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Partial differential equations (PDEs) are expressions involving an unknown function in

many independent variables and their partial derivatives up to a certain order. Since

PDEs express continuous change, they have long been used to formulate a myriad

of dynamical physical and biological phenomena: heat flow, optics, electrostatics and

-dynamics, elasticity, fluid flow and many more. Many of these PDEs can be derived in

a variational way, i.e. via minimization of an ‘energy’ functional. In this globalised and tech-

nologically advanced age, PDEs are also extensively used for modelling social situations (e.g.

models for opinion formation, mathematical finance, crowd motion) and tasks in engineering

(such as models for semiconductors, networks, and signal and image processing tasks). In

particular, in recent years, there has been increasing interest from applied analysts in applying

the models and techniques from variational methods and PDEs to tackle problems in data

science. This issue of the European Journal of Applied Mathematics highlights some recent

developments in this young and growing area. It gives a taste of endeavours in this realm

in two exemplary contributions on PDEs on graphs [1, 2] and one on probabilistic domain

decomposition for numerically solving large-scale PDEs [3].

Key words: big data, partial differential equations, graphs, discrete to continuum, probabilistic

domain decomposition

1 The graph framework

Applied mathematics research on graphs in the context of data science starts with the

observation that many kinds of discrete data can be represented as a weighted graph

or network. This representation is convenient when developing data processing methods

as it provides a mathematical structure that one can work with. In 2012, a paper by

Andrea Bertozzi and Arjuna Flenner kicked off a boom in applied mathematics research

on this topic [4]. In this paper, the authors use graph versions of the Ginzburg–Landau

functional for data clustering, data classification and image segmentation. Minimisation
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of the classical continuum Ginzburg–Landau functional,

F(u) := ε

∫
Ω

|∇u|2 dx +
1

ε

∫
Ω

W (u) dx,

provides a model for phase separation. Here, W (u) = u2(1− u)2 is a double well potential

with minima at u = 0 and u = 1, and u describes the relative presence of the two phases

{u ≈ 0} and {u ≈ 1} in the domain Ω. When F is minimised under some suitable

constraints on u (e.g. a mass constraint of the form
∫
Ω
u dx = M) and for small values of

the parameter ε, u will take values close to 0 and 1, with transitions between those values

occurring in small regions of width O(ε).

In [4], the graph functional

f(u) :=
∑
i,j∈V

ωij(ui − uj)
2 +

1

ε

∑
i∈V

W (ui)

was introduced. This is a functional whose input argument u is a function on the nodes of

a graph, instead of on a continuum set Ω ⊂ �n and which serves as a graph counterpart to

F . Here, V is the node set of the graph, ωij is a non-negative weight on the edge between

nodes i and j in a finite, simple, undirected graph and ui is the value of the function u

on node i. In [4], this functional was used in combination with either a mass constraint

or an additional data fidelity term of the form
∑

i: training data(ui − u
training
i )2 to cluster or

classify the nodes of a graph into two groups (‘phases’ where u ≈ 0 and u ≈ 1) based on

the pairwise node similarity encoded in the edge weights ωij . By treating the pixels of an

image as nodes in a graph, data classification can be used for image segmentation as well.

Interesting mathematical questions that could arise from such a model are as follows:

(1) Can we find graph analogues of properties of the continuum functional?

(2) Is the continuum functional a limit of the graph functionals in some sense?

(3) What can we say about the resulting algorithm and its usage for data analysis/image

processing?

(4) Are there other network problems that can be tackled by a PDE inspired approach?

(5) Are there other PDE/variational systems that have interesting network analogues?

And if the inspiring PDEs are related, are their graph analogues related?

Some of these questions have been considered in the state-of-the-art literature, with

some highlights reported in the following.

(1) Does f have similar properties to F? In [5], the authors proved that f Γ -converges

[6, 7], when ε → 0, to the graph total variation functional

TV (u) :=
1

2

∑
i,j∈V

ωij |ui − uj |,

which has as domain the set of node functions u which take values in {0, 1}. This

mirrors the well-known continuum result [8, 9]. Moreover, for such {0, 1}-valued

functions u, TV (u) reduces to the graph cut [10] of the node partition V0 = {i : ui = 0},
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V1 = {i : ui = 1}, i.e. the sum of the edge weights ωij corresponding to edges that

have one node in V0 and the other in V1.

(2) Furthermore, when f or TV are defined on certain graphs for which a sensible

continuum limit can be defined, they Γ -converge to the continuum total variation in

the continuum limit, e.g. on 4-regular graphs obtained by ever finer discretisations of

the flat torus [5] and on point clouds obtained by sampling ever more points from

an underlying subset of �n [11–13]. In the latter context, these limit results can be

interpreted as consistency results that show that the discrete model defined on the

samples is asymptotically consistent with a continuum model.

(3) Minimisation of f is in practice (approximately) achieved either by solving a gradient

flow equation of Allen–Cahn type:

dui

dt
= −

∑
j∈V

ωij(ui − uj) −
1

ε
W ′(ui)

(plus additional terms coming from a mass constraint or fidelity term) or by a graph

version of the threshold dynamics (or MBO) scheme [14]:

uk+1 =

{
0, if ũ(τ) < 1

2
,

1, if ũ(τ) � 1
2
,

where ũ(t) solves

{
dũi
dt

= −
∑

j∈V ωij(ũi − ũj),

ũ(0) = 0.

In the (spectral) graph theory, literature [10, 15] (Δu)i :=
∑

j∈V ωij(ui − uj) is known

as the unnormalised or combinatorial graph Laplacian of u. The equations above can

also be formulated and solved with normalised versions of the graph Laplacian.

On a given graph, these equations can be solved quickly and accurately, for example

by using a truncated spectral decomposition based on the eigenfunctions of the graph

Laplacian in combination with a convex splitting scheme in the case of the graph

Allen–Cahn equation [4, 16].

The construction of the underlying graph in the first place can pose a significant

computational problem, especially when the number of data points (and thus nodes

in the graph) is very large. Matrix completion techniques such as the Nyström

extension [17, 18] and fast eigenvalue computation algorithms such as the Rayleigh-

Chebychev algorithm [19] make such computations feasible.

This graph Ginzburg–Landau method has found many applications, for example in

data clustering and classification and image segmentation [4,16,20] and has also been

extended to deal with clustering and classification into more than two classes [21–25].

Recent papers prove convergence of the graph Allen–Cahn algorithm (both the

spectrally untruncated and truncated versions) and extend the method to non-smooth

potentials and hypergraphs [26, 27].

This shows that such PDE driven techniques can provide fast approximative al-

ternatives to combinatorial problems whose exact solution is too computationally

complex.

(4) Another example of such a problem is the computation of a maximum cut in

graphs, i.e. to find a partition of the node set into two sets such that the sum of
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the edge weights corresponding to edges with one node in each set is maximal. If

the graph is bipartite, this corresponds to partitioning the node set according to

the bipartite structure. The exact solution of this classical problem is known to be

computationally unfeasible for large graphs. Work currently in preparation introduces

a fast approximate solution method for this problem using an adaptation of the graph

Ginzburg–Landau functional f [28].

(5) The continuum counterparts of both the graph Allen–Cahn equation and graph MBO

scheme from point 3 can be viewed as approximating mean curvature flow [29–33].

This suggests that graph curvature and graph mean curvature flow are interesting

concepts to consider as well. In [34], the authors introduced both. The graph curvature

of a node set S is given by

κi :=

{∑
j∈Sc ωij , if i ∈ S,

−
∑

j∈S ωij , if i ∈ Sc,

and the related graph mean curvature flow has a variational formulation along the

lines of [35–37] that leads to a time discrete evolution of node subsets S (given an

initial set S0),

Sn+1 ∈ argminŜF(Ŝ , Sn),

where

F(Ŝ , Sn) :=
∑

i∈S,j∈Sc

ωij +
1

�t

∑
i∈Ŝ

disd
n
i .

Here, �t > 0 is the time step, di is the degree of node i and sdni is the signed graph

distance from node i to the boundary of node set Sn. In [34], the authors started

studying the very interesting question whether the graph Allen–Cahn equation, graph

MBO scheme and graph mean curvature flow are as intimately connected as their

continuum counterparts, but establishing such connections is still mostly an open

problem.

Other current work studies a graph version of the Ohta–Kawasaki functional [38],

which was originally introduced as a variational model for pattern formation in

diblock copolymers [39].

The research on these novel methods has shown that new PDE-inspired graph proced-

ures can efficiently (approximately) solve complex graph problems, while at the same time

offering fertile ground for proving theoretical connections between the various graph prob-

lems (inspired by similar connections their continuum counterparts have) and between

the graph problems and their continuum analogues.

Paper [1] relates to question 2 above. Its authors apply similar ideas to those in [11–13]

to prove a consistency result for empirical risk minimization. If a function u : D → {0, 1}
acts as a classifier for points that are sampled from D ⊂ �n according to a distribution

ν, its empirical risk is

R(u) :=

∫
D×{0,1}

|u(x) − y|dν(x, y).

In [1], the authors prove a consistency result for regularised empirical risk functional,
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which consists of empirical risk regularised by a graph total variation term. They also

find different regimes for the regularisation parameter associated with the total variation

term that relate to the notions of overfitting and underfitting of the data.

Paper [2] is related to question 5 above. It proposes a graph version of the game

p-Laplacian [40] as an interpolation between the graph (2-)Laplacian and the graph ∞-

Laplacian when 2 � p � ∞ and as an interpolation between the graph 1-Laplacian and

the graph 2-Laplacian when 1 � p < 2. It proves the existence and uniqueness of game

p-harmonic functions with given Dirichlet ‘boundary’ conditions on a subset of the nodes

and relates the graph game p-Laplacian to a tug-of-war game. It also shows the results of

numerical experiments in which the graph game p-Laplacian is used for semi-supervised

segmentation, clustering and image inpainting.

2 Numerical solution of large-scale PDEs

When developing algorithms for data-driven applications the scalability of computational

methods is essential. In the context of partial differential equations (PDEs) domain

decomposition methods are used to divide a large domain into several smaller subdomains

in such a way that the solution to the equation on the full domain can be found (or

approximated) via the solutions on the subdomains [41–46]. The initial equation restricted

to the subdomains defines a sequence of new local problems that are computationally

cheaper to solve. A principal motivation behind this principle is the formulation of PDE

solvers that can be easily parallelised.

As an example, let us consider a coercive, elliptic and self-adjoint differential operator

L and the boundary-value problem

Lu = f in Ω, u = 0 on ∂Ω,

for Ω ⊂ �n, with n > 1 and f sufficiently nice. The basic Schwarz alternating algorithm

[44] to solve this equation is, starting with an initial guess u0 for the solution, we iterate

for k = 0, 1, . . ., for subdomains Ω1, Ω2 with interfaces Γ1, Γ2 as in Figure 1:

Luk+1
1 = f, in Ω1,

uk+1
1 = uk|Γ1

on Γ1,

uk+1
1 = 0 on ∂Ω1 \ Γ1,

and

Luk+1
2 = f, in Ω2,

uk+1
2 = uk|Γ2

on Γ2,

uk+1
2 = 0 on ∂Ω2 \ Γ2,

and the iterate uk+1 on the whole domain defined by

uk+1(x) =

{
uk+1

2 (x) if x ∈ Ω2,

uk+1
1 (x) if x ∈ Ω \ Ω2.
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Ω2Γ1Γ2Ω1

Figure 1. Overlapping domain decomposition. Example setup from [44].

Under certain conditions, it can be shown that the iterates converge to the true solution u

on Ω. Now, the idea is to distribute the solution of the two subproblems on Ω1 and Ω2 to

two processors and compute uk1 and uk2 in parallel, exchanging information of the solution

on the interfaces of the two subdomains between the two processors after every iteration.

In [3], the authors review a particular class of domain decomposition methods, which is

called probabilistic domain decomposition (PDD), pioneered by Acebron et al. in [48]. The

main idea is to use a stochastic representation of the PDE (via the so-called Feynman-Kac

formula), then compute the solution in a few sampled points on the interfaces between

the subdomains via Monte Carlo, and then use an efficient deterministic PDE solver

for the solution of the PDE on each subdomain with fixed boundary conditions coming

from the previously computed Monte Carlo simulation. This probabilistic setup renders

a parallelisation strategy for solving PDEs that shows very good scalability properties.

Indeed, since the solutions of the PDE on the subdomains are completely independent

of each other the PDD method can solve the subproblems fully in parallel and hence

does not require communication between processors. Also, the choice of the PDE solver

on each subdomain is flexible and so can potentially be executed very efficiently. The

paper [3] also serves as an introduction to the concept of PDDs and their various usage

areas in data-driven applications.

3 Conclusion

The contributions in this issue are examples of modern research topics in PDEs that

arise in data-driven applications. They nicely show the various facets of this topic, from

PDEs as inspiration for and tools to prove consistency of graph based data processing

methods to the development of efficient and scalable numerical methods for solving PDEs
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for large-scale and high-dimensional data. We believe that we are only at the beginning

of this exciting and important new area of research. The increasing number of open

questions in all areas of data science will make mathematical frameworks, like the one

provided by PDEs, more and more attractive. PDEs and variational methods have an

important role to play in finding answers to these questions and in the development of

adaptive, rigorous and efficient data processing and machine learning methods.
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[7] Braides, A. (2002) Γ -Convergence for Beginners, Oxford University

[8] Modica, L. & Mortola, S. (1977) Un esempio di Γ -convergenza. Boll. dell’Unione Mat. Ital.

5(14-B), 285–299.

[9] Modica, L. (1987) The gradient theory of phase transitions and the minimal interface criterion.

Arch. Ration. Mech. Anal. 98(2), 123–142.

[10] von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416.

[11] Garcia Trillos, N. & Slepčev, D. (2016) Continuum limit of total variation on point clouds.

Arch. Ration. Mech. Anal. 220(1), 193–241.
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