Of course the complete discussion of the restrictions under which this postulate could be proved would open up the whole thorny question of the nature of a curve in general ; but I think there would be no great harm in admitting that, unless the curve has the property Lim. $\frac{\operatorname{Arc} P q}{\operatorname{Arc} P Q}=1$, the proposition must be regarded as unproved.

It might not be difficult to show that this postulate must hold good in every case where the arc has a definite centre of curvature.
R. F. Muirhead.

> Geometrical proof that $\tan x \tan y+\tan y \tan z+\tan z \tan x=1$ when $x+y+z=90^{\circ}$.
H being the orthocentre of a triangle $A B C$, we may call the angles $H A C, H B A, H C B=x, y, z$ respectively, for their sum is 90°.

Now $\tan x \tan z=\frac{D C}{D A} \cdot \frac{H D}{D C}=\frac{H D}{D A}=\frac{\triangle B H C}{\triangle A B C}$,

$$
\therefore \quad \tan x \tan z+\tan z \tan y+\tan x \tan y=1 .
$$

MATHEMATICAL•NOTES.

Further, since $\tan z=\cot D H C=\cot B$, etc., $\cot B \cot C+\cot C \cot A+\cot A \cot B=1$, i.e. $\tan A+\tan B+\tan C=\tan A \tan B \tan C$ where $A+B+C=180^{\circ}$.

This result can be proved direct without mentioning x, y, z, by the same steps as before.

G. E. Crawford.

