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1. Introduction

We consider a single server queueing system in which customers arrive
a t t h e i n s t a n t s t0, tlt •••,tm,-- •• W e w r i t e rm = tm+1 — tn,m> 0 . T h e r e
is a single server with distribution of service times B(z) given by

(1.1) dB(x) = [^x^e-^dxjik - 1)!,

where k is an integer not less than unity.
We suppose that the sequence of service times {ss} is independent of the

times at which customers arrive, that the s, are independently and identi-
cally distributed with common distribution function B(x), given by (1.1),
that customers are served in the order of their arrival and that a customer
who arrives to find the server idle commences service immediately. We make
no special assumptions about the input process {tn}. Let Pf(t0, t1, • • •, tm)
be the conditional probability, given that the first (m + 1) arrivals occur
at t0, tx, • • •, tm, that the arrival at tm finds / customers in the system. We
obtain explicit expressions for the probabilities Pf (t0, tt, • • •, tm) and related
probabilities as functions of t0, tlt • • • ,tm. If the input process {tm} is a
stochastic process and if Fm(t0, t1, •' •, tm) is the joint distribution function
of the instants at which the first (m + 1) arrivals occur then

(1.2) Pf = J Pf(t0, t,, • • - J J d F J t v , tlt---. U

is the probability that the (tn -\- l)th arrival finds / customers in the
system.

The ideas underlying the method of this paper are very simple and in
order not to obscure this simplicity with algebraic manipulation we deal
first with the case when the service time is exponential, that is k = 1 in
(1.1) and

(!-3) B{x) = 1 - e-i», x^0.
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[2] The single server queueing system 221

Thus up to section 5 we suppose that the service time distribution is given
by (1.3). In sections 6 and 7 we generalise our results to the case of the
Erlang Service time distribution (1.1).

2. Transient probabilities starting from emptiness

Since the service time distribution is exponential and since departures
can occur only when customers are in the system the instants at which
customers depart form a subsequence of a sequence of potential departure
points which is a Poisson process with the parameter of the exponential
distribution of service time. Let nm be the number of potential departure
points in the time interval [tm, tm+1) of duration rm. Let r\m be the number
of customers at the instant tm — 0. Then

(2.1) W l = Max[0, t]m + l - nm].

In this section we shall suppose for simplicity that rj0 = 0, then from (2.1)
we obtain

W i = Max[0, 1 - nm, 2 - nm - nm_x, ••-,

m+l — n n - nm_1 n0] .

Now rjm+1 = j if and only if k ^ m + 1 — / potential departure points occur
in ih.tm+i) and Max [0, 1 - nm, 2 - nm - nm_lt • • -, m + 1 - nm -
nm_x —••• — « „ ] = / with n0 + «! + • • • + nm — k. But the distribution
of the number of potential departure points in [t0, tm+1) is Poisson with
parameter /i(r0 + rx + • • • + rm) and conditional upon there being k
potential departure points the instants at which they occur are independently
and uniformly distributed in (t0, tm+1). Thus if Pf+1(r0, rlf • • •, rm) is the
conditional probability that r]^+1 = ; given T0, T1( • • •, rm then

(2.3) P?+1(T0,T1,---,rm)= | ^ r ^ + " ^ > 2 ^ - - - ^ .

The second summation in (2.3) is over all non-negative integers n0, nlt • • •,
nm such that n0 -\- nx -{-••• -\- nm = k and Max[0,1 — nm, 2 — nm — nm_x,
•",m+ 1 -nm-nm_1 n0] = /. Equation (2.3) gives P™+1

(*o. Ti> *" '• rm) explicitly in terms of the inter-arrival times r0, T,, • • •, xm.
It is possible, however, to obtain computationally simpler formulae which
do not involve an infinite series. To do so we proceed as follows. First put
fi = 1 which is no loss of generality and secondly note that if
no + «! + • • • + nm < »» + 1 — i then t]m+1 > i. Then from (2.3) we have
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The second summation in (2.4) is over all non-negative integers n0, nu • • •,
nm such that n0 + % -f- • • • + nm — k and

Max[0, 1 - nm, 2 - nm - nm_lt •••,m+l-nm- »m_x no] ^ /.

Observe that the inequality

Max[0 , 1 - nm, 2 - nm - nm_lt •••,m+l-nm- nm_t «0] ^ j ,

is equivalent to the set of inequalities

m + nm_x +••• + nm_( ^ 0 , 0 ^ * < j ,

Thus using the argument which led to (2.3) but measuring the instants of
potential departure from tm+1 instead of from t0 and taking (2.5) into account
we have

d*m-i
(2.6) *=° ° "'

2* I a :cm-i+l I "*m->+2
t-m+l-j J *„_, J *m-<+i

where

(2.7) em<i = rm + Tm-1 + • • • + Tm_,-, O g | g « .

Noting that

dxm_l+1 dxm_i+2 • • • dxk = (0m_m - xm_:

we have

2 P?+1{*o, Ti. • " ' . T J = J "'do*) mM**t • • •

Jxm_,_l
 m

Define K?+1(r) by the equations

and

Jr ^ J . , *" J . , . ^
0 ^ j < w.

Write
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From (2.10) we find that

8R?+1(T)[8T = -

with RZtlt*) = e~T- T h u s

223

(-)'«-', m-j + lgr.

Expanding R?+1 (r) in a Taylor Series about x = 0 and noting that
R?+1[0mi) = 0, j ^ w, we obtain

m-i

r=0 ^! r=m-i+l ' !

Writing er+1(em,,, flm.,+1, • • •, 0nim) =
tain (2.12) from( 2.11)

m-i or

(2.12) 2 ( ) - ^ g f f i : 1 ^ e

. n . • • •- O we ob-

r-0
. • • •, era,m) =

Solving the system of h'near equations (2.12) we obtain the following result:

THEOREM 1. If rj0 = 0 and if

where 0mi / is given by (2.7) then Q7+1(9mj. 8m,M. -•-. K,m) is given by
the following determinant.

(-)"

C m
< «..

0 0
0 0

0
0

where

3. Busy period probabilities starting from emptiness

We suppose again that TJ0 = 0. We say that the busy period is still on at
'm+i - 0 if Vl > 0, V2 > 0, • • -, Vm+1 > 0. Let pT+1(rOl t l f • • •, T J be the
joint probability that the busy period is still on at tm+1 — 0 and that the
arrival at *m+1 finds j customers in the system. Thus
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(3.1) PT+Hr0. rlt • • •• rm) = P f o >0,r)2>0,'--,ym>0, Vm+1 = j).

Using the notation of section 2 and on argument similar to that leading to
(2.3) we see that

(») «"hl%.....^)_^«r^.j£S...*

1 ^ / ^ m + 1.

The summation is over all non-negative integers n1, n2, • • •, nm such that
% + w2H r-»i^*» l ^ * < m , and «1+w2H |-»m = m — / + 1 .
Equation (3.2) is obtained by noting that if ̂  > 0, JJ2 > 0, • • •. t)m > 0,
??m+i = ;', then the total number of potential departure points (which in this
case are real departure points) must be (m + 1 — j). Conditional upon
there being (m + 1 — j) departure points the instants at which they occur
are independently and uniformly distributed in (t0, tm+1). The inequalities
ni + W2 + •" ' + ni Ss i, 1 f^ i < m specify the fact that nk > 0, 1 ̂  k
< m.

Let #-+»(T0, Tlf • • •, rM) = 2r=+iVr+1(to, rlf - , t j b e the probability
the busy period is still on at tm+1 — 0. Then from (3.2) we have

Let im+1 = P(rj1> 0,rji>0,- • -,r]m> 0, r/m+1 = 0) be the probability the
arrival at tm+1 is the first to find the server idle, that is the probability the
busy period contains exactly (m + 1) customers. Then Zm+1 = pm — pm+1,
p° = 1 and from (3.3) we obtain

n,+n,H

The results obtained above give explicit expressions for the busy period
probabilities, it is interesting, however, to obtain determinantal formulae
similar to those of the previous section. To do so we note that the set of
inequalities

«i + «2 + ••• + «« ̂  i, 1 ̂  i < m, nx + n2 + • • • + nm = m + 1 — /

are equivalent to the following set of inequalities

nn + nm-i ^ h »m+1_i-< ^ * + 1, 0 ̂  t < w - /
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Thus by an argument similar to that used to derive (2.6) and putting fi = 1
we have

dxm+1_A dxm_r--\ dxt.
Jxn>-H-/ Jxt

(3.5) p7¥l(T0,T1,-~.Tj = e-e

Define qf+1{r) by

(3.6) qT+1(r) = < & m + w dxm_} • • • dxx.

Then ^ V o . f i . - ' - . O = e " » — ^ where q?+1 = qf+HO)
(9m,<-l) = ° F r O m (3-6) w e fin

8qT+1(r)l8r = -

and q??+1

Expanding qf+1(r) in a Taylor Series about r = 0 we find

(3-7) 0 = Z [ — )Sm,i-l9t+rlr-

with qZH = 1.
Solving the set of linear equations (3.7) we obtain the following result.

THEOREM 2. / / % = 0 and

1 ^ / =S m + 1

where 6mJ is given by (2.7) then #*+1(0m>)-.-i, O^y. • • •, 9m,J is gî
the following determinant

l-i

(3.8) (-)•m+l-i a

0 0

4. Transient probabilities starting from an arbitrary state

In this section we assume that /i = 1 and extend the results of section 2
to the case when the initial state is not one of emptiness. Explicitly we
define

(4.1) P<T(T0.T] )---,Tj = P()?m+1 = / | % = *), 0 5S*, 0 ^ / ^ m + l + i.

It is clear that if m + 1 g; t]m+1 ^ m + 1 + i then the busy period is still
on at tm+1 and
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For Tjm+1 ̂ m w e argue as in section 2. Conditional upon t)0 = i we have

Vm+i = Max[0, 1—«m, 2 - « m - M m _ 1 ( • • •,m — nm — nm_1 nx,

flt + 1 + * — «w—«m_x n0]
and

(4-4) 2 ^rJ1(r0,T1....,Tj = «-•-.- 2 2 f r ^ - - - f ] -
»=0 t=m+l+i-i Mo

! M l ! Mm!

The second summation in (4.4) is over all non-negative integers n0, « ! , • • • ,
nm, such that «0 + nx + • • • + nm = k and r)m+1 ^ / where ijm+1 is given
by (4.3). As in section 2 the inequality rjm+1 ^ ; is equivalent to the set
of inequalities

nm + nm_t + ••• + nm_h ^ 0 , 0 £ h < j

nm + »m-i H \- nm-» ^ A + 1 - /, j ^ h < m

»m + »m-l H 1" M0 ̂  W +l +*—/•

By an argument similar to that leading to (2.8) we find that

2 Wwi.••-.*.)
0

where

(4.5) /\(z) = «-•— 2
k-0

and

Proceeding exactly as in section 2 we obtain the following result.

THEOREM 3.
Write

Qtf1 = P(r,m+1 > j\t)0 = 0); 0 =£ / £ m + i, 0 ̂  i.

Then
m+l+i

/or 0 ̂  / < m
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where

The single server queueing system 227

0 m , is given by (2.7).

~ 'f'm.l
1

0

0

0

- . 1

d\ m d% i+1 •
1 d\ j+2 •

0 0

0 0

r m-l+t

Lr-m-i+1

• • ^ m ~ ' ~ 1 d>

Um,j+Z "Pm.i+2

* * X ©

' .0™ + 1 /r! l , (
J

5. Busy period probabilities starting from an arbitrary state

In this section we again assume ft — 1 and extend the results of section 3
to the case when the initial state is not one of emptiness. Explicitly we
define

(5.1)
, , • • •, Tj = 0, T]2 > 0, 0, W l = /|1JO =

Proceeding as before we find that

(5.2) P?V(ro>ri> " • € . T m ) =
Mft!

The summation is over all non-negative integers « 0 , nlt • • • ,nm such t h a t
% + « H \-nm = m+l+i-j,n0 + n1-\ + nh ^ i + h, 0 ^
A < w. The set of inequalities n0 + «x + • • • + nh ^ i + A, 0 <: h < w
and the equation «0 + »j -f • • • + nm = m + 1 + % — / are equivalent to
the set of inequalities nm + nm_x + • • • + nm_h+l ^ h + 1 — /, / ^ h < m;
nm + Mm-i + "" ' + »o = w + * + *• — /• Hence we obtain

( 5 . 3 ) r o l 0 > l f ' " '

= « " • •" < & m _ i + 1 I <ia;m j • • • I
Jo •>*„-/+, ' J i ,

Proceeding as before we obtain the following result.

THEOREM 4.

(5.4) ^ = 1
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(5-5)

where 0 ^ / ^ m and

0 0 Vm.m-l

(5.6)

and 0ra_ i is given by

< =

(2-

m+i-j

.7).

(w •

um,m

• + - » - / - r) 1

6. Transient probabilities for Erlang service

In this section we suppose that the distribution of service time is given by
(1.1) with n — 1. We regard the arrival at tm as a group of k individuals
each having the exponential service time of (1.3) with fi = 1. When we
wish to fix attention on the groups as single entities we refer to them as
customers, if we wish to fix attention on the members of a group we talk of
individuals. When the service time of an individual is given by (1.3) the dis-
tribution of the service time of a customer that is of k successive individual
service times is given by (1.1). Since the service time distribution of individ-
uals is exponential and since departures of individuals from the system can
occur only when individuals are in the system, the instants at which individ-
uals depart form a subsequence of a sequence of potential departure points
which form a Poisson process. Let nm be the number of potential departure
points of individuals in the tune interval [tm, tm+1) of duration rm, and let r]m

be the number of individuals in the system at tm — 0, then

= Max[0, k —

= ik + n-\\r)0 = i), 0 ̂ », 0^/. \<n<

(6.1)

Write

(6.2) P™

then by arguments analogous to those we have used earlier we find that for
h = 0, 1, • • • ,*

(6 3) -Pf^Vi,^!, = (6 )<-*e-9».»/(»' — A)!

and for 0^/^w, 1 ^n ^ k

i*+n—1 oo _"o Tni T"»

^0.4; 2, -^*,A — e Z Z~~n . . .
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where the second summation is over all non-negative integers n0, nx, • • •, nm,
such that n0 + % + • • • + nm = r, and rjm+1 g jk + n — 1 where

rlm+1 = Ua.x(0,k-nm,2k-nm~nm_1,---,mk-nm-nm_1 -nx,

I t is easily verified tha t the inequality r)m+1 <^jk + n — lis equivalent to

(6.6)

Thus we obtain SIM*""1-*5™*1 = Rffk+n-i = R?,t*+n-A°) where

i . I *>*• / I tn» / I nil /

7? (T I —— I (IT 1 dy • • • 1 dx

(6 -7 ) • • ' ' '•

where r,(a;) is given by (4.5).
From (6.7) we obtain

Expanding RT,ti!+n-i(r) i n a Taylor Series about i = O w e obtain

(6.9) 0 = ^"f+"" (_)' ^ i?^+n-1+r + 1

Writing

we obtain for ; g m, 1 g M g i

(m-i+l)*-n QT (m+

I J TT Vi,jk+n-l+r — e "•'— 2, (—) —TVt,j*+n+r-
0 ' ! T\

From (6.11) we can write down a determinantal expression for Qf^+n-
similar to that of Theorems 1 and 3.
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7. Busy period probabilities for Erlang service

In this section we make the same assumptions as in section 6. Write

(7.1) #J« = P(m > 0, % > 0, • • •, rjm > 0, W l = j\r,0 = »)

Proceeding as before we find that

CD «"-r*~ 2 gg-g
where the summation is over all non-negative integers no,n1,- • \nm

such that M0 + nx + • • • + nh ^ t -+- (h + 1)̂  — 1, 0 ^ A < m; n0 + %
+ ' ' " + wm = *• + im + l)k — j- It is easily verified that this set of in-
equalities is equivalent to nm + »m_i + • • • + wm_i+1 ^ hk — / + 1,
1 ^ A ^ m, nm + «m_j + • • • + «0 = % + (w + l)k — /. Using the same
method as before we find that for 1 s£ / ^ m, 1 ̂  A Sj A

V-6) Pi,u-i)k+h — e "• ?i,(i-l)*+»VuJ

where

(7-4)

for 1 < j ^ m, 1 ^h ^ k and

(7 6) ^ " = *^—(fl-.«)<"+1)*+

( mk<j £
Proceeding as before we have

Thus we obtain

^qXti-m^Wx = ( - ) ' ^ 1 ) W . M , ( T ) , 1 ̂  / ^ m, 1 £ h g h

with the boundary condition
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Expanding q7,ti~i)k+h(r) m a Taylor series about t = Owe obtain

1 .,$y»Jr\ = 0.
r—0

From these equations we can write down a determinantal expression for the
busy period probabilities as in Theorems 2 and 4. A check can be made on
equation (7.7) by putting k = h = 1 when it becomes identical to equa-
tion (3.7).

8. Unconditional probabilities: exponential service

In this section we consider the case of an input process which is a stochas-
tic process so that the random variables 0m>, defined by (2.7) have a joint
distribution function given by

(8.1) F ^ f o , Xl, • • -, xm) = P(9m>i ^ x,; 0 ^ / ^ m).

For simplicity we consider the case when the initial state is one of emptiness,
and service is exponential given by (1.3) with fi = 1.

Write

(8.2)
exp {-ao0m O - a i0m > 1 <*m0m,m}]

and

(8.3) f + 1 ( « 0 . «!>••-. O = £[exp {-«ofl»,, - «ifl«.i *m«m,m}]

where a.t ^ 0, / ^ 0, £[•] denotes expectation and the QT+1[Qm,j, Qm,i+i>'''»
0 m , J are defined in section 2. If Q^+1 = E[Qf+1{dmJ, 0 m , m , • • •, 0 m , J ]
is the unconditional probability that (/ + 1) or more customers are in the
system on the (m + 2)th arrival we have

(8.4) Q?+i = H?+1 (0,0, • • • , ( ) )

and from (2.12)

(8.5) ™f qHTFfa. a,, • • •, « J = ^ + 1 (a 0 , ax, • • •, am)

where 6T
f denote the differential operator (r!)-xSr/?a' and

^ ^ a o , a,, • • •, am) = ^m+1(a0. «i. *' *• a i - i . a< +

Solving the set equations (8.5) we obtain
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(8.6) = I— \m-i

3
1

0

0
0

a?
3+i
I

0
0

p.

3+i

0
0

D. Finch

• • • 8?-'
. . . f.m-i-1

• • • v+r

• • • < ? l - i

. . . i

<f>?+l

im+l
9i+l

9i+2

jm+1
<Pm-l

[13]

If this determinant is evaluated at a0 = ax = • • • = am = 0 we obtain the
probabilities Q?+1. The expression (8.6) may be verified by expanding the
determinant about the first row, this expansion gives equation (8.5).
Denote by J™ the following determinantal differential operator, 0 ^ ; < m.

(8.7) A? = (-)"•-*
0 1

8T*

sm-J-2

0 0 0

and write J™ = 1.

Expanding the determinant in (8.6) about its last column we obtain

(8.8) Hf+1 =

Expanding the determinant (8.7) about its last column we obtain

(8.9) J»= _ " | A'd?-'.

From (8.8) we obtain

(8.io) 0-« = I W
t-i

^ • • • =am=»0 '

Equations (8.10) hold for an arbitrary distribution (8.1). If the input process
is stationary it is possible to simplify equation (8.10) in the following way.
Suppose that the sequence of inter-arrival intervals {rm} is a strictly sta-
tionary stochastic process so that the joint distribution of (0m>o, 0m>1, • • •,
0m,«). m > s is the same as the joint distribution of (0,_o, 0,A, ••-, 0,,,).
From (8.3) it follows that

(8.11) •, a,, 0, 0, • • •, 0) =
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Because of (8.11) and since the operator A' does not operate on aJ+1, a,+2,
• • - ,am we can write equation (8.10) in the form

m

(8--1*) Yj = 2, \Aj9t }tzo-x1-----<i,-o-

We prove now

LEMMA 1. If the input process is stationary and if the initial state is one of
emptiness then

exists.

PROOF. Observe that by (2.5) we have for 0 sS / < m, m 2? 1

i -QT+1 = i ) ( » .

The last equality being true because the input process {rm} is stationary.
But the last expression is just 1 — Qf hence

(8.13) Qf+1 ^Qf, w ^ 1, / < m.

Since 0 < Q™ < 1 the statement of the lemma follows. Note that we have
not proved the limits Qt form a probability distribution, we have 0 < Qt sS 1
but the equality is not excluded.

From (8.12) and (8.13) we have

and thus

The methods of this section are easily extended to the busy period proba-
bilities, and the case of Erlang Service. No new principle is involved and
we omit the details.

9. A conjecture

When the input process is a recurrent process, that is the inter-arrival
intervals {rm} are independently and identically distributed with common
distribution function, it is well known that

(9.1) Qi[
v ' Vl \ 1 if v'(0)
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where y(«) = E • e~aT" and q is the only (real) root within the unit circle
of the equation

(9.2) Z = y ( l - Z)

when y'(0) + 1 < 0.
It is not easy to derive this result from the general expression (8.14).

It can be shown, however, although we shall not do so here, that for a re-
current process the series (8.14) becomes

(9.3) ± i fdk~l 1

Formally this is just the series which is obtained by expanding q1+1, where q
is the root of (9.2) within the unit circle, by means of Lagrange's Theorem.
If v'(0) + 1 ^ 0 there is no such root and it can be shown that the series
(9.3) coverages to unity. We shall not prove these statements here because
we wish to derive (9.1) by a heuristic argument. We present this heuristic
discussion because it lends itself to a wider class of input process than the
recurrent input process.

Write

(9.4) #j£M«o. «i. • • •' «,) = BTPfa. «i-' • ' . «*. 0. 0, • • •, 0).

If the input process is stationary we have from (8.10) and (8.5) that

(9.5) "fwSWf1-

Introduce a linear operator Tt such that

(9.6) Ti'H?? = H'g*i, j^k^m.

Equation (9.5) can be written in the form

(9.7) "f 9irtHtt1^ = 4?1.

It is easily verified that for |^| < 1 we have

(I «) (I
U-0 / \J-0

and hence

5 % ( ) ( 1
i-i \t=o

Equating coefficients of powers of z we find
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(9.8) *

Evaluating (9.8) at a,, = ax = • • • = a, = 0 we obtain the following formal
expression

(9.9) Q»> = 5 (-)I[3jr^5+ 1]a0 = a1 = ... = a,=O-
1=0

Comparing (9.9) with the previous result (8.12) we see that the correct
interpretation of the terms on the right of (9.9) is given by

Ja()_ai a / _ 0 — IA- 9l+l Jo,-*,—— «,+I-0-

With this interpretation we may proceed to the limit as in (9.9) and write

(9.ii) Q, = f (-mr^L,-*.--^^-
i—o

The expression on the right of (9.1) is a formal Taylor series which can be
written as

(9.12) Q, = ^+i(0, 0, • • -, 0, 1 - r , ) .

The formal expression (9.12) leads at once to a solution of the form (9.1)
in the case of a recurrent input. For in that case it is easily verified that

(9.13) ^+i(0, 0, • • •, 0, a) = M « ) } m -

From (9.6) evaluated at a,, = ax = • • • = a, = 0 we have

r z-vn+l f\m+2 V <" i <" «M
iYk — Yk+l > 1 •SzR^m

so proceeding to the limit as m -v oo we have

(9.14) TtQt = Qk+1.

From (9.14), (9.13) and (9.12) we find that
(9.15) Q, = T*+l

where T = y>(\ — T).
Thus in a purely formal way we have deduced a solution of the form (9.1).

Let us apply this formal argument to the case when the input process is a
moving average of order 2, namely

(9.16) rra = «m+1 + (Sum, m^O, /3 > 0

where the um are non-negative, independent and identically distributed
with y(oc) = E • e-*"". In this case it is easily verified that

(9.17) ^'+1(0, 0, • • • , 0 , a ) = v
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The formal argument leads to a solution of the form

(9.18)

where T satisfies

(9.19) T = y,{(l + fi)(l - T)).

If E(rm) = (1 + fi)E{um) <: 1 then (9.19) does not possess a solution in the
unit circle and we take T = 1. The symbolic method introduced above is
not intended as a proof of the result (9.18). By rather complicated more
rigorous methods. I can show that when rm is given by (9.16) and E(tn) > 1
then Qs = TjQ0, j ^ 1 where T is the root of (9.19) in the unit circle but
the rigorous method does not determine the constant Qo. The symbolic
method can be extended to give a solution in the case of an input process
{Tm} which is a moving average of any finite order, namely

(9.20) r m = u m + , + h u m + v _ t + • • • + PPum, fa > 0 , l ^ j ^ p

where the {um} are non-negative identically distributed and uncorrelated.
It would be interesting to see a more detailed study of the case of a moving
average input process. The result (9.18) is presented here as a conjecture.

Dept. of Statistics
University of Melbourne.
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