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1. Introduction and summary. Congruences on a semigroup S such that the corresponding
factor semigroups are of a special type have been considered by several authors. Frequently
it has been difficult to obtain worthwhile results unless restrictions have been imposed on the
type of semigroup considered. For example, Munn [6] has studied minimum group con-
gruences on an inverse semigroup, R. R. Stoll [9] has considered the maximal group homo-
morphic image of a Rees matrix semigroup which immediately determines the smallest group
congruence on a Rees matrix semigroup. The smallest semilattice congruence on a general
or commutative semigroup has been studied by Tamura and Kimura [10], Yamada [12] and
Petrich [8]. In this paper we shall study congruences p on a completely regular semigroup
S such that S/p is a semilattice of groups. We shall call such a congruence an SG-
congruence.

Since Clifford has shown in [1] that a regular semigroup S is a semilattice of groups if
and only if idempotents of S lie in the centre of S, it follows that the problem of rinding
group congruences and commutative congruences on a completely regular semigroup S can
be solved provided that one can describe the SG-congruences on S.

§2 contains definitions and notation used in this paper. In §3 we determine all group
congruences on a Rees matrix semigroup and use this in §§4 and 5 to find the smallest SG-
congruence, the smallest commutative congruence and the smallest group congruence on a
completely regular semigroup.

The reader is referred to [2], [5] and [7] for terminology and concepts not presented in
this paper.

2. Preliminaries. We shall denote the partially ordered set of all idempotents of a
semigroup S by Es. A commutative semigroup all of whose elements are idempotents is
called a semilattice. If a is a congruence on S such that S/a is a semilattice and each c-class
is a group, then S is said to be a semilattice of groups. A congruence p on S such that Sip
is a group (semilattice of groups, semilattice, commutative semigroup) is called a group
(SG-, semilattice, commutative) congruence. If S is a semigroup then ^s, 9"&s and sts will
denote the family of group congruences, SG-congruences and commutative congruences,
respectively, on S.

If, for each aeS, there exists an xeS such that a = axa, then S is said to be regular.
S is completely regular if, for each aeS, there exists an xeS such that a = axa and ax = xa.
For a regular semigroup S, we shall denote the smallest group congruence on S by ys, the
smallest SG-congruence by as, the smallest commutative congruence by E,s and the smallest
semilattice congruence by t]s. Since congruences are binary relations, the set of all con-
gruences forms a partially ordered set under set inclusion. It is then seen that £$(%) is the
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intersection of all commutative (semilattice) congruences on S. A proof of the existence of
as and ys for regular semigroups may be found in [3].

If ( is a congruence on S, then the kernel of (, written Ker (, is the set-theoretic union of
all (-classes that contain idempotents of S. The following is due to Lallement [4].

LEMMA 1.1. Let £ be any congruence on a regular semigroup S. Any C-class that is a
subsemigroup of S contains an idempotent.

3. Group congruences on a Rees matrix semigroup. Clifford [1] proved that every
completely regular semigroup is a semilattice of completely simple semigroups. Hence we
begin with this special case. It is known by Rees' theorem [2, 5, 7], that every completely
simple semigroup is isomorphic to a Rees matrix semigroup over a group; so we shall prove
our results for these semigroups.

We recall the construction of a Rees matrix semigroup, here denoted by M{1, G, M; P).
I and M will be index sets, G a group and S = IxGxM. On S we define an operation by

0, a, P)U, b, v) = (i, ap^jb, v),

where p^ is the (ft,j)-ih entry of an Mx.1 matrix P with entries from G. The set S with this
operation is a semigroup called the Rees matrix semigroup over the group G. If e is the identity
element of G and if there is a fixed element 1 e /nM such that

Pu = e = pxi for all iel and XeM,

then we shall say that P is in normal form. Any Rees matrix semigroup is isomorphic to a
Rees matrix semigroup in which the sandwich matrix is in normal form; hence for the rest
of this paper we shall assume that all Rees matrix semigroups have their sandwich matrices
in normal form. The basic results on Rees matrix semigroups can be found in Chapter 3
of [2] and Chapter 4 of [7].

If S = Jl{I, G, M; P) and £ is a commutative congruence on 5", then 5/C is (isomorphic
to) a commutative Rees matrix semigroup and hence is an abelian group. We see then, that
to discuss commutative congruences on a Rees matrix semigroup, it is desirable to study
group congruences first.

The next notion was introduced by Thierrin in [11], where he called such semigroups
" completely reflective ".

DEFINITION 3.1. A subset C of a semigroup S is said to be reflective if, for any
x, yeS, zeS1, xyzeC implies that zyxeC.

The following is taken from [7].

LEMMA 3.2. Let C be a reflective complex of the semigroup S and let au ..., a,,eS. If
aia2...aneC, then alna2n...anneCfor any permutation n of {I, 2,..., n}.

Our first theorem extends some results on group congruences due to R. R. Stoll [9].

THEOREM 3.3. Let S = Jt(I, G, M; P). Then the following statements hold.

(a) T= Kery/or some ye@s if any only ifTis a subsemigroup of S having the following
properties:
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(0) T contains all idempotents of S
(1) For all a,x,ye S, xy,aeT if and only if xay, aeT.

(b) T = Kery for some y = $4S if any only if T is a subsemigroup of S satisfying (o), (i)
and

(ii) T is reflective.
(c) Let pe&s and s, teS. Then spt if any only if there exist x, yeKerp such that s = xty.

Proof, (a) Assume that T= Kery for some y = ^s. It is clear that Tis a subsemigroup
of S that contains all idempotents of S. Let cp be the natural homomorphism from S onto
S/y = 5". Now assume that xy, aeT. Then (xy)cp = a<p = e', the identity element of S". So

(xay)q> = (x<p)(a(p)(y(p) = (xq>)e'(yq>) = (x(p)(y<p) = (xy)(p = e'.

That is, xayeT.
If we now assume that a, xayeT, a similar computation shows that xyeT. Hence T

is a subsemigroup of S satisfying (o) and (i).
Conversely, assume that T is a subsemigroup of S satisfying (o) and (i). Let

H = {heG:(i,h,n)eT for some iel and ixeM}. (1)

We shall show that HoG, that is that H is a normal subgroup of G. Assume that a,beH;
then there exist i,jel and n,veM such that (i, a, //), (j, b, v)eT. But

(1, e, 1)0, b, v)(l, b-\l) = (1, epubp^b-1, 1) = (1, e, 1),

which is an idempotent of S. Therefore

(1, e, 1)0, b, v)(l, b~\ l ) e r , 0, *>> v)e T,

which, by property (i), implies that (l,e, 1)(1, 6"1, l)eT. That is, (\,b~\ l)eT. Hence
(/, a, n)(l, b~l, 1) = (/, ab~l, \)eT and so ab~1eH. Since i / is clearly nonempty, H is a
subgroup of G.

If /ie/f and geG, then (1, #, l)(l, g~\ 1) = (1, e, l)e T. By the definition of H, there
exist an j and \i such that (/, h, n)eT. Applying (i), we obtain (1, g, 1)(/, h, fi){\, g'1,1) =
(1, ghg'1, l ) s r . This shows that ghg'^^H and so ff<G.

Define the relation y on S by (/, a, n)y(j, b, v) if and only if aH = bH. We shall show
that y is a group congruence on S and that Kery = T. Consider the mapping <p:S-*GjH
given by {i, a, n)q> = aH. Since (1, e, ft), (i, e, l)eEs, it follows that (1, e, /*)(', e, l )eT and
hence p^eH. Therefore H contains all entries in P and a simple computation shows that (p
is a homomorphism from S on to G/H. Clearly, if (/, a, n), (j, b, v)eS, then (/, a, n)y(j, b, v)
if and only if (/, a, ix)q> = (J, b, v)q>. Hence y = q>o(p~1. That is y is a group congruence on S.

Now (/, a, /i)eKery if and only if aH= eH. This in turn is equivalent to aeH. It is
now easy to show that Kery = T. The proof of part (a) is now complete.

(b) Assume that T= Kery for some yesfs. Then, by part (a), T satisfies (o) and (i)
and an elementary argument shows that T is reflective.

Conversely, assume that T is a subsemigroup of S satisfying (o)—(ii). As in part (a), let

H = {heG:(i, h, n)eT for some iel and fieM}.
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Again//<iG. We shall show that commutators of G are contained in H. Let x, yeG; then

(1, x, 1X1, X"1, 1) = (1, y, 1X1, y~\ 1) = (1, e, l)eT.

By Lemma 3.2, this yields

(1, x, 1X1, y, 1X1, x"1, 1X1, .T1 . l)eT.

Hence (1, xyx~1y~x, l ) e l ; so
If we define the relation y on S as in part (a), it is now easy to establish that y is a

commutative congruence on S with kernel T. This completes the proof of (b).
(c) Assume that p e ^ s and spt. Then, by (a), Kerp is a subsemigroup of S possessing

properties (o) and (i). Again let H be defined as in (1). As in part (a), H<\ G and the relation
y, defined as before, is a group congruence on S. Furthermore, Kery = Kerp. Since S is
a regular semigroup and the p-class containing idempotents is equal to the y-class containing
idempotents, it follows, by a result of Preston [2, Theorem 7.38], that p = y. Thus, if
s = (i, a, /*) and t = (j, b, v), we have aH = bH. That is, there exists unheH such that a = bH.
If we let x = (/, h, 1) and y = (l,e,n), then xty = s. The converse is clear and the proof is
now complete.

4. SG-congruences on a completely regular semigroup. We begin this section with a
summary of several results from [5] which allow us to describe the structure of completely
regular semigroups in terms of Rees matrix semigroups.

DEFINITION 4.1. For any semigroup S, let a be a semilattice congruence on S, Y = S/a,
and {Sa}aey be the set of ff-classes. We then say that S is a semilattice Y of semigroups Sa,
or alternatively that S is a composition of semigroups Sa relative to the semilattice Y. The
semigroups Sa are called the components of the composition.

PROPOSITION 4.2. The semigroup S is a completely regular semigroup if and only if S
is a semilattice Y of semigroups Sa, where each Sx is isomorphic to a Rees matrix semigroup.

In order to discuss congruences on a completely regular semigroup, it is necessary to
have a clear idea of the way in which elements in S multiply. The following discussion will
enable us to describe multiplication in S. Here we are following the terminology and
notation of [7].

DEFINITION 4.3. Let S be any semigroup. Then X, written as an operator on the left,
is called a left translation of S if

A(xy) = (lx)y for all x, yeS.

Also p, written as an operator on the right, is called a right translation of S if

(xy)p = x(yp) for all x, y E S.

The set A(5) of all left translations of 5 is a semigroup under the usual composition of
functions: (M)x = X{k'x) for all xeS; similarly the set P(5) of all right translations of S
is a semigroup under the composition: x(pp') = (xp)p' for all xeS.
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DEFINITION 4.4. Let X be a set and G be a group. Let F(X) be the set of all functions a,
written on the left, such that a maps X into X. Analogously, define F'(X) to be the set of all
functions /?, written on the right, such that /? maps X into X.

If <p and (/>' are two functions (written on the left) that map X into G, then we define
the product of these two functions by

(<p • <p')x = ((px)(q>'x) for all x e X.

For a 6 F(X), and <p as before, define q>* by

<p"x = <p(ocx) for all x e l .

If ^ and \p' (written on the right) are functions from X into G, then we define their product by

x(il/-\l/') = (x\l/)(x\l/') for all xeX.

For PeF'(X) and i/f as before, define f\j/ as the function specified by

for all

Let Jf be a nonempty set and G be a group. The left wreath product of F(X) and G,
denoted by F(X)v/lG, is the set

{(a,p):a

together with the multiplication
(a, (?)(«',

The /7>/tf wreath product of F'(X) and G, denoted by GWTF'(X), is the set

{(ilf,P):peF'(X) and ^:X->G}

together with the multiplication
W,/0-(f,/O = (</'-/ty',j5/O.

We now rephrase Theorem V.3.11 from [7].

PROPOSITION 4.5. Let S = Ji(J, G, M; P), A(S) be the semigroup of left translations on S
and P(S) be the semigroup of right translations on S. Then

(i)
(ii) P{S) £ Gv/rF'(M).

From this we see that, if S = .//(/, G, M; P), then a left translation of 5 can be considered
to be a pair (a, <p), where

a : /-> / and a is written on the left,
(p : I-*G and <p is written on the left.

Also a right translation of S can be considered to be a pair (ij/, /?), where

\j/: M^G and ip is written on the right,
/?: M -* M and /? is written on the right.
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Let S be a semilattice of Rees matrix semigroups Sy(yeY) and a,^eY with a 2: /?.
Then, if aeS a , the function X" defined by X"b = ab for all beSp is a left translation on S^.
By virtue of Proposition 4.5, we shall write (<*„, (j»fl) instead of A°. Analogously, a right
translation (\j/a, /?„) can also be defined on Sp. Notice that from the notation (aa, q>a) it is
not clear which component of the composition we are dealing with. We could use a notation
of the type (af, <p%) which indicates that we are considering a left translation of Sp; however,
we avoid this complication since the context will always make it clear which component
we are talking about.

The following is taken from [7].

LEMMA 4.6. If S = J?(I, G, M; P), (a, <p)eA(S), (^, j?)eP(S) and (i,a,n)eS, then
(a, (p)(i, a, fi) = (<xi, ((pi)a, p.) and (i, a, n)(\j/, /?) = (/, a(/ii/0, p-P).

It is immediate that, if a ^ /?, aeSa and (j, b, v)eSp, then

a(j, b, v) = (aj, (q>J)b, v), and

Hence the multiplication in a completely regular semigroup can be given, using the functions
(<xa, (pa) and (\j/a, Pa) satisfying certain conditions that will not be used here explicitly. For
the remainder of this paper, S will be a completely regular semigroup and therefore may be
assumed to be a semilattice Y of semigroups Sa = M(Ia> Gx, Ma; P J (<xe Y). Also, Pa will
be assumed to be in normal form for all a e Y and ea will be the identity element of Ga. If p
is any congruence on S, then pa = p\Sa, is the restriction of p to Sx.

By the relation / on S we mean the usual Green relation: a/b if and only if a and b
generate the same two-sided principal ideal of S.

DEFINITION 4.7. If S is a completely regular semigroup and T is a semigroup of S
satisfying

(0) T contains all idempotents of 5, and
(1) For all x,y,aeS such that xy/a, we have xay, aeTif any only if xy,aeT

then we will say that T is a o-subsemigroup of S.

LEMMA 4.8. Let S be a semilattice of semigroups Sx = (/„, Ga, Ma; P J (a6 7), and
let T be a o-subsemigroup of S. Then for a<P, we have (1, ((Pbi)(<Pbj)~l> 0
(1, / i ^ v W , l ) e T / o r a/Z^eSp, i,ye/« <WK//I, veMa.

iVoo/. Let fceSp, c = (i, ea, \),d = {j, ea, 1) and s = (1, (^ j ) " 1 , 1). Then c, rfel and
Thus bs = d(modf) and fafr = b(j, ea, 1)(1, ( w ) " 1 , 1 ) =(«<J, (<PiJ)(<PijTl, U =

Now iiy, c?6 T implies by (i) that bse T. Since ceT and frs/c, we have, using (i) again,
that bcse T. That is b(i, ex, 1)(1, ((Ptj)'1, l)eT. Computing this we get

and, since (1, ex, l)eT, by multiplying the above on the left by this element we get

for all beSp, i,j
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The proof of the other statement of the lemma is carried out analogously.

LEMMA 4.9. Let S be a semilattice Y of semigroups Sa = Jl(Im Gv Ma; P J , T= Kera
for some oe&"&s, a < p\ a, beTr\Sp and(/, c, n)aa(j, d, v). Then

a(i, c, n) <s% b(j, d, v),

(i, c, fi)a aa (J, d, v)b.

Proof. Since T is a subsemigroup of S and (/, ea, 1), (J, ea, l)eT, we have a{i, ea, 1),
b(j,ea, l)eTnSa. However, TnSx = Ker«ra, and Sx is simple. Hence aa is a group con-
gruence on Sa and there is only one <ra class that contains idempotents. It follows that

a('» «« 1) ^a b(J, ea, 1).
But we have also assumed that

((, c, fi)ax(j,d, v);
hence

[fl(i, ca) l)(i, c, ji)] ff. [fe(;, ea, 1)0', d, v)].
Therefore

a(i, c, n) aa b(j, d, v).

The proof of the other statement of the lemma is carried out similarly.

DEFINITION 4.10. If S is any semigroup and T is a subsemigroup of S, then we define
the relation aT on S as follows:

For a, be S, aaTb if and only tfaeTbT and beTaT.
Let a,beS and let t]s be the smallest semilattice congruence on S. We define a-<b if

and only if aeNa, beNp and a ^ j? where, A^ and JVP are the %-classes containing a and b,
respectively.

THEOREM 4.11. Let S be a completely regular semigroup. Then

(a) T = Ker p for some p e Sf$s if and only if T is a a-subsemigroup of S.
(b) For a given a-subsemigroup T, the relation aT is the smallest congruence in

with kernel T.

Proof. Assume that T= Kerp for some peSf&s. Then obviously Es s Ker p.
For x, yeS, assume that xy/a and xy, a e Ker p. Let <p be the natural homomorphism

from S on to Sjp = S'. We know that S' is a semilattice of groups and that aq>, {xy)(peEs,;
so, by Clifford's result [1],

(xay)<p = (x(p)(a(p)(y(p) = (xq>)(y<p)(a<p) = (xy)cp(a<p)eEs..

Hence xayeKerp.
If xay, aeKerp and xy/a, then (xy)<pfa<p. This yields (xay)(p,a(peG'nEs, for

some group component G' of S'. Let e' be the identity element of G'; then

(xy)q> = dxy)(p)e' = (x<p)e'(y<p) = {x(p){a<p)(j<j>) = (xay)<p = e \

This implies that xyeKerp and the proof that Thas property (i) of Definition 4.7 is complete.
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Conversely, assume that T is a tr-subsemigroup of S. We define the relation aT as in
Definition 4.10. The fact that Tis a ff-subsemigroup of 5 implies that Tr\Sa is a subsemigroup
of Sa that satisfies the following conditions:

(a) TnSa contains all idempotents of Sa.
(b) For all x, y, aeSa, xy, aeTnSa if and only if xay, ae TnSa.

Therefore, by Theorem 3.3, TnSa = Kery for some ys'SS:x. It is then clear, by Theorem 3.3,
that al(=aT\sJ, oT restricted to Sa, is a group congruence on Sa. Since aTZrjs, oT is an
equivalence relation on S.

1. Assume that a</?, (/, a, n)al(j, b, v) and ceSp. By Lemma 4.8, we have

But then, (l.OPcOOPJ)1. 0 a nd (1, ea, l)eTnSa, which is the kernel of <xj. Since aj is a
group congruence, it follows that

and thus
(1, <pci, 1) al (1, q>J, 1).

Therefore
(1, <pci, l)(i, a, n) al (1, cpj, l)(j, b, v),

which implies that

(1, ((pci)a, n) al (1, (<pj)b, v).

Since (<xci, ex, l)al(acj, ea, 1), we can multiply to obtain

(aci, {q>ci)a, n) al ( a j , (<pj)b, v).

Thus
c(i, a, n) al c(j, b, v).

The proof that
(i, a, n)c al (j, b, v)c

is carried out similarly.

2. Assume that a</?, aajb and seSx. By Theorem 3.3, there exist c, d, g, heKeraJ
such that a = cbd and b = gbh. By Lemma 4.9, dsajhs, and, from part 1 of this proof, we
get bdsalbhs. Using Lemma 4.9 again, we obtain cbdsalgbhs. That is as albs. Dually,
saalsb.

3. General Case. Assume that aajb and seSx. Let a = {i,x,fi), b — {j,y,v) and
s = (k, z, n). Then a = a(l, ep, ;u), 6 = b{\, efi, v) and j = (k, ea, l)s. Now

(1, ep n)(k, ea, 1), (1, efi, v)(fe, ea,

which is the kernel of alp. Accordingly, as before,

(1, e,,, n)(k, ea, 1) al0 (1, ee, v)(k, ea, 1).
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Part 1 implies that

By part 2,

Hence

Applying part 1

6(1, e» n){k,

a(l, ep, n)(k,

again, we get

a( l , ep, [i)(k, <

ea> 1)

e*> 1)

«a> 1)

»., l ) s

< 6(1,

' £ 6(1,

< 6(1,

«/r, v)(*r,

ep, /^)(A:,

«/i, v)(fc,

e,, v)(fc,

1).

1).

1).

1)5

That is

as o-Jp 6s.

Similarly we can show that sa ajpsb. This shows that aT is a congruence on S.
Since idempotent classes of SjaT are clearly in the centre of S/aT, it follows that 5/<rr

is a semilattice of groups. We also observe that

Ker aT = (J Ker oj = U (7nSa) = To (J Sa = TnS = T.

All that remains to be shown is the minimality of aT. Assume that a is another SG-
congruence on S such that Kerer = Kerorr = T. Also assume that aoTb. Then there exist
x, y, z, we T such that a = xby and b = zaw. Let q> be the natural homomorphism from S
onto S/o\ Then

acp =

6<p = (zq))(a<p)(wq>).

These imply that x<p >- b(p and j<p >- b<p. Since S/«r is a semilattice of groups and x(p, yq>,
zip, wq> are idempotents of S/a, it follows that acp = b(p. Therefore aab and so oT^a.
We have shown the minimality of aT and the proof of the theorem is complete.

In general there is no one-to-one correspondence between ff-subsemigroups of S and
elements of £f"&s. Let 5 = {1, 0} with the usual operation of multiplication. Then clearly S
is a <7-subsemigroup of S. However "U, the universal relation on S and i the equality relation
on S are distinct SG-congruences on S, and Ker °U = S = Ker i.

COROLLARY 4.12. Let S be a completely regular semigroup and let 7\ and T2 be two
a-subsemigroups of S. Then

7\ £ T2 if and only if aTl £ ar\

Proof. Assume that 7\ and T2 are ff-subsemigroups of S and that 7\ £ T2- Then, by
Definition 4.10, it is clear that <xTl £ aTl. Conversely, assume that (7Tl £ <rT2. Then
Ker a7"' £ Ker aT\ But Kerc7Tl = Tx and Kerer7"2 = T2; hence 7\ s r 2 .

COROLLARY 4.13. Let S be a completely regular semigroup and T be the smallest o-sub-
semigroup of S; then aT is the smallest SG-congruence on S.
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Proof. Let pe&"Ss. Then T c Kerp and, by Corollary 4.12, aT £ aK"p. But a*"" <= p;
so aT £ p. It follows that aT is the smallest SG-congruence on S.

5. Group congruences and commutative congruences on a completely regular semigroup.
We are now in a position to determine ys, the smallest group congruence on S. The following
is due to Munn [6].

LEMMA 5.1. Let S be an inverse semigroup and let a relation a be defined on S by the rule
that xay if and only if ex = ey for some idempotent e in S. Then a is the smallest group
congruence on S.

Before finding ys we recall the following definition. If p and p' are congruences on S
such that p <=• p\ then the relation p'/p on S'jp is defined by

p'/p = {(xp,yp):(x,y)ep'}.

It is easy to show that p'/p is a congruence on S/p.

THEOREM 5.2. Let S be a completely regular semigroup and let T be the smallest a-sub-
semigroup of S. Then, for a, beS, aysb if and only if there exists esEs such that eaaTeb.

Proof. Recall that since aT is the smallest SG-congruence on S, then aT S ys. It is
clear that, if (p is the natural homomorphism from S on to iS/o^Kys/a1), then cpocp'1 is
the smallest group congruence on S. Consider the following diagram

where t/' and 6 are natural homomorphisms. It is immediate that <p = il/°6. Assume that
there exists eeEs such that eaaTeb; then, by Corollary 4.13, we have {ed)\\i = (eb)ip. This
yields (e\l/)(ai//) = (e\p)(bip). Now eip is an idempotent of SjaT; so, by Lemma 5.1, we must
have that {a$)Q = (bij/)9. That is, acp = bcp. Thus aysb.

Now assume that aysb; this implies that {a$)Q = {b^i)Q. Applying 5.1 again, we see
that there exists an idempotent FeSjaT such that F{a\j/) = F{b\\i). By Lemma 1.1, there
exists an idempotent fe{F)\l/~l. Thus

( # ) ( # ) =
and so

But then fa aTfb, and the proof is complete.
We note that, when S is a semilattice of groups, the smallest (j-subsemigroup of 5 is Es.

In this case the statement eaaTeb reduces to the single equation occurring in 5.1.
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DEFINITION 5.3. If S is a completely regular semigroup and T is a subsemigroup of S
satisfying the conditions

(o) T contains all idempotents of S;
(i) for all x, y, aeS such that xy / a, we have xay, asT if any only if xy, asT;

(ii) T is reflective,

then we shall say that T is a (,-subsemigroup of S.

Note that every ^-subsemigroup of S is a a-subsemigroup of S.

THEOREM 5.4. Let S be a completely regular semigroup. Then-

is) T= Kerp/or some pesfs if any only if T is a {,-subsemigroup of S,
(b) for a given ^-subsemigroup T, the relation aT is the smallest congruence in sts with

kernel T.

Proof, (a) Assume that T'= Ker£ for some £esfs. Every commutative congruence on
a completely regular semigroup is an SG-congruence; so it follows, by Theorem 4.11, that
T satisfies conditions (o) and (i) of Definition 5.3.

If x, y€S and zeS1 and xyzeT, then, since £ is commutative, xyz^zyx. Therefore
zyxeT; so Tis, reflective.

Conversely, assume that T is a £-subsemigroup of S. As before a1e^^s and, if oce Y,
then TnSz = Kery for some group congruence y on Sx.

The fact that Tr\Sa is reflective implies that y is also a commutative congruence. Thus
S/(7T is a semilattice of abelian groups and is therefore commutative. Hence aTesis. The
congruence aT is the smallest congruence in 9"&s (and therefore the smallest congruence
in sfs) such that Ker aT = T. The proof is now complete.

COROLLARY 5.5. Let S be a completely regular semigroup and T be the smallest 1,-sub-
semigroup of S; then oT is the smallest commutative congruence on S.

Proof. The existence of such a T is clear since the intersection of any family of £-sub-
semigroups is a £-subsemigroup of S. The rest of the proof is immediate from Corollary 4.13.

The author would like to express his thanks to Professor M. Petrich for the comments
and suggestions he made during the writing of this paper.
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