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RELATIVE CONTINUITY OF
DIRECT SUMS OF M-INJECTIVE MODULES

Liu ZHONGKUI AND JAVED AHSAN

Let M be a left R-module and K be an M -natural class with some additional
conditions. It is proved that every direct sum of M -injective left R-modules in
K is KS-continuous ( KS-quasi-continuous) if and only if every direct sum of M-
injective left R-modules in K is M -injective.

Let R be a ring with identity. It is well-known that R is left Noetherian if and
only if every direct sum of injective left R-modules is injective. Based on this, many
characterisations of left Noetherian rings using generalised injectivity of some left R-
modules have been obtained. For example, it was shown that R is left Noetherian if and
only if every direct sum of injective left R-modules is continuous {(or quasi-continuous)
(see [5]). On the other hand, Albu, Nastasescu, Golan, Goldman, Stenstrom, Teply,
Enochs, Ahsan and others have studied the situations when all direct sums of non-
singular injective left R-modules are injective, when all direct sums of 7-torsion free
injective left R-modules are injective for a hereditary torsion theory 7, and when all
direct sums of T-torsion injective left R-modules are injective for a stable hereditary
torsion theory 7. These results are well presented in Golan’s book [4], and have been
generalised in [12] by considering when all direct sums of M -injective left R-modules
in an M-natural class X are M -injective. In this paper we consider when all direct
sums of M -injective left R-modules in an M -natural class K are KS-continuous (or
K.S-quasi-continuous). We shall show that for an M -natural class K, all direct sums of
M -injective left R-modules in K are KS-continuous {or KS-quasi-continuous) if and
only if all direct sums of M -injective left R-modules in K are M -injective.

Throughout this note we write A <. B (A | B) to denote that A is an essential
submodule (a direct summand) of B.

Let M be a left R-module. We say that a left R-module N is subgenerated by
M, or that M is a subgenerator for NV, if IV is isomorphic to a submodule of an M-
generated module. Following [11], we denote by o[M] the full subcategory of R-Mod
whose objects are all R-modules subgenerated by M. By [11, 17.9], every module N
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in o[M] has an injective hull I(N) in ¢[M], which is also called an M -injective hull
of N. It is known that the M -injective hulls of a left R-module in o[M] are unique
up to isomorphism. In the following, we always denote by I(N) the M -injective hull
of N for any left R-module N € o[M].

According to [12], a subclass K in o[M] which is closed under submodules, direct
sums, isomorphic copies, and M -injective hulls is called an M -natural class. There
exist a large number of examples of M -natural classes. Among them are o[M] and all
natural classes in the sense of [9]. In particular, hereditary torsionfree classes, stable
hereditary torsion classes, and saturated classes in the sense of Dauns (see [1]) are
examples of M-natural classes.

For an M -natural class K and a left R-module N, we denote by Hyx(N) the set
{L<N|N/LeKk}.

Let M, N be left R-modules. Define the family

A(N,M)={AC M |3X C N,3f € Hom (X, M), f(X)<. A}.

Consider the properties

A(N,M)-(C;): For all A € A(N,M), 3A* | M, such that A <. A*.

A(N,M)-(C3): For all A € A(N,M),if X | M is such that A= X, then A | M.

A(N,M)-(C3): Forall Ae A(N,M)and X |M,if A|M and ANX =0 then
Ao X | M.

According to [7], M is said to be N-extending, N-quasi-continuous or N-
continuous, respectively, if M satisfies A(N, M)-(C1), A(N, M)-(C1) and A(N, M)-
(C3), A(N, M)-(C1) and A(N, M)-(C2).

LEMMA 1. [7, Proposition 2.4] A left R-module M is (quasi-)continuous (see
[2]) if and only if M is M -(quasi-)continuous if and only if M is N -(quasi-)continuous
for every left R-module N.

Given an M -natural class K, a left R-module N is called K-cocritical if N € K
and N/P¢gK forany 0#PCN.

DEFINITION 2: Let K be an M -natural class. A left R-module M is said to be
KS-extending, KS-quasi-continuous or KS-continuous, respectively, if for any direct
sum C = @ C; of K-cocritical modules C; (i € I), M is C-extending, C-quasi-
continuous Zs'IC -continuous.

Clearly (quasi-)continuous modules are KS-(quasi-)continuous. But the following
example shows that the converse is not true.

ExAMPLE 3. (See [6].) Let R be a left Noetherian V-ring which is not Artinian
semisimple (see, for example, [3]). Then, by [7, Corollary 3.7], every left R-module
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is N-continuous for every semisimple left R-module N. Thus every left R-module is
KS-continuous, where X = R-Mod. If all left R-modules are quasi-continuous, then
for every left R-module M, M & E(M) is quasi-continuous, and so M is injective
by (8, Lemma C], where E(M) denotes the injective hull of M. Thus R is Artinian
semisimple, a contradiction. Hence there exists a left R-module M which is not quasi-
continuous.

LEMMA 4. Any direct summand of a KS-continuous (KS -quasi-continuous) left
R-module is KS -continuous (K8 -quasi-continuous).

ProoF: This follows from the fact that condition A(N,M)-(C;), (i =1,2,3)is
inherited by direct summands of M (7, Proposition 2.4]. 1|

LEMMA 5. [7] If M is N-(quasi-)continuous and A € A(N, M) is a direct sum-
mand of M then A is indeed (quasi-)continuous.

Let ¢ be any cardinal. A left R-module M is called c-limited provided every
direct sum of non-zero submodules of M contains at most ¢ direct summands [10].
We say an M -natural class K satisfies (*) (see [12]), if for any cyclic submodule
N of M, and every ascending chain Ny < N2 < ...... with each N; € Hx(N), the
union {JN; belongs to Hx(N).
t

THEOREM 6. The following conditions are equivalent for an M -natural class K
with (*).

(1) Hg(A) has ACC for any cyclic (or finitely generated) submodule A of
M.

(2) Every direct sum of M -injective left R-modules in K is M -injective.

(3) Every direct sum of M -injective left R-modules in K is KS -continuous.

(4) Every direct sum of M -injective left R-modules in K is KS-quasi-
continuous.

(5) There exists a cardinal c¢ such that every direct sum of M -injective left
R-modules in K is the direct sum of a c-limited module and a KS-
continuous module.

(6) There exists a cardinal ¢ such that every direct sum of M -injective left
R-modules in K is the direct sum of a c-limited module and a KS -quasi-
continuous module.

PROOF: (1)<=>(2). This follows from [12, Theorem 2.4].
(2)=>(3). Suppose that N = @ N; is the direct sum of M-injective left R-
i€l
modules NV; € K, i € I. Then N is M -injective by (2). On the other hand, N is in
K,and so N € o[M]. Thus N is quasi-injective. Now clearly NV is KS-continuous by

Lemma 1.
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(3)=>(4) is clear.

(4)=(1). By [12, Theorem 2.5], it is sufficient to show that every direct sum of
M -injective hulls of K-cocritical left R-modules is M -injective.

Let C;, i € I, be K-cocritical left R-modules. Then C; € K, i € I. Set

N = (@ I(C;)) ® I(@ I(C.-)) ,
il iel
L =N@I(N).
Then clearly L is a direct sum of M -injective left R-modules. Since K is closed under

direct sums and M -injective hulls, it follows that L is a direct sum of M -injective left
R-modules in X. Thus L is KS-quasi-continuous. Denote

S = (@ci) @(@a).

i€l i€l

Then L is S-quasi-continuous. For the submodule A = N@O0 of L, define an R-
homomorphism f : S — L as the induced R-homomorphism

S = (@ ci) EB(@ ci) — (@1(0.-)) ez(@uc,-)) ®0

i€l el i€l i€l

(by the natural maps C; — I(C;) and G C; — I(@ I(C.-)) ). Since C; <. I(C;),
i€l i€l
we have

PDci<.Pie) <. 1(@1(@)).

iel i€l i€l
Thus

19)=((@0) o (@) o0

iel

<e ((@ 1c)) o I{P I(Cg))) Po=a

i€l i€l
This means that A € A(S,L). By Lemma 5, it follows that A is quasi-continuous.
Thus N is quasi-continuous. By [8, Lemma C], € I(Ci) is I (@ I (C,-)) -injective.
Hence €D I(C;) is M -injective. 'GI i

iel
The implications (3) = (5) = (6) are clear.
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(6)=>(4). Note that, by Lemma 4, any direct summand of a K5 -quasi-continuous
left R-module is KXS-quasi-continuous. By analogy with the proof of [12, Theorem 2.6],
we can complete the proof. 0

We denote by S? the class of all semisimple left R-modules in o[M].
COROLLARY 7. The following conditions are equivalent for a left R-module M.

(1) M is a locally Noetherian ‘module (that is, every finitely generated sub-
module of M is Noetherian).

(2) Every direct sum of M -injective left R-modules in o[M] is M -injective.

(3) Every direct sum of M -injective left R-modules in o[M] is S?-continu-
ous.

(4) Every direct sum of M -injective left R-modules in o[M)] is §%-quasi-
continuous.

(5) There exists a cardinal ¢ such that every direct sum of M -injective left
R-modules in o[M] is the direct sum of a c-limited module and an §2-
continuous module.

(6) There exists a cardinal ¢ such that every direct sum of M -injective left
R-modules in o[M] is the direct sum of a c-limited module and an S2-
quasi-continuous module.

COROLLARY 8. Let S? be the class of all semisimple left R-modules. The following
conditions are equivalent.

(1) R is a left Noetherian ring.

(2) Every direct sum of injective left R-modules is S? -continuous (82 -quasi-
continuous).

(3) There exists a cardinal ¢ such that every direct sum of injective left R-
modules is the direct sum of a c-limited module and an S?-continuous
(S? -quasi-continuous) module.

Given a stable hereditary torsion theory 7 on R-Mod, many equivalent conditions
were presented in [9] and [12] to characterise rings which have ACC on 7-dense left
ideals. Here we have

COROLLARY 9. Let 7 be a stable hereditary torsion theory on R-Mod and TS
be the class of all T-torsion semisimple left R-modules. Then the following conditions
are equivalent.

(1) R has ACC on 7-dense left ideals.

(2) Every direct sum of T-torsion injective left R-modules is injective.

(3) Every direct sum of 7-torsion injective left R-modules is TS -continu-
ous.
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(4) Every direct sum of t-torsion injective left R-modules is TS -quasi-
continuous.

(5) There exists a cardinal ¢ such that every direct sum of T-torsion in-
jective left R-modules is the direct sum of a c-limited module and a
TS -continuous module.

(6) There exists a cardinal ¢ such that every direct sum of T -torsion injective
left R-modules is the direct sum of a c-limited module and a TS -quasi-
continuous module.
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