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Abstract We consider the spectra of the Laplacians of two sequences of fractal graphs in the context
of the general theory introduced by Sabot in 2003. For the sequence of graphs associated with the
pentagasket, we give a description of the eigenvalues in terms of the iteration of a map from (C2)3 to
itself. For the sequence of graphs introduced in a previous paper by the author, we show that the results
found therein can be related to Sabot’s theory.
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1. Introduction

Many fractals, and related self-similar graphs, display a property known as spectral dec-
imation: the spectrum of the Laplacian can be described in terms of the iteration of a
rational function f . Eigenvalues λ of the Laplacian at a given stage of the construction
are related to eigenvalues µ of the Laplacian at the following stage of the construction
by a relationship

λ = f(µ), (1.1)

where f is a rational function on R, unless µ is a member of a small exceptional set, E .
This was first observed for the specific case of the Sierpiński gasket graph by Rammal
and Toulouse in [8], and this was given a rigorous mathematical treatment in [4,12,13].

A generalization of spectral decimation to a much larger class of self-similar graphs,
including the Vicsek set graph, is developed by Malozemov and Teplyaev in [7], in which
a symmetry condition is developed which, if satisfied, ensures that spectral decimation
applies to the graph. Each self-similar graph in this class has a function f and exceptional
set E associated with it. Further examples of calculations for examples satisfying this
symmetry condition are found in [2].

In [10], Sabot developed a more general theory which does not require the symmetry
condition of [7]. This involves a rational map on a projective variety rather than on R,
and the derivation of the spectral decimation phenomenon for the Sierpiński gasket from
the general theory is covered in detail in [10, § 5].
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Figure 1. The first few graphs, Γ (0), Γ (1), Γ (2) and Γ (3), in the sequence associated
with the pentagasket. The filled-in vertices are the boundary vertices.

We investigate two examples of the spectral theory of the Laplacians of fractal graphs
in the context of the general theory developed by Sabot. One example is the pentagasket,
where the related problem of the spectral theory of the Laplacian on the fractal itself is
investigated in [1], and the other is related to the variant on spectral decimation found
in [5]. Although the graphs defined in [5] do not quite fit the definitions in [10, § 1.1.1],
we will see that much of the theory does apply.

2. The framework

The notation here is based on that in [10].
We work with a sequence of graphs (Γ (n))n∈N, which will approximate a limiting self-

similar graph as n → ∞. This sequence is obtained by starting with Γ (0) a complete
graph on N0 vertices, R an equivalence relation on {1, 2, . . . , N} × {1, 2, . . . , N0} (for a
constant N � N0) and β : {1, 2, . . . , N0} → {1, 2, . . . , N0} a function which will determine
the boundary vertices.

Then if Γ (n) is the level-n graph, with a set of N0 vertices identified as its boundary,
∂Γ (n), and the remaining vertices its interior Γ̊ (n), we form Γ (n+1) by taking N copies
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of Γ (n) and identifying boundary vertex j1 of copy k1 with boundary vertex j2 of copy
k2 if and only if (k1, j1)R(k2, j2). We then let boundary vertex j of Γ (n+1) be boundary
vertex β(j) of copy j of Γ (n−1). Also, define a set of scaling factors for each copy of
Γ (n−1), αi, 1 � i � N .

We will refer to each copy of the complete graph on N0 vertices within Γ (n) as a cell.
Then N is the number of cells in Γ (1). Let SymG be the set of symmetric N0×N0 matrices
invariant under a symmetry group G acting on {1, . . . , N} keeping {1, . . . , N0} invariant,
which in the cases of interest is thought of as the symmetry group of the related fractal.

For example, for the pentagasket N0 = N = 5, the equivalence relation R is given
by (1, 3)R(2, 5), (2, 4)R(3, 1), (3, 5)R(4, 2), (4, 1)R(5, 3) and (5, 2)R(1, 4), the αi are all
equal and the function β is simply β(j) = j. The first few graphs in the resulting sequence
are shown in Figure 1.

3. The Sabot theory

In this section we give an introduction to the theory developed by Sabot in [10], show-
ing how the iteration of a rational map defined on a Grassmann algebra can be used to
describe the spectra of Laplacian operators on self-similar graphs fitting into the frame-
work described in § 2.

3.1. Construction of the Laplacian

The construction of a Laplacian on the self-similar graph is described in [10, § 1.2].
If Q is an N0 × N0 matrix, form an |V (Γ (n))| × |V (Γ (n))| matrix Q(n) as follows. Let

Q(0) = Q, and define Q(n) by taking copies of Q(n−1) on each of the copies of Γ (n−1),
multiplying the one on copy i by α1α

−1
i and adding them together.

The construction of a Laplacian operator on the self-similar graph proceeds by starting
with a G-invariant difference operator A (which we will take to be the graph Laplacian of
Γ (0)) on V (Γ (0)) and a G-invariant positive measure b. Then the above gives an operator
A(n) on R

V (Γ (n)), and we similarly define a sequence of measures (b(n))n∈N by letting
b(0) = b and taking copies of b(n−1) on each copy of Γ (n−1), multiplying the one on copy
i by α1α

−1
i and adding them together. A Laplacian L(n) can then be defined by

〈A(n)f, g〉 =
∫

L(n)fg db(n) for f, g ∈ R
|V (Γ (n))|,

with the Laplacian on the infinite self-similar graph being defined as an extension of
this. This definition ensures that in the case where all αi are equal and b is uniform the
eigenvalues are the same as those for the graph Laplacian defined in [3].

3.2. The iteration on the Grassmann algebra

The underlying iteration used in [10] to describe the spectrum takes place on a Grass-
mann algebra A, defined in [10, Chapter 2]. The space SymG is embedded in A via a
map ζ : SymG → A, and a linear operator A → C (which we will call D) is defined such
that D(ζ(Q)) = detQ.
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We will need the definition of the trace of a matrix on a subset from [10]: let Q be
an F × F matrix with F a finite set. If F ′ ⊆ F , then let Q|F ′ be the restriction of Q to
F ′, and define the trace of Q on F ′, QF ′ , by QF ′ = ((Q−1)|F ′)−1. Then the argument
in [10, Proposition 2.2] shows that

det Q = det(QF ′) det(Q|F\F ′).

Using this definition, § 3.1 of [10] defines T : SymG → SymG by T (Q) = (Q(1))∂Γ (1)

and then shows that Tn(Q) = (Q(n))∂Γ (n) [10, Equation (47)].
The iteration uses a map R : A → A, defined so that, for Q ∈ SymG,

R(ζ(Q)) = C det((Q(1))|Γ̊ (1))ζ(T (Q)) (3.1)

and [10, Equation (46)]

Rn(ζ(Q)) = C(n) det((Q(n))|Γ̊ (n))ζ(Tn(Q)), (3.2)

where C and C(n) are constants depending on the scaling factors αi. Proposition 3.1
of [10] states that R is homogeneous of degree N .

To find the eigenvalues of the Laplacian of Γ (n), we define Qλ ∈ SymG by Qλ = L−λI,
where L is the Laplacian of the initial graph G0. The theory in [10] tells us that the
eigenvalues of the level-n Laplacian can be found as the roots of D(Rn(ζ(Qλ))) = 0; our
aim will be to describe these roots.

In the case of the nested fractals defined by Lindstrøm in [6], which include the penta-
gasket and also the example of the Sierpiński gasket considered in [10, § 5.1], it is possible
to consider the map R as operating on (C2)k for some k (in the Sierpiński gasket case
k = 2 and in the pentagasket case k = 3) instead of working on the Grassmann algebra A.

4. The pentagasket

We consider the methods of [10] applied to the pentagasket, an example of a fractal
structure satisfying the conditions of [10] but for which spectral decimation does not
apply. Some results on the spectrum of the Laplacian on the pentagasket, together with
some numerical computations, are found in [1].

4.1. The iteration

We follow the method used for the Sierpiński gasket in [10, § 5.1]. We decompose C
5

as a direct sum of three orthogonal subspaces W0 ⊕ W1 ⊕ W2, each of which is preserved
by the symmetry group of the pentagasket. The space W0 consists of constant vectors,
W1 has orthogonal basis vectors(

0,
1 −

√
5

2
, 1,−1,

√
5 − 1
2

)
and

(
1,−1 +

√
5

4
,

√
5 − 1
4

,

√
5 − 1
4

,−1 +
√

5
4

)

and W2 has orthogonal basis vectors(
0, 1,

√
5 − 1
2

,
1 −

√
5

2
,−1

)
and

(
1,

√
5 − 1
4

,−1 +
√

5
4

,−1 +
√

5
4

,

√
5 − 1
4

)
.
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Then we let M0, M1 and M2 be matrices which fix W0, W1 and W2, respectively:

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
5

−1 +
√

5
10

√
5 − 1
10

√
5 − 1
10

−1 +
√

5
10

−1 +
√

5
10

2
5

−1 +
√

5
10

√
5 − 1
10

√
5 − 1
10√

5 − 1
10

−1 +
√

5
10

2
5

−1 +
√

5
10

√
5 − 1
10√

5 − 1
10

√
5 − 1
10

−1 +
√

5
10

2
5

−1 +
√

5
10

−1 +
√

5
10

√
5 − 1
10

√
5 − 1
10

−1 +
√

5
10

2
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
5

√
5 − 1
10

−1 +
√

5
10

−1 +
√

5
10

√
5 − 1
10√

5 − 1
10

2
5

√
5 − 1
10

−1 +
√

5
10

−1 +
√

5
10

−1 +
√

5
10

√
5 − 1
10

2
5

√
5 − 1
10

−1 +
√

5
10

−1 +
√

5
10

−1 +
√

5
10

√
5 − 1
10

2
5

√
5 − 1
10√

5 − 1
10

−1 +
√

5
10

−1 +
√

5
10

√
5 − 1
10

2
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The space SymG of complex symmetric 5 × 5 matrices invariant under the symmetry
group of the pentagasket consists of matrices of the form Q = aM0 + bM1 + cM2, so
we can represent an element of SymG by an element (a, b, c) ∈ C

3, and we denote this
element by Q(a, b, c). The coordinates a, b and c correspond to irreducible representations
of the symmetry group of the pentagasket described in [1]: a to the trivial representation
and b and c to the two-dimensional representations. The determinant of a matrix Q =
aM0 + bM1 + cM2 is ab2c2.

We now calculate the map T . As a map from C
3 to C

3 we have

T (a, b, c) = (T0(a, b, c), T1(a, b, c), T2(a, b, c)),
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where

T0(a, b, c) =
5abc

bc + 2ab + 2ac
,

T1(a, b, c) =
(2

√
5 + 5)(10ab + (5 −

√
5)ac + (5 +

√
5)bc)bc

2ab2 + (
√

5 + 3)ac2 + (9 + 3
√

5)bc2 + (46 + 20
√

5)b2c + (40 + 16
√

5)abc
,

T2(a, b, c) =
5(2ab + (5 −

√
5)ac + (3 −

√
5)bc)bc

2ab2 + (3 +
√

5)ac2 + 6b2c + (19 − 7
√

5)bc2 + (20 − 4
√

5)abc
.

We now follow the method used for the Sierpiński gasket in [10, Chapter 5] to
calculate a representation of the map R as a map from (C2)3 to itself. This uses a
function s : (C2)3 → A, constructed in the same way as the corresponding function
for the Sierpiński gasket, such that s((a, 1), (b, 1), (c, 1)) = ζ(Q(a, b, c)) and that s is
(1, 2, 2)-homogeneous.

We know from (3.2) that

R(ζ(Q)) = det((Q(1))|Γ̊ (1))ζ(T (Q)),

and we can calculate that if Q = Q(a, b, c), then

det((Q(1))|Γ̊ (1)) =
(25 − 11

√
5)e0(a, b, c)(e1(a, b, c))2(e2(a, b, c))2

12 500 000
,

where

e0(a, b, c) = (bc + 2ab + 2ac)(2b + (3 +
√

5)c),

e1(a, b, c) = 2ab2 + (
√

5 + 3)ac2 + (9 + 3
√

5)bc2 + (46 + 20
√

5)b2c + (40 + 16
√

5)abc,

e2(a, b, c) = 2ab2 + (3 +
√

5)ac2 + 6b2c + (19 − 7
√

5)bc2 + (20 − 4
√

5)abc.

The homogeneity of R and s implies that

R(s((u0, v0), (u1, v1), (u2, v2))) = (v0v
2
1v2

2)5R
(

s

((
u0

v0
, 1

)
,

(
u1

v1
, 1

)
,

(
u2

v2
, 1

)))
.

Putting these together,

R(s((u0, v0), (u1, v1), (u2, v2)))

= (v0v
2
1v2

2)5
25 − 11

√
5

12 500 000
e0

(
u0

v0
,
u1

v1
,
u2

v2

)(
e1

(
u0

v0
,
u1

v1
,
u2

v2

))2(
e2

(
u0

v0
,
u1

v1
,
u2

v2

))2

× s

((
T0

(
u0

v0
,
u1

v1
,
u2

v2

)
, 1

)
,

(
T1

(
u0

v0
,
u1

v1
,
u2

v2

)
, 1

)
,

(
T2

(
u0

v0
,
u1

v1
,
u2

v2

)
, 1

))
,
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and using the homogeneity of s we have

R(s((u0, v0), (u1, v1), (u2, v2)))

= s

((
25 − 11

√
5

12 500 000
v0v

2
1v2

2T0

(
u0

v0
,
u1

v1
,
u2

v2

)
e0

(
u0

v0
,
u1

v1
,
u2

v2

)
,

25 − 11
√

5
12 500 000

v0v
2
1v2

2e0

(
u0

v0
,
u1

v1
,
u2

v2

))
,(

v0v
2
1v2

2T1

(
u0

v0
,
u1

v1
,
u2

v2

)
e1

(
u0

v0
,
u1

v1
,
u2

v2

)
, v0v

2
1v2

2e1

(
u0

v0
,
u1

v1
,
u2

v2

))
,(

v0v
2
1v2

2T2

(
u0

v0
,
u1

v1
,
u2

v2

)
e2

(
u0

v0
,
u1

v1
,
u2

v2

)
, v0v

2
1v2

2e2

(
u0

v0
,
u1

v1
,
u2

v2

)))
,

so the representation of R as a map from (C2)3 to itself can be written

R((u0, v0), (u1, v1), (u2, v2))

=
((

25 − 11
√

5
12 500 000

v0v
2
1v2

2T0

(
u0

v0
,
u1

v1
,
u2

v2

)
e0

(
u0

v0
,
u1

v1
,
u2

v2

)
,

25 − 11
√

5
12 500 000

v0v
2
1v2

2e0

(
u0

v0
,
u1

v1
,
u2

v2

))
,(

v0v
2
1v2

2T1

(
u0

v0
,
u1

v1
,
u2

v2

)
e1

(
u0

v0
,
u1

v1
,
u2

v2

)
, v0v

2
1v2

2e1

(
u0

v0
,
u1

v1
,
u2

v2

))
,(

v0v
2
1v2

2T2

(
u0

v0
,
u1

v1
,
u2

v2

)
e2

(
u0

v0
,
u1

v1
,
u2

v2

)
, v0v

2
1v2

2e2

(
u0

v0
,
u1

v1
,
u2

v2

)))
.

Hence we have

R((u0, v0), (u1, v1), (u2, v2)) = ((R00, R01), (R10, R11), (R20, R21)),

where

R00 = (25 − 11
√

5)((
√

5 − 3)u1v2 − 2u2v1)u2u0u1/2 500 000,

R01 = (25 − 11
√

5)(u1u2v0 + 2u0u1v2 + 2u0u2v1)((
√

5 − 3)u1v2 − 2u2v1)/12 500 000,

R10 = (2
√

5 + 5)(10u0u1v2 + (5 −
√

5)u0u2v1 + (5 +
√

5)u1u2v0)u2u1,

R11 = 2u0u
2
1v

2
2 + (3 +

√
5)u0u

2
2v

2
1 + (9 + 3

√
5)u1u

2
2v0v1 + (46 + 20

√
5)u2

1u2v0v2

+ (40 + 16
√

5)u0u1u2v1v2,

R20 = 5(2u0u1v2 + (5 −
√

5)u0u2v1 + (3 −
√

5)u1u2v0)u2u1,

R21 = 2u0u
2
1v

2
2 + (3 +

√
5)u0u

2
2v

2
1 + 6u2

1u2v0v2

+ (19 − 7
√

5)u1u
2
2v0v1 + (20 − 4

√
5)u0u1u2v1v2.
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For a potential eigenvalue of the Laplacian λ, we start with an initial matrix

Qλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − λ − 1
4 − 1

4 − 1
4 − 1

4

− 1
4 1 − λ − 1

4 − 1
4 − 1

4

− 1
4 − 1

4 1 − λ − 1
4 − 1

4

− 1
4 − 1

4 − 1
4 1 − λ − 1

4

− 1
4 − 1

4 − 1
4 − 1

4 1 − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which corresponds to (
− λ,

5 − 4λ

4
,
5 − 4λ

4

)
∈ C

3,

so let

u
(0)
0 = −λ, u

(0)
1 =

5 − 4λ

4
, u

(0)
2 =

5 − 4λ

4
, v

(0)
0 = v

(0)
1 = v

(0)
2 = 1

and let

((u(n)
0 , v

(n)
0 ), (u(n)

1 , v
(n)
1 ), (u(n)

2 , v
(n)
2 ))

= R((u(n−1)
0 , v

(n−1)
0 ), (u(n−1)

1 , v
(n−1)
1 ), (u(n−1)

2 , v
(n−1)
2 )).

Because the operator D is linear, using the homogeneity of s we have

D(s((u0, v0), (u1, v1), (u2, v2))) = (v0v
2
1v2

2)D
(

s

((
u0

v0
, 1

)
,

(
u1

v1
, 1

)
,

(
u2

v2
, 1

)))

= (v0v
2
1v2

2)
(

u0u
2
1u

2
2

v0v2
1v2

2

)
= u0u

2
1u

2
2.

Hence, the eigenvalues of the n-level matrix are the roots of

u
(n)
0 (u(n)

1 )2(u(n)
2 )2 = 0.

Each u
(n)
i and v

(n)
i can be expressed as a polynomial in λ. If we let dn be the degree

of u
(n)
i and d′

n be the degree of v
(n)
i , then we have dn = 4dn−1 + d′

n−1 and d′
n = 3dn−1 +

2d′
n−1, with d0 = 1 and d′

0 = 0. Hence, dn = 1
4 (3 · 5n + 1) and d′

n = dn − 1. (The
total number of eigenvalues, which is the number of vertices in the level-n graph, is
5dn = 1

4 (3 · 5n+1 + 5).)
Similarly, let a(0) = −λ, b(0) = c(0) = 1

4 (5 − 4λ) and write the iterates of the map T

as (a(n), b(n), c(n)) = T (a(n−1), b(n−1), c(n−1)).

4.2. Eigenvalues that first arise at level n

We consider the ways that components of the iterates of R can become zero. In each
case we assume that the components not mentioned are non-zero at level n.
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(1) Let
F

(n)
1 = (

√
5 − 3)u(n−1)

1 v
(n−1)
2 − 2u

(n−1)
2 v

(n−1)
1 .

Then F
(n)
1 is a factor of both u

(n)
0 and v

(n)
0 with multiplicity 1, so roots of F

(n)
1 = 0

give eigenvalues with multiplicity 1 at level n. Iterating R shows that F
(n)
1 is a

factor of all the components at level n+1 with multiplicity 1 and of all components
at level n+m (m � 1) with multiplicity 5m−1, so the eigenvalue has multiplicity 5m

at level n + m. As the total number of eigenvalues at level n + m is 1
4 (3 · 5n+m+1),

the limiting spectral measure of an eigenvalue which appears as a type-1 eigenvalue
at level n is 4

3 ( 1
5 )n+1. Because F

(n)
1 is a factor of u

(m)
i and v

(m)
i with the same

multiplicity, these eigenvalues do not appear as zeros of the iterates of T .

(2) Let

F
(n)
2 = (5 +

√
5)u(n−1)

0 u
(n−1)
1 v

(n−1)
2

+ 2u
(n−1)
0 u

(n−1)
2 v

(n−1)
1 + (

√
5 + 3)u(n−1)

1 u
(n−1)
2 v

(n−1)
0 .

Then F
(n)
2 is a factor of u

(n)
1 with multiplicity 1, so roots of F

(n)
2 = 0 give eigenvalues

with multiplicity 2 at level n. In this case F
(n)
2 is a factor of each of u

(n+1)
0 , u

(n+1)
1

and u
(n+1)
2 with multiplicity 1 (and is not a factor of v

(n+1)
0 , v

(n+1)
1 or v

(n+1)
2 ) so the

eigenvalue has multiplicity 5 at level n+1. Inductively iterating R, for m � 1, F
(n)
2

is a factor of each of u
(n+m)
0 , u

(n+m)
1 and u

(n+m)
2 with multiplicity 1

4 (3 · 5m−1 + 1)
and of v

(n+m)
0 , v

(n+m)
1 and v

(n+m)
2 with multiplicity 1

4 (3·5m−1−3), so the eigenvalue
has multiplicity 1

4 (3 · 5m + 5) at level n + m. (The sequence of multiplicities starts
2, 5, 20, 95, 470, . . . .) The limiting spectral measure of an eigenvalue which appears
as a type-2 eigenvalue at level n is ( 1

5 )n+1. These eigenvalues appear as zeros with
multiplicity 1 of b(n) and of each of a(m), b(m) and c(m) for m > n.

(3) Let

F
(n)
3 = (5 +

√
5)u(n−1)

0 u
(n−1)
1 v

(n−1)
2 + 10u

(n−1)
0 u

(n−1)
2 v

(n−1)
1

+ (5 −
√

5)u(n−1)
1 u

(n−1)
2 v

(n−1)
0 .

Then F
(n)
3 is a factor of u

(n)
2 with multiplicity 1, so roots of F

(n)
3 = 0 give eigenvalues

with multiplicity 2 at level n. The behaviour of the multiplicities in this case is the
same as for type 2. These eigenvalues appear as zeros with multiplicity 1 of c(n)

and of each of a(m), b(m) and c(m) for m > n.

(4) The value λ = 5
4 is a special case, because F4 = (5−4λ) is a factor of both u

(0)
1 and

u
(0)
2 . Hence, this eigenvalue has multiplicity 4 at level 0. Iterating R, F4 is a factor

of each u
(1)
i with multiplicity 3 and of each v

(1)
i with multiplicity 2, and, again

by induction, F4 is a factor of each u
(m)
i with multiplicity 1

4 (11 · 5m−1 + 1) and
of each v

(m)
i with multiplicity 1

4 (11 · 5m−1 − 3), so the eigenvalue has multiplicity
1
4 (11 · 5m + 5) at level m. (The sequence of multiplicities starts 4, 15, 70, 345, . . . .)
The limiting spectral measure of 5

4 is 11
3 ( 1

5 ) = 11
15 . This eigenvalue appears as a zero

with multiplicity 1 of b(0) and c(0) and of each of a(m), b(m) and c(m) for m > 0.
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(5) The value λ = 0 is also a special case, as λ is a factor of u
(0)
0 (but not of v

(0)
0 , so the

behaviour is different from that of type-1 eigenvalues). Iterating R, λ is a factor of
u

(n)
0 for all n but not of any of the other components, producing a zero eigenvalue

with multiplicity 1. This eigenvalue appears as a zero with multiplicity 1 of a(m)

for all m.

Type-1 eigenvalues correspond to the alternating one-dimensional irreducible represen-
tation of the symmetry group, and types 2 and 3 correspond to the two two-dimensional
irreducible representations. These types of eigenvalues, and the single type-5 eigenvalue
(which corresponds to the trivial representation), thus correspond to the types of eigen-
values found for the Laplacian on the continuous pentagasket in [1]. The multiplicities
of eigenvalues at levels m > n found above by factorizing components of R also match
those found by geometric arguments in [1].

The type-4 eigenvalue does not correspond to any eigenvalue on the continuous penta-
gasket as, when the scaling factor (5/r)n is applied to the level-n spectrum (where
r = 1

8 (
√

161 − 9) as in [1]), we obtain

5
4

(
5
r

)n

→ ∞.

4.3. Numbers of eigenvalues of different types

We show by induction that for each n � 1 there are 3n−1 eigenvalues each of type 2
and type 3 appearing at level n and 3n−1 − 1 eigenvalues of type 1.

Assuming that this holds for all m < n, we analyse the degrees of the polynomials
F

(n)
i . The degree of F

(n)
1 is

dn−1 + d′
n−1 = 1

2 (3 · 5n−1 − 1)

and the degrees of F
(n)
2 and F

(n)
3 are each

2dn−1 + d′
n−1 = 1

4 (9 · 5n−1 − 1).

Now the structure of F
(n)
1 and the factorization of u

(m)
i and v

(m)
i show that, for m <

n − 1, F
(m)
1 appears as a factor in F

(n)
1 with multiplicity 2 · 5n−m−2, F

(m)
2 and F

(m)
3

appear as factors in F
(n)
1 each with multiplicity 1

2 (3 · 5n−m−2 − 1) and F4 appears as
a factor in F

(n)
1 with multiplicity 1

2 (11 · 5n−2 − 1) (if n � 2, it is a factor of F
(1)
1 with

multiplicity 1). Hence (assuming the induction hypothesis), eigenvalues from levels m < n

account for

n−2∑
m=1

(2(3m−1 − 1)5n−m−2 + 2(3m−1)( 3
2 · 5n−m−2 − 1

2 )) + 1
2 (11 · 5n−2 − 1)

= 1
2 (5n−1 + 1) − 3n−1

roots of F
(n)
1 , which leaves

1
2 (3 · 5n−1 − 1) − ( 1

2 (5n−1 + 1) − 3n−1) = 3n−1 − 1

roots, giving type-1 eigenvalues at level n.
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Similarly, the structure of F
(n)
2 and F

(n)
3 and the factorization of u

(m)
i and v

(m)
i show

that, for m < n − 1, F
(m)
1 appears as a factor in each of F

(n)
2 and F

(n)
3 with multiplicity

3 · 5n−m−2, F
(m)
2 and F

(m)
3 each appear as factors in both F

(n)
2 and F

(n)
3 with multiplicity

1
4 (9 · 5n−m−2 − 1), and F4 appears as a factor in both F

(n)
2 and F

(n)
3 with multiplicity

1
4 (33 ·5n−2 −1) (if n � 2, it is a factor of F

(1)
2 and F

(1)
3 with multiplicity 1). Additionally,

F
(n−1)
1 occurs as a factor in each of F

(n)
2 and F

(n)
3 with multiplicity 1. Hence (assuming

the induction hypothesis), eigenvalues from levels m < n account for

n−2∑
m=1

(3(3m−1 − 1)5n−m−2 + 2(3m−1)( 9
4 · 5n−m−2 − 1

4 )) + 1
4 (33 · 5n−2 − 1)

= 1
4 (9 · 5n−1 − 1) − 3n−1

roots of both F
(n)
2 and F

(n)
3 , which leaves

1
4 (9 · 5n−1 − 1) − ( 1

4 (9 · 5n−1 − 1) − 3n−1) = 3n−1

roots of each, giving type-2 and type-3 eigenvalues at level n.
Define

F̂
(1)
i = F

(1)
i /F4,

and then for n � 2 define

F̂
(n)
1 = F

(n)
1

( n−2∏
m=1

((F̂ (m)
1 )2·5n−m−2

(F̂ (m)
2 )(3·5n−m−2−1)/2(F̂ (m)

3 )(3·5n−m−2−1)/2)

× (F4)(11·5n−2−1)/2
)−1

,

F̂
(n)
2 = F

(n)
2

( n−2∏
m=1

((F̂ (m)
1 )3·5n−m−2

(F̂ (m)
2 )(9·5n−m−2−1)/4(F̂ (m)

3 )(9·5n−m−2−1)/4)

× (F4)(33·5n−2−1)/4(F̂ (n−1)
1 )

)−1

,

F̂
(n)
3 = F

(n)
3

( n−2∏
m=1

((F̂ (m)
1 )3·5n−m−2

(F̂ (m)
2 )(9·5n−m−2−1)/4(F̂ (m)

3 )(9·5n−m−2−1)/4)

× (F4)(33·5n−2−1)/4(F̂ (n−1)
1 )

)−1

.

Let λ
(n)
i , 1 � i � 3n−1 − 1, be the 3n−1 − 1 roots of F̂

(n)
1 = 0 and µ

(n)
i , 1 � i � 3n−1,

be the 3n−1 roots of F̂
(n)
2 = 0 and ν

(n)
i , 1 � i � 3n−1, be the 3n−1 roots of F̂

(n)
3 = 0.

Then the λ
(n)
i are type-1 eigenvalues at level n, the µ

(n)
i are type-2 eigenvalues at level

n and the ν
(n)
i are type-3 eigenvalues at level n.

https://doi.org/10.1017/S0013091508000898 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000898


742 J. Jordan

4.4. Spectral measure

The calculations above show that the spectral measure at level n is

4
3 · 5n+1 + 5

(
δ0 +

(
11
4

5n +
5
4

)
δ5/4 +

n−1∑
m=2

5n−m
3m−1−1∑

i=1

δ
λ

(m)
i

+
n−1∑
m=1

(
3
4
5n−m +

5
4

) 3m−1∑
i=1

(δ
µ

(m)
i

+ δ
ν
(m)
i

)
)

.

The limiting spectral measure is then

11
15

δ5/4 +
∞∑

m=2

4
3

(
1
5

)m+1 3m−1−1∑
i=1

δ
λ

(m)
i

+
∞∑

m=1

(
1
5

)m+1 3m−1∑
i=1

(δ
µ

(m)
i

+ δ
ν
(m)
i

).

The limiting spectral measure of the set of the λ
(n)
i eigenvalues is

∞∑
m=1

(3m−1 − 1) 4
3 ( 1

5 )m+1 = 1
15

and the limiting spectral measures of the sets of µ
(n)
i and ν

(n)
i eigenvalues are each

∞∑
m=1

(3m−1)( 1
5 )m+1 = 1

10 .

4.5. Numerical computation of eigenvalues

Using numerical solution of the equations obtained by the above factorizations of the
components of R, we calculate (see Table 1) the eigenvalues that appear in the first
three levels, their multiplicity in the spectrum of the Laplacian of Γ (3) and their limiting
spectral measure.

5. The self-similar unit interval with a reflection map

In [9,11], and in [10, § 5.2], the self-similar structure on the unit interval with respect
to the maps Ψ1(x) = αx and Ψ2(x) = 1 + (1 − α)(x − 1) is considered.

We consider a similar self-similar structure, but with the second map altered to reflect
and contract the interval, i.e. we will take Ψ2(x) = 1 − (1 − α)x, with Ψ1 as above. Here
N = N0 = 2, the equivalence relation is given by (1, 2)R(2, 2), the function β is given by
β(1) = β(2) = 1 and α1 = α, α2 = 1 − α. If α = 1

3 , this is closely related to the fractal
graph studied in [5]; the double edges in that graph correspond to the shorter edges here.
If α = 2

3 , it is similarly closely related to the graph obtained by reversing the orientation
of the model graph mentioned at the end of [5].

The symmetry group G is trivial and there are two boundary points. Hence, the sym-
metric matrices Q are of the form (

a q

q d

)
,
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Table 1. Calculations using the numerical solution of the equations
obtained by factorizations of the components of R.

level-3 spectral
eigenvalue level type multiplicity measure

0 0 5 1 0
0.00168338 3 3 2 1/625
0.00419185 3 2 2 1/625
0.01843319 2 3 5 1/125
0.02226818 3 1 1 4/1875
0.02464238 3 3 2 1/625
0.03227973 3 2 2 1/625
0.04400310 2 2 5 1/125
0.05954335 3 2 2 1/625
0.07854993 3 3 2 1/625
0.08951707 3 1 1 4/1875
0.17274575 1 3 20 1/25
0.18550404 3 1 1 4/1875
0.19513683 3 3 2 1/625
0.20677282 3 2 2 1/625
0.21215304 2 1 5 4/375
0.23593551 2 3 5 1/125
0.24270214 3 1 1 4/1875
0.24721715 3 3 2 1/625
0.26124041 3 2 2 1/625
0.30573224 2 2 5 1/125
0.31924348 3 2 2 1/625
0.34161493 3 3 2 1/625
0.35271477 3 1 1 4/1875
0.45225424 1 2 20 1/25
0.50602804 3 1 1 4/1875
0.51203514 3 3 2 1/625
0.52157728 3 2 2 1/625
0.52526466 2 2 5 1/125
0.59549976 3 2 2 1/625
0.60014028 3 3 2 1/625
0.60279371 3 1 1 4/1875
0.62063130 2 3 5 1/125
0.62347205 3 1 1 4/1875
0.62397999 3 3 2 1/625
0.62465131 3 2 2 1/625
0.66284695 2 1 5 4/375

5/4 0 4 345 11/15
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and the relationship of these symmetric matrices to the Grassmann algebra is exactly
the same as that for the interval without reflection in [10, § 5.2]. The Grassmann algebra
is generated by {η̄0, η0, η̄1, η1}, where {η0, η1} and {η̄0, η̄1} are canonical bases of two
copies of C

2, and, using the same notation as in [10],

exp(η̄Qη) = 1 + aη̄0η0 + dη̄1η1 + q(η̄0η1 + η̄1η0) + (ad − q2)η̄0η0η̄1η1,

and the map R will act on elements of the form

Z + aη̄0η0 + dη̄1η1 + q(η̄0η1 + η̄1η0) + Dη̄0η0η̄1η1

with ad − q2 = DZ.
Letting δ = α/(1 − α), the matrix Q(1) formed by adding scaled copies of Q in each

cell of Γ (1) is ⎛
⎜⎝a q 0

q d(1 + δ) δq

0 δq δa

⎞
⎟⎠ ,

and hence the matrix T (Q) is

1
d(1 + δ)

(
ad(1 + δ) − q2 −q2δ

−q2δ ad(δ + δ2) − q2δ

)
,

so that the map T can be represented as

T (a, d, q) =
1

d(1 + δ)
(ad(1 + δ) − q2, ad(δ + δ2) − δ2q2,−q2δ). (5.1)

Using the relationship between the maps T and R from [10], we can now calculate the
map R as

R

(
Z + aη̄0η0 + dη̄1η1 + q(η̄0η1 + η̄1η0) +

(
ad − q2

Z

)
η̄0η0η̄1η1

)
= Z̃ + ãη̄0η0 + d̃η̄1η1 + q̃(η̄0η1 + η̄1η0) + D̃η̄0η0η̄1η1,

with

Z̃ = Zd(1 + δ)

ã = ad(1 + δ) − q2

d̃ = adδ(1 + δ) − δ2q2

q̃ = −δq2

D̃ =
ãd̃ − q̃2

Z̃
.

Hence, we can follow the evolution of y = ad and v = q2 by considering the two-dimen-
sional map

h(y, v) = ((1 + δ)2δy2 − (1 + δ)2δyv + δ2v2, δ2v2),
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and if we let u = y/v, we can obtain a map ĥ on P
1:

ĥ(u) =
(1 + δ)2

δ
u2 − (1 + δ)2

δ
u + 1.

Let a(0) = d(0) = 1 − λ and q(0) = −1. Also let Z(0) = 1; then an eigenvalue λ is
mapped into the Grassmann algebra as

φ(λ) = Z(0) + a(0)η̄0η0 + d(0)η̄1η1 + q(0)(η̄0η1 + η̄1η0) +
(

a(0)d(0) − (q(0))2

Z(0)

)
η̄0η0η̄1η1.

Now define a(n), d(n), q(n) and Z(n) by

Z(n) + a(n)η̄0η0 + d(n)η̄1η1 + q(n)(η̄0η1 + η̄1η0) +
a(n)d(n) − (q(n))2

Z(n) η̄0η0η̄1η1

= Rn

(
Z(0) + a(0)η̄0η0 + d(0)η̄1η1 + q(0)(η̄0η1 + η̄1η0) +

(
a(0)d(0) − (q(0))2

Z(0)

)
η̄0η0η̄1η1

)

and let y(n) = a(n)d(n), v(n) = (q(n))2, u(n) = y(n)/v(n).
Eigenvalues of the level-n Laplacian are values where (a(n)d(n) − (q(n))2)/Z(n) = 0,

which implies that u(n) = 1, i.e. that ĥn((1 − λ)2) = 1.
Now u(n) = 1 if and only if u(0) = 1 or u(m) = 0 for some m < n. The former case gives

eigenvalues 0 and 2. The latter case happens if either a(m) = 0 (if m � 1, this implies
that u(m−1) = 1/(1 + δ)) or d(m) = 0 (if m � 1, this implies that u(m−1) = δ/(1 + δ)).
However, the case where d(m) = 0 does not produce eigenvalues of the Laplacian because
in this case Z(n) = 0. So the eigenvalues of the Laplacian at level n are 0, 1, 2 and values
λ such that u(m) = 1/(1 + δ) for some m < n − 1.

To see the link between the theory in [10] and the results in [5], note that in the
case where δ = 1

2 or δ = 2 it can be seen that ĥ((1 − λ)2) is the quartic polynomial
in [5]. However, in the one-dimensional setting we consider here, the Dirichlet–Neumann
eigenvalues found in [5] do not appear. They occur at the values mentioned above where
d(m) = 0 for some m < n.
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