.35)

so that βs ∈ H∗(M(k, d)) has (piecewise) polynomial dependence on Λ − c̃. Furthermore, on
each region of t where βs depends polynomially on Λ − c̃, it is a homogeneous polynomial of
degree s− n+.

Proof By Theorem 4.1 and Proposition 4.6, we have

τ2(∂Λ)m2 · · · τk(∂Λ)mk

∫
Mg,1(Λ)

eπ
∗ωk,d e

∑
j (Λ j−c j )e j =

∫
Mg,1(Λ)

eπ
∗ωk,d e

∑
j (Λ j−c j )e j

k∏
r=2

π∗(ar)
mr .

Applying the Leray-Hirsch theorem to the fibration given in Theorem 4.1, we see that
H∗
(
Mg,1(Λ)

)
is a free H∗(M(k, d))-module with basis given by a basis of the vector space

S(t∗)/S(t∗)W ∼= H∗(OΛ−c̃). It follows that the class5 in H∗
(
Mg,1(Λ)

)
which multiplies

[ωΛ−c̃]n
+/n+! in the term [Ω̃Λ−c̃]s/s! in the power series expansion of exp Ω̃Λ−c̃ may be

taken to be a pullback π∗βs for some βs ∈ H∗(M(k, d)). We integrate over the fiber OΛ−c̃

of π to obtain the result.

4.2 Vanishing Theorems for Subrings of H∗
(

M(k, d)
)

We have

Proposition 4.9 The function Sg,1 is a piecewise polynomial function on D+ whose degree
on each region where it is a polynomial is≤ (2g − 1)n+.

Proof A formula for Sg,1 (as well as for all the other Sg,n) was rigorously established by
Witten in Section 4.7 of [32, (4.114)], using the identification of the symplectic measure on
the moduli space Mg,n in terms of Reidemeister-Ray-Singer torsion.6 As a function from
t to R, Sg,1 is periodic under translations by the integer lattice ΛI , or in other words it is a
function on the torus T = t/ΛI . Witten’s formula [32, (4.114)] for Sg,1 is given in terms of
the characters of irreducible representations of G. Using the Weyl character formula (see for
instance [2, Section 8.2]), Witten’s formula for Sg,1 may be recast as a Fourier series: when

5If ω is a closed 2-form, we use the notation [ω] to denote the corresponding class in de Rham cohomology.
6Witten proved the formula for Sg,1(Λ) for a dense set of Λ, namely those for which some integer multiple of

Λ lies in the integer lattice ΛI : this establishes it for all Λ in the complement of the finite set of hyperplanes in T
where Sg,1 or its derivatives have discontinuities, since Sg,1 is a piecewise polynomial function of Λ, as explained
in the Introduction.
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Λ is in the fundamental alcove Do
+, Sg,1(Λ) is given for an appropriate overall constant k(G)

depending only on the group G by7

Sg,1(Λ) = k(G)
∑

µ∈Λw∩to
+

1

D(µ)2g−1

∑
w∈W

ε(w)ei〈wΛ,µ〉.(4.36)

Here, µ runs over the intersection of the fundamental Weyl chamber with the weight lattice
Λw, and D(µ) is the dimension of the irreducible representation of G with highest weight
µ−ρ (where ρ is half the sum of the positive roots): the Weyl dimension formula gives this
as

D(µ) =
∏
γ>0

〈γ, µ〉

〈γ, ρ〉
.

In [33, Section 5, (5.26)–(5.31)], Witten shows that a Fourier series of this type has the
property that for any polynomial P on t of degree> (2g − 1)n+,

P(∂Λ)Sg,1(Λ) = 0

for Λ in the complement of the finite set of hyperplanes in D+ where Sg,1 or any of its
derivatives have discontinuities. It follows that on each region where Sg,1 is a polynomial,
its degree is≤ (2g − 1)n+.

Remark In fact there exist open regions in t+ where the degree of Sg,1 is equal to (2g−1)n+.
This will be shown in Section 4.3.

Combining Propositions 4.8 and 4.9, we obtain the following result.

Proposition 4.10 The intersection pairing

∫
M(k,d)

eωk,d am2
2 · · · a

mk
k

is equal to zero if
∑

r≥2 rmr > (2g − 2)n+.

Proof Suppose
∑

r≥2 rmr > (2g − 2)n+. Then by Proposition 4.9
∏

r τr(∂Λ)mr Sg,1(Λ) is
a piecewise polynomial function of Λ of degree < n+. According to Proposition 4.8, this
function must be divisible by vol(OΛ−c̃), which is a piecewise polynomial function of Λ of
degree equal to n+ (by Proposition 4.7); this is only possible if

∏
r

τr(∂Λ)mr Sg,1(Λ) = 0.

This implies ∫
M(k,d)

eωk,d
∏

r

amr
r

∑
s≥0

βs = 0

7Explicitly, k(G) = #Z(G) Vol(G)2g−1(2π)−(2g−1) dim G+dim T Vol(T)−1 where all volumes are with respect to
the bivariant metric 〈·, ·〉 on G given by the invariant inner product on g normalized so that the highest root γmax
has 〈γmax, γmax〉 = 2.
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and in particular ∫
M(k,d)

eωk,d
∏

r

amr
r = 0.

In fact a stronger result is true:

Theorem 4.11 The product
am2

2 · · · a
mk
k

vanishes if
∑

r≥2 rmr > (2g − 2)n+.

We shall prove Theorem 4.11 by showing that if
∑

r≥2 rmr > (2g − 2)n+ then the in-
tersection pairings of am2

2 · · · a
mk
k with all cohomology classes of complementary degree are

zero: this will imply the result since M(k, d) is a smooth Kähler manifold and thus satisfies
Poincaré duality. In order to show the vanishing of these pairings, we shall need some re-
cent results on relations in the cohomology of M(k, d), found by Witten [33, (5.21)] and
proved in Section 10 of [18]. These relations are logically independent of the formulas for
the intersection numbers between the classes ar and the Kähler class f2, proved in Section 9
of [18]: together the relations and these formulas determine the structure of the cohomol-
ogy ring of M(k, d). To state these relations we must introduce the ring homomorphism
κ : S(t∗)W → H∗

(
M(k, d)

)
defined by

κ(τr) = (−1)rar.

We note that the ring of Weyl invariant polynomials on t∗ is generated by the elementary
symmetric polynomials τr (where r = 2, . . . , k). We also introduce a variable X ∈ t so that
our Weyl invariant polynomials on t will be specified as τ : X ∈ t �→ τ (X) ∈ R.

For nonnegative integers m2, . . . ,mk we define the symmetric polynomial τ by

τ (X) =
k∏

r=2

τr(−X)mr .(4.37)

It follows that κ(τ ) =
∏k

r=2 amr
r . We also define the invariant polynomial

q = τ2 +
k∑

r=3

δrτr

(where δ3, . . . , δk are formal nilpotent parameters). Using the invariant inner product on
g, the map −dq : g → g∗ may be regarded as a G-equivariant map B : g → g specified by

B = B(2) +
∑k

r=3 δrB
(r), where B(r) : g → g. We find that B(2) = −dτ2 = id : g → g. The

map B−1 : g → g is the inverse of B: the inverse is also G-equivariant and may be written
as a formal power series in the δr.

The Hessian of−q is denoted H: it is a function from g to symmetric bilinear forms on
g. If k, l index an orthonormal basis {v̂k} of g then the Hessian at X is the matrix

H(X)kl = −(∂2q)X(v̂k, v̂l).
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Proposition 4.12 ([18, Proposition 10.2]) In terms of the above notation, we have

∫
M(k,d)

k∏
r=2

κ
(
τ (X)
)

exp( f2 + δ3 f3 + · · · + δk fk)

=

∫
M(k,d)

κ
(
τ
(
B−1(−X)

)
det H

(
B−1(−X)

)g−1
)

exp f2.

(4.38)

Let the invariant polynomial τ on t be as defined in (4.37). Let s j
r be real parameters (for

r = 2, . . . , k and j = 1, . . . , 2g). Define an invariant polynomial τ̂ on g (or equivalently a
Weyl invariant polynomial on t, whose argument is denoted X ∈ t) by

τ̂ (−X) = −
k−1∑

a,b=1

k∑
r,s=2

g∑
j=1

s j
r s j+g

s (dτr)X(ûa)(dτs)X(ûb)
(
(∂2q)−1

X

)
ab
,(4.39)

Here, {ûa : a = 1, . . . , k − 1} is an oriented orthonormal basis of t, and (∂2q)−1
X is the

formal power series in the δr which is the inverse of the element (∂2q)X ∈ End(g): this
power series is constructed using the identity

(1 + A)−1 =
∑
r≥0

(−1)rAr(4.40)

which is valid for elements A ∈ End(g)[[δ3, . . . , δk]] in the ring of formal power series in
the variables δ3, . . . , δk. In fact (∂2q)X is an element of End(g) which is equal to 1 + A for a

matrix A of the form
∑k

j=3 δ jA j , where the (A j)X are elements of End(g) with polynomial

dependence on X ∈ t, so the construction in (4.40) applies and gives
(
(∂2q)−1

X

)
ab
= δab+vab

where v is a linear combination of homogeneous polynomials in X of degree≥ 1.

Proposition 4.13 ([18, Proposition 10.3]) In terms of the above notation, we have

∫
M(k,d)

κ
(
τ (X)
)

exp
( k∑

r=2

2g∑
j=1

s j
r b j

r

)
exp( f2 + δ3 f3 + · · · + δk fk)

=

∫
M(k,d)

κ
(
τ (X) exp τ̂ (X)

)
exp( f2 + δ3 f3 + · · · + δk fk).

(4.41)

Lemma 4.14 Suppose τ ∈ S(g∗)G is an invariant polynomial of degree N. Then for all
values of the formal parameters δ3, . . . , δk, the invariant polynomial τ

(
B−1(−X)

)
is a linear

combination of homogeneous invariant polynomials of degree≥ N in X.

Proof This follows because

B(X) = X + δ3B(3) + · · · + δkB(k),
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where the components of the g-valued maps B( j) = −dτ j : g → g are homogeneous poly-
nomials on g of degree j − 1. It follows that

B−1(X) = X + v(X)

where the components of the g-valued map v : g → g are formal power series in the
δ3, . . . , δk which may be written as linear combinations of homogeneous polynomials of
degree≥ 2 in X.

Lemma 4.15 Suppose τ ∈ S(g∗)G is a homogeneous invariant polynomial on g of degree
N. Then for all values of the real parameters s j

r , the invariant polynomial τ (X) exp τ̂ (X) is a
linear combination of homogeneous invariant polynomials of degree≥ N in X.

Proof This follows immediately from the Taylor series for the exponential function and
the definition (4.39) of τ̂ , which shows that it is a linear combination of homogeneous
invariant polynomials on g of degree greater than or equal to 2.

Using Propositions 4.12 and 4.13 and Lemmas 4.14 and 4.15 we thus see

Proposition 4.16 If τ is an invariant polynomial on g of degree≥ (2g − 2)n+ then

∫
M(k,d)

κ(τ )e f2+δ3 f3+···+δk fk e
∑k

r=2

∑2g
j=1 s j

r b j
r = 0.

This implies that under these hypotheses the intersection pairing of κ(τ ) with any class
in the cohomology ring is zero. Since M(k, d) satisfies Poincaré duality, it follows imme-

diately that if
∑k

r=2 rmr > (2g − 2)n+ then
∏k

r=2 amr
r is zero. This completes the proof of

Theorem 4.11.
In particular, we thus see that the Pontrjagin ring of M(k, d) vanishes in degrees above

2(2g − 2)n+ = (2g − 2)k(k− 1).

4.3 Sharpness of the Estimate

In this section we still let G = SU(k).

Theorem 4.17 The volume S1,1(Λ) of the moduli space M1,1(Λ) is a piecewise polynomial
function of Λ of degree greater than or equal to n+.

Proof This moduli space is

{(h1, h2) ∈ G2 : [h1, h2] = expΛ}/T.(4.42)

By the same argument as in the proof of Proposition 3.15, the Poincaré dual DD of⋃
γ>0 c1(Lγ) lifts to the following cycle in V (1)

g,1 (Λ):

D̃D = {(h1, h2) ∈ G2 : [h1, h2] = expΛ, h1 ∈ T}.(4.43)
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Thus if (h1, h2) ∈ D̃D we have

h2h1h−1
2 = h1 exp(−Λ) ∈ T.(4.44)

Thus h2h1h−1
2 = wh1 and

h1(wh−1
1 ) = expΛ.(4.45)

Since h1 is assumed to be in T, and Λ ∈ t, this has solutions h1 = expµ where

(1− w)µ = Λ + ξ for some ξ ∈ ΛI .(4.46)

We shall prove

L(∂Λ)S1,1(Λ) = (±1)#
(
M1,1(Λ) ∩ PD

[⋃
γ>0

c1(Lγ)
])

;(4.47)

we shall do this by showing that the Poincaré dual of
⋃
γ>0 c1

(
V (1)

1,1,γ(Λ)
)

in M1,1(Λ) consists
of isolated points all of which contribute with the same sign.

If w has any eigenvalues equal to 1, the image of the linear transformation w− 1 of t is a
proper vector subspace of t. We restrict to thoseΛ for whichΛ+ξ does not lie in this vector
subspace for any ξ ∈ ΛI , so that (4.46) will have solutions only when w − 1 is invertible as
a transformation of t, in other words when w does not have any eigenvalues 1. Since w acts
on t ⊂ Rk through the action of the permutation group on k elements, this happens if and
only if the cycle decomposition of w consists of exactly one cycle of length k. We see that
for all such w,

ε(w) = (−1)k−1.(4.48)

We now consider the orientation of PD
(⋃

i< j c1(Li j)
)

where we have introduced the

notation Li j = V (1)
1,1,γi j

(Λ). This is the orientation induced from the intersection s(M) ∩

M in the total space of
⊕

i< j Li j restricted to M = M1,1(Λ) [3, Proposition 12.8] (see
Proposition 3.1 and Corollaries 3.2 and 3.4).

Let F : G× G→ G be defined by

F(h1, h2) = h1h2h−1
1 h−1

2 .

Let G act on G×G and on G by the left adjoint action: then F is G-equivariant. We identify
the tangent space ThG with g by identifying X ∈ g with the corresponding left-invariant
vector field whose value at h is hX.

Proposition 4.18 In terms of the above notation, we have

(dF)(h1,h2)(X1,X2) =
(
Ad(h2h1h−1

2 )− Ad(h2h1)
)

X1 +
(
Ad(h2h1)− Ad(h2)

)
X2

or equivalently

(dF)(h1,h2)(X1,X2) = Ad(h2h1h−1
2 )
(
1− Ad(h2)

)
X1 + Ad(h2)

(
Ad(h1)− 1

)
X2.(4.49)

https://doi.org/10.4153/CJM-2000-026-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-026-4


610 Lisa C. Jeffrey and Jonathan Weitsman

We shall be interested in values (h1, h2) satisfying (4.44) and (4.45), so that h2 ∈ N(T) is
a lift of an element w ∈W , and h1 ∈ T. We decompose g as g = t⊕ t⊥; thus each element
X ∈ g decomposes as X = t + Y where t ∈ t and Y ∈ t⊥. We choose an orientation on
t by choosing an ordered basis: the orientation on t⊥ is obtained by identifying it with the
C-linear span of the positive roots. At the point (h1, h2) the section s of the vector bundle
given by the sum of the Li j is given by projecting h1 to

⊕
i< j(h1)i j .

The tangent space is oriented using the map

(ds, dF) : g⊕ g→ t⊥ ⊕ g,

or equivalently
(ds, dF) : (t⊥ ⊕ t)⊕ (t⊥ ⊕ t)→ (t⊥ ⊕ g).

It is given by

(
(t1,Y1), (t2,Y2)

)

�→
(

Y1,Ad(h2h1h−1
2 )
(
1− Ad(h2)

)
(t1,Y1) + Ad(h2)

(
Ad(h1)− 1

)
(t2,Y2)

)

=
(

Y1, (1− w)t1 + Ad(h2h1h−1
2 )
(

1− Ad(h2)
)
Y1 + Ad(h2)

(
Ad(h1)− 1

)
Y2

)
,

(4.50)

since h1 ∈ T. We assume that Ad(expΛ) does not have eigenvalues 1 on t⊥: then by (4.45),
Ad(h1) also does not have eigenvalues 1 on t⊥. Thus

Ker(ds, dF) ∼= {
(
(0, 0), (t2, 0)

)
},

and it is clear from (4.50) that (ds, dF) is surjective for all (h1, h2) satisfying (4.44) and
(4.45).

We make use of the following elementary results:

Lemma 4.19 The adjoint action of h ∈ N(T) takes t to t and t⊥ to t⊥. It changes the
orientation of t⊥ by ε(w) if w is the element of W corresponding to h.

Lemma 4.20 The adjoint action of T takes t⊥ to t⊥ and preserves the orientation of t⊥.

Proposition 4.21 Let G = SU(k). Assume that Ad exp(Λ) does not have any eigenvalues
equal to 1 on t⊥, and that for all ξ ∈ ΛI and w ∈ W , Λ + ξ does not lie in Im(w − 1).
Then each component of PD

(⋃
i< j c1(Li j)

)
in M1,1(Λ) is a point with orientation (−1)k−1.

In particular all such points have the same orientation.

Proof According to (4.50), the orientation of the component {
(
h1,Ad(y)h2

)
: y ∈ T}

of the solutions of (4.44) and (4.45) in V (1)
1,1 (Λ) (which maps to a single point in M1,1(Λ)

under the quotient map) is thus given by the sign of det A1 det A2 where A1 is the real matrix
consisting of blocks (where each block is a square matrix of size 2n+) given by

A1 =

(
1 0

Ad(h2h1h−1
2 )
(
1− Ad(h2)

)
Ad(h2)

(
Ad(h1)− 1

)
)
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and A2 is the transformation of t given by t �→ (1 − w)t . The determinant of A2 for Weyl
group elements w with no eigenvalues equal to 1 is easily computed to be 2.

The determinant of A1 is equal to the determinant of the transformation of t⊥ given by

Ad(h2)
(

Ad(h1)− 1
)
.

For h1 ∈ T, the real determinant of Ad(h1)− 1 is easily seen to be positive (it is a product
over the positive roots, where each root gives a factor of the form

(
2 − γ̃(h1) − γ̃(h1)−1

)
,

where γ̃(h1) is in U (1)). The determinant of Ad(h2) is ε(w): by the calculation in (4.48),
this is (−1)k−1 and in particular it is independent of (h1, h2).

Proposition 4.21 tell us that all the points in the Poincaré dual DD of
∏

i< j c1(Li j ) in
M1,1(Λ) have the same orientation. This completes the proof of (4.47), which in turn
completes the proof of Theorem 4.17.

Theorem 4.22 There is a nonvanishing element β ∈ H2n+(2g−2)
(
M(k, d)

)
which is of the

form
∏k

r=2 amr
r .

Proof We can explicitly exhibit such an element. Let β̃ = κ(D2(g−1)). Notice that by
(4.33), β̃ = π∗β for some β ∈ H2n+(2g−2)

(
M(k, d)

)
. Theorem 3.18 shows that

∫
Mg,1(Λ)

π∗(β)eωΛ = S1,1(Λ),

so Theorem 4.17 shows that β must be nonzero.

Remark 4.23 Theorem 4.22 provides a counterexample to a conjecture of Ne’eman [26],
which is that the Pontrjagin ring vanishes above dimension 2gk2−4g(k−1) + 2. The proof
of Theorem 4.22 exhibits a nonvanishing element β of degree (2g − 2)k(k − 1), and we
easily see using [6, Lemma 7] that this element is in the Pontrjagin ring. The degree of this
element exceeds Ne’eman’s conjectured bound when g is chosen sufficiently large.
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