
Canad. Math. Bull. Vol. 57 (2), 2014 pp. 431–438
http://dx.doi.org/10.4153/CMB-2014-005-7
c©Canadian Mathematical Society 2014

The Rasmussen Invariant, Four-genus, and
Three-genus of an Almost Positive Knot
Are Equal

Keiji Tagami

Abstract. An oriented link is positive if it has a link diagram whose crossings are all positive. An
oriented link is almost positive if it is not positive and has a link diagram with exactly one negative
crossing. It is known that the Rasmussen invariant, 4-genus, and 3-genus of a positive knot are equal.
In this paper, we prove that the Rasmussen invariant, 4-genus, and 3-genus of an almost positive
knot are equal. Moreover, we determine the Rasmussen invariant of an almost positive knot in terms
of its almost positive knot diagram. As corollaries, we prove that all almost positive knots are not
homogeneous, and there is no almost positive knot of 4-genus one.

1 Introduction

An oriented link is positive if it has a link diagram whose crossings are all positive.
For positive links, there are many studies. For example, Rudolph [15] and Nakamura
[11, Lemma 4.1] proved that every positive link is strongly quasipositive; Cromwell
[7, Corollary 2.1] proved that a positive link has positive Conway polynomial (that is,
all the coefficients of the polynomial are not negative), and Przytycki [12, Theorem 1]
proved that all nontrivial positive links have negative signatures.

An oriented link is almost positive if it is not positive but has a link diagram with
exactly one negative crossing. Such a diagram is called an almost positive diagram. It
is known that almost positive links have many properties similar to those of positive
links. For instance, Cromwell [7, Corollary 2.2] also proved that any almost positive
link has a positive Conway polynomial, while Przytycki and Taniyama [13, Corol-
lary 1.7] proved that almost positive links have negative signatures. Moreover, many
examples of almost positive links are strongly quasipositive (we do not know whether
all almost positive links are strongly quasipositive).

In [14], Rasmussen introduced a knot invariant, called the Rasmussen invariant,
which gives a lower bound for the 4-genus. He proved that the Rasmussen invariant,
4-genus, and 3-genus are equal for a positive knot [14, Theorem 4].

In this paper, we prove the following theorem.
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Theorem 1.1 Let K be an almost positive knot. Then we obtain

s(K) = 2g4(K) = 2g3(K),

where s(K), g4(K), and g3(K) are the Rasmussen invariant, 4-genus and 3-genus of K,
respectively.

Moreover, we compute the Rasmussen invariant of a knot represented by an al-
most positive diagram from the diagram (Theorem 3.5).

From Theorem 1.1, we notice that the Rasmussen invariant of an almost positive
knot is positive (which is an analogous property to the signature by Przytycki and
Taniyama [13]).

We obtain the following results (Corollaries 1.2 and 1.3) as corollaries of Theo-
rem 1.1.

Corollary 1.2 All almost positive knots are not homogeneous.

Corollary 1.3 (negative answer to [17, Question 7.1]) There is no almost positive
knot of 4-genus (or unknotting number) one.

The proofs of Theorem 1.1 and Corollaries 1.2 and 1.3 are given in Section 3.
Homogeneous links are introduced by Cromwell [7] (see also [2, 4, 8]). From its

definition, any positive knot is homogeneous. The Rasmussen invariants of homo-
geneous knots are determined by Abe [1] in terms of their diagrams. Theorems 1.1
and 3.5 and Corollary 1.2 give us a new class of non-homogeneous knots whose Ras-
mussen invariants are well understood. Furthermore, it immediately follows from
Corollary 1.2 that the homogeneity of knots is a serious difference between positive
knots and almost positive knots.

Let Bn be the n-string braid group with the canonical generators {σi}n−1
i=1 . A pos-

itive band is any conjugate wσiw−1 (w ∈ Bn, 1 ≤ i ≤ n − 1), and a positive em-
bedded band is one of the positive bands σi, j := (σi · · ·σ j−2)σ j−1(σi · · ·σ j−2)−1,
1 ≤ i < j ≤ n − 1. A (strongly) quasipositive braid is a product of some positive
(embedded) bands, and a (strongly) quasipositive link is an oriented link realized by
the closure of a (strongly) quasipositive braid.

Shumakovitch [16, Proposition 1.F] proved that for a strongly quasipositive knot
K, we obtain s(K) = 2g4(K) = 2g3(K). Hence, Theorem 1.1 is evidence towards an
affirmative answer to the following question given by Stoimenow [18].

Question 1.4 ([18, Question 4]) Is any almost positive link strongly quasipositive, or
at least quasipositive?

This paper is organized as follows. In Section 2, we recall the definition of Kho-
vanov homology and give the key property of the Rasmussen invariant needed to
prove our theorem. In Section 3, we prove Theorem 1.1 and Corollaries 1.2 and 1.3.

https://doi.org/10.4153/CMB-2014-005-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-005-7


Rasmussen Invariant, Four-genus, and Three-genus of an Almost Positive Knot 433

2 Khovanov Homology

In this section, we recall the definition of (rational) Khovanov homology. Let L be an
oriented link. Take a diagram D of L and an ordering of the crossings of D. For each
crossing of D, we define 0-smoothing and 1-smoothing as in Figure 1. A smoothing
of D is a diagram where each crossing of D is changed to either its 0-smoothing or
1-smoothing.

Figure 1: 0-smoothing and 1-smoothing.

Let n be the number of the crossings of D. Then D has 2n smoothings. By using
the given ordering of the crossings of D, we have a natural bijection between the set
of smoothings of D and the set {0, 1}n, where, to any ε = (ε1, . . . , εn) ∈ {0, 1}n,
we associate the smoothing Dε where the i-th crossing of D is εi-smoothed. Each
smoothing Dε is a collection of disjoint circles.

Let V be a graded free Q-module generated by 1 and X with deg(1) = 1 and
deg(X) = −1. Let kε be the number of the circles of the smoothing Dε. Put Mε =
V⊗kε . The module Mε has a graded module structure; that is, for v = v1⊗· · ·⊗vkε ∈
Mε, deg(v) := deg(v1) + · · · + deg(vkε). Then define

C i(D) :=
⊕
|ε|=i

Mε{i},

where |ε| =
∑m

i=1 εi . Here, Mε{i} denotes Mε with its gradings shifted by i (for
a graded module M =

⊕
j∈Z M j and an integer i, we define the graded module

M{i} =
⊕

j∈Z M{i} j by M{i} j = M j−i).

The differential map di : C i(D) → C i+1(D) is defined as follows. Fix an ordering
of the circles for each smoothing Dε and associate the i-th tensor factor of Mε with
the i-th circle of Dε. Take elements ε and ε′ ∈ {0, 1}n such that ε j = 0 and ε′j = 1
for some j and that εi = ε′i for any i 6= j. For such a pair (ε, ε′), we will define a map
dε→ε′ : Mε → Mε′ .

In the case where two circles of Dε merge into one circle of Dε′ , the map dε→ε′

is the identity on all factors except the tensor factors corresponding to the merged
circles where it is a multiplication map m : V ⊗V → V given by

m(1⊗ 1) = 1, m(1⊗ X) = m(X ⊗ 1) = X, m(X ⊗ X) = 0.

In the case where one circle of Dε splits into two circles of Dε′ , the map dε→ε′ is
the identity on all factors except the tensor factor corresponding to the split circle,
where it is a comultiplication map ∆ : V → V ⊗V given by

∆(1) = 1⊗ X + X ⊗ 1, ∆(X) = X ⊗ X.
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If there exist distinct integers i and j such that εi 6= ε′i and that ε j 6= ε′j , then
define dε→ε′ = 0.

In this setting, we define a map di : C i(D) → C i+1(D) by
∑
|ε|=i di

ε, where

di
ε : Mε → C i+1(D) is defined by

di(v) :=
∑
|ε′|=i+1

(−1)l(ε,ε′)dε→ε′(v).

Here v ∈ Mε ⊂ C i(D) and l(ε, ε′) is the number of 1’s in front of (in our order) the
factor of ε that is different from ε′.

We can check that (C i(D), di) is a cochain complex, and we denote its i-th homol-
ogy group by Hi(D). We call these the unnormalized homology groups of D. Since
the map di preserves the grading of C i(D), the group Hi(D) has a graded structure
Hi(D) =

⊕
j∈Z Hi, j(D) induced by that of C i(D). For any link diagram D, we define

its Khovanov homology KHi, j(D) by

KHi, j(D) = Hi+n−, j−n++2n−(D),

where n+ and n− are the number of the positive and negative crossings of D, respec-
tively. The grading i is called the homological degree, and j is called the q-grading.

Theorem 2.1 ([5, 10]) Let L be an oriented link and D a diagram of L. Then
KH(L) := KH(D) is a link invariant. Moreover, the graded Euler characteristic of
the homology KH(L) equals the Jones polynomial of L; that is,

VL(t) = (q + q−1)−1
∑
i, j∈Z

(−1)iq j dimQ KHi, j(L)
∣∣

q=−t
1
2
,

where VL(t) is the Jones polynomial of L.

The following proposition is a well-known result and is the key property needed
to prove Theorem 1.1.

Proposition 2.2 Let K be an oriented knot. Then we obtain KH0,s(K)±1(K) 6= 0,
where s(K) is the Rasmussen invariant of K.

Proof The 0-th term of the Lee homology of K is generated by two elements, vmax

and vmin, whose q-gradings are s(K) + 1 and s(K) − 1, respectively. It is known that
there is a spectral sequence whose E1 term is the Khovanov homology of K and whose
E∞ term is the Lee homology. From the construction of the spectral sequence, there
are nonzero elements ṽmax and ṽmin in KH0(K) whose q-gradings are s(K) + 1 and
s(K)− 1, respectively.

Remark 2.3 As an application of Proposition 2.2, the author [19, Corollary 5.3]
computed the Rasmussen invariant of twisted Whitehead doubles (with sufficiently
many twists) of any knot.
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3 Proof of Theorem 1.1

An oriented link diagram is almost positive if it has exactly one negative crossing.
First, we introduce a result of Stoimenow, which gives a method for computing the
3-genus of a link represented by an almost positive diagram.

Theorem 3.1 ([18, Corollary 5 and the proof of Theorems 5 and 6]) Let D be an
almost positive diagram of a non-split link L with a negative crossing p. Denote the
genus of L by g3(L) and the genus of the Seifert surface obtained from D (by Seifert’s
algorithm) by g3(D).

(i) If there is no (positive) crossing joining the same two Seifert circles of D as the two
circles that are connected by the negative crossing p, we have g3(L) = g3(D) (see
the left of Figure 2).

(ii) If there is a (positive) crossing joining the same two Seifert circles of D as the two
circles that are connected by the negative crossing p, we have g3(L) = g3(D) − 1
(see the right of Figure 2).

Figure 2: In the picture on the left, there is no crossing joining the same two Seifert circles as
the two circles that are connected by the negative crossing p. In the picture on the right, there
is a crossing joining the same two Seifert circles as the two circles that are connected by the
negative crossing p.

Remark 3.2 Stoimenow [18, Corollary 5] improved Hirasawa’s result [9] that
states that if a canonical Seifert surface of an almost alternating diagram is compress-
ible, then the diagram has a “d-cycle”; that is, there is a crossing joining the same two
Seifert circles as the circles that the dealternator connects.

Remark 3.3 Let D be an almost positive link diagram. If there is a crossing joining
the same two Seifert circles of D as the two circles that the negative crossing connects,
the diagram D is a quasipositive diagram introduced by Baader [3]. In particular, D
represents a quasipositive link. The author conjectures that such an almost positive
diagram D represents a positive link. If so, we obtain that any almost positive diagram
of an almost positive link has the minimal genus.

Next, we compute the Rasmussen invariant of an oriented knot that has an al-
most positive diagram (such a knot is positive or almost positive). The Rasmussen
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invariant of a knot is closely related to the 0-th term of the Khovanov homology. The
following lemma is beneficial when we compute the Rasmussen invariant.

Lemma 3.4 Let D be an almost positive link diagram of a non-split link L with a
negative crossing p.

If there is no (positive) crossing of D joining the same two Seifert circles as the two
circles that are connected by the negative crossing p, we have KH0,2g3(D)+]L−4(L) = 0,
where ]L is the number of the components of L.

Proof Let n be the number of crossings of D and let s be the number of Seifert circles
of D. By the definition, we obtain

KH0,2g3(D)+]L−4(L) = H1,2g3(D)+]L−1−3−(n−1)+2(D)(3.1)

= H1,n−s+1−3−(n−1)+2(D)

= H1,−s+1(D).

Let us prove H1,−s+1(D) = 0. Order the crossings of D so that p is the first crossing.

Define ε( j)
j := 1 and ε( j)

i := 0 for i 6= j. Put

ε( j) :=
(
ε

( j)
1 , ε

( j)
2 , . . . , ε

( j)
n−1, ε

( j)
n

)
∈ {0, 1}n

(that is, the elements of ε( j) are 0 except the j-th element, which is 1). Note that the
smoothing Dε(1) is the Seifert smoothing. Since there is no crossing of D joining the
same two Seifert circles as the two circles that are connected by p, the number kε( j) of
circles of the smoothing Dε( j) is given as follows:

kε( j) =

{
s if j = 1,

s− 2 if j 6= 1.
(3.2)

From the definition of H1,−s+1(D) and (3.2), we have

H1,−s+1(D)

= ker d1 ∩ {v ∈ C1(D) | deg(v) = −s}/d0
(
{w ∈ C0(D) | deg(w) = −s + 1}

)
= Q{x⊗s ∈ Mε(1)}/d0

(
Q{x⊗s−1 ∈ C0(D)}

)
.

(3.3)

From (3.2), we compute

d0(x⊗s−1) =
(

d0→ε(1) (x⊗s−1), d0→ε(2) (x⊗s−1), . . . , d0→ε(n) (x⊗s−1)
)

(3.4)

= (∆(x)⊗ x⊗s−2, 0, . . . , 0)

= (x⊗s, 0, . . . , 0) ∈
n⊕

j=1
Mε( j)

(
= C1(D)

)
,

(we obtain the second equality because the map d0→ε(1) is given by the comultiplica-
tion map ∆, the maps d0→ε(2) , . . . , d0→ε(n) are given by the multiplication maps m,
and we have m(x ⊗ x) = 0).
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Hence, by (3.1), (3.3), and (3.4), we obtain

KH0,2g3(D)+]L−4(L) = H1,−s+1(D)

= Q{x⊗s ∈ Mε1}/d0
(

Q{x⊗s−1 ∈ C0(D)}
)

= Q{x⊗s}/Q{x⊗s}
= 0.

The two results, Theorem 3.1 and Lemma 3.4, allow us to prove Theorem 3.5.

Theorem 3.5 Let D be an almost positive diagram of a knot K with negative crossing
p. Denote the Rasmussen invariant of K by s(K) and the genus of the Seifert surface
obtained from D (by Seifert’s algorithm) by g3(D).

(i) If there is no (positive) crossing joining the same two Seifert circles of D as the
two circles that are connected by the negative crossing p, then we obtain s(K) =
2g3(D).

(ii) If there is a (positive) crossing joining the same two Seifert circles of D as the
two circles that are connected by the negative crossing p, then we obtain s(K) =
2g3(D)− 2.

Proof Let D+ be the positive diagram obtained from D by crossing change at p and
K+ the knot represented by D+. It is known (see [14, Corollary 4.3, Theorems 1
and 4]) that we have

s(K+)− 2 ≤ s(K) ≤ s(K+),(3.5)

|s(K)| ≤ 2g4(K) ≤ 2g3(K),(3.6)

s(K+) = 2g4(K+) = 2g3(K+) = 2g3(D+)(= 2g3(D)).(3.7)

(i) In the case where there is no (positive) crossing joining the same two Seifert
circles as the two circles that are connected by p: By (3.5), we can easily see that
s(K) = s(K+) or s(K+) − 2 (since s(K) is an even integer for any knot K). From
Lemma 3.4, Proposition 2.2, and (3.7), we have s(K) 6= 2g3(D) − 2 = s(K+) − 2.
Hence, we obtain s(K) = s(K+) = 2g3(D).

(ii) In the case where there is a (positive) crossing joining the same two Seifert
circles as the two circles that are connected by p: From Theorem 3.1, (3.6), and (3.7),
we obtain

2g3(D)− 2 = s(K+)− 2 ≤ s(K) ≤ 2g4(K) ≤ 2g3(K) = 2g3(D)− 2.

Proof of Theorem 1.1 This immediately follows from Theorems 3.1 and 3.5 and
(3.6).

Proof of Corollary 1.2 Abe [1, Proof of Theorem 1.3] proved that a homogeneous
knot K satisfying s(K) = 2g4(K) = 2g3(K) is a positive knot. From Theorem 1.1,
every almost positive knot is not homogeneous.

Proof of Corollary 1.3 Stoimenow [17, Theorem 7.1] proved that there is no al-
most positive knot of 3-genus one. From Theorem 1.1, the 4-genus of any almost
positive knot is not one.
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Remark 3.6 It is natural to consider the following question: Are Theorems 1.1
and 3.5 true for any almost positive link?. An answer to the question will be given
in a forthcoming paper, where we use the Rasmussen invariant extended to links by
Beliakova and Wehrli [6].
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