ON THE MAXIMUM PRINCIPLE OF KY FAN

M. MARCUS AND B. N. MOYLS

1. Introduction. In 1951 Fan (1) proved the following interesting extreme value result: Let A_1, \ldots, A_m be completely continuous operators on a Hilbert space §. For $\sigma = 1, 2, \ldots, m$ let $\lambda_{\sigma i} \ge \lambda_{\sigma, i+1}$ be the characteristic roots of $A_{\sigma}^* A_{\sigma}$. Then, for any positive integer k,

(1)
$$\max \left| \sum_{i=1}^{k} (U_1 A_1 \dots U_m A_m x_i, x_i) \right| = \sum_{i=1}^{k} \left(\prod_{\sigma=1}^{m} \lambda_{\sigma i} \right)^{\frac{1}{2}},$$

(2)
$$\max_{i,j=1,2,\ldots,k} \left| \det \{ (U_1 A_1 \ldots U_m A_m x_i, x_j) \} \right|^2 = \prod_{i=1}^k \prod_{\sigma=1}^m \lambda_{\sigma i},$$

where both maxima are taken over all unitary operators U_1, \ldots, U_m and all sets of k orthonormal (0.n.) vectors.

Fan proved (1) for m = 1 and then applied an inequality of Pólya (7) and a recent result of Horn (3) to obtain the theorem for $m \ge 2$. This result is a generalization of a result of von Neumann (10), which states that *if* A and B are n-square complex matrices with singular values (12) $\alpha_i \ge \alpha_{i+1}$, $\beta_i \ge \beta_{i+1}$ (i = 1, 2, ..., n - 1), then

(3)
$$\max |\operatorname{tr}(UA \, VB)| = \sum_{i=1}^{n} \alpha_i \, \beta_i,$$

where the maximum is taken over all unitary U and V.

In this paper we shall confine our attention to the case of finite matrices. We shall show that both (1) and (2) are special cases of a general maximum result for compound operators (Theorem 3). As applications we obtain inequalities analogous to those of Horn (3) and Ostrowski on the singular values of a product. An inequality of S. N. Roy (8) (later published with a different proof by B. Sz. Nagy (9)) is a special case of Theorem 3 and Ostrowski's inequalities (6) connecting Schur-convex functions of singular values and characteristic roots.

2. Fan's first result. Before proceeding, we point out that for finite matrices (1) follows immediately from (3). Following Fan we need only prove (1) in the case m = 1.

Let x_1, \ldots, x_k be an o.n. set of vectors, $k \leq n$, and let P denote the orthogonal projection into the subspace spanned by x_1, \ldots, x_k . Then

Received May 23, 1956. This research was supported by the U.S. Air Force under contract No. AF 18 (603)-83.

$$\begin{aligned} \sum_{i=1}^{k} (U_{1}A_{1}x_{i}, x_{i}) &| &= \left| \sum_{i=1}^{k} (U_{1}A_{1}x_{i}, Px_{i}) \right| \\ &= \left| \sum_{i=1}^{k} (PU_{1}A_{1}x_{i}, x_{i}) \right| \\ &= \left| \operatorname{tr}(PU_{1}A_{1}) \right| \\ &\leq \max_{U_{1}, V} \left| \operatorname{tr}(VPU_{1}A_{1}) \right| \\ &\leq \sum_{i=1}^{n} \rho_{i} \sqrt{\lambda_{i}}, \end{aligned}$$

by (3), where the ρ_j are the singular values of *P*. Since $\rho_j = 1$ for j = 1, ..., k, and $\rho_j = 0$ for $j \ge k + 1$, (1) follows for m = 1.

3. Properties of the Grassmann algebra. Let $x_i (i=1, \ldots, r), 1 \le r \le n$ be vectors in unitary *n*-space V_n . Then

$$(4) z = x_1 \wedge x_2 \wedge \ldots \wedge x_r$$

denotes the Grassmann exterior product of the x_i ; it is a vector in V_m where $m = \binom{n}{r}$. If A is a linear transformation of V_n , the rth induced compound of A is a linear transformation of V_m , defined by

(5)
$$C_r(A) x_1 \wedge \ldots \wedge x_r = A x_1 \wedge \ldots \wedge A x_r.$$

The following properties, which we list for later reference, can be found in (11, pp. 63-67):

(i) $(x_1 \wedge \ldots \wedge x_r, y_1 \wedge \ldots \wedge y_r) = \det\{(x_i, y_j)\}_{i,j=1,\ldots,r}$

(ii)
$$C_r(AB) = C_r(A) C_r(B), C_r(A^{-1}) = C_r^{-1}(A), C_r(A^*) = [C_r(A)]^*,$$

where A^* is the transposed conjugate of A.

(iii) The characteristic roots of $C_r(A)$ are the $\binom{n}{r}$ products of the characteristic roots of A taken r at a time.

(iv) If A has any of the following properties, so does $C_{\tau}(A)$: non-singular, normal, Hermitian, non-negative Hermitian (n.n.h.), unitary.

To prune some of the foliage of indices usually necessary in discussing these objects we introduce some notation. The set of $\binom{k}{r}$ distinct sequences of positive integers i_1, \ldots, i_r satisfying $1 \leq i_1 < \ldots < i_r \leq k$ will be denoted by Q_{kr} , and a typical such sequence will be called ω . If x_1, \ldots, x_k is a set of k vectors in V_n , and ω is the set $\{i_1, \ldots, i_r\}$ in Q_{kr} , we set

$$x_{\omega} = x_{i_1} \wedge \ldots \wedge x_{i_r} .$$

If (a) is a set of *n* numbers a_1, \ldots, a_n , $E_r(a) = E_r(a_1, \ldots, a_n)$ will denote the *r*th elementary symmetric function of (a).

4. Results. The following theorem is a generalization of the result in (5):

THEOREM 1. Let H be n.n.h. with characteristic roots $h_j \ge h_{j+1}$, j = 1, ..., n-1. Let $f(t) = t^s$, s real, and

$$\phi(x_1,\ldots,x_k) = \sum_{\omega \in Q_{kr}} f[(C_r(H)x_{\omega},x_{\omega})],$$

where $1 \leq r \leq k \leq n$. Then, if $s \ge 1$,

(6) $\max \phi = E_r [f(h_1), \ldots, f(h_k)];$

(7)
$$\min \phi = E_r \left[f(h_{n-k+1}), \ldots, f(h_n) \right];$$

where the maximum and minimum are taken over all sets of k o.n. vectors x_1, \ldots, x_k in V_n .

Proof. For the case s = 1, the theorem is proved in (5). The present proof is an application of this result to f(H).

First note that if ||x|| = 1,

(8)
$$f[(Hx, x)] \leqslant (f(H) x, x).$$

For, if x_1, \ldots, x_n are o.n. characteristic vectors of H corresponding to h_1, \ldots, h_n , then

$$f[(Hx, x)] = f\left[\sum_{j=1}^{n} h_j |(x, x_j)|^2\right]$$

$$\leqslant \sum_{j=1}^{n} f(h_j) |(x, x_j)|^2$$

$$= (f(H)x, x).$$

Secondly,²

(9)

$$f(C_r(H)) = C_r(f(H)).$$

For, if U is a unitary matrix such that $U^*HU = D$, diagonal,

$$\begin{aligned} f(C_r(H)) &= f(C_r(UDU^*)) = C_r(U) f(C_r(D)) C_r(U^*) \\ &= C_r(U) C_r(f(D)) C_r(U^*) = C_r(f(UDU^*)) = C_r(f(H)). \end{aligned}$$

To establish (6) we observe that by (8), (9) and the remark at the beginning of the proof,

$$\phi \leqslant \sum_{\omega \in Q_{kr}} (f(C_r(H))x_{\omega}, x_{\omega}) = \sum_{\omega \in Q_{kr}} (C_r(f(H))x_{\omega}, x_{\omega})$$

$$\leqslant E_r(f(h_1), \ldots, f(h_k)).$$

Equality can be achieved by choosing x_1, \ldots, x_k to be an o.n. set of characteristic vectors of *H* corresponding to h_1, \ldots, h_k , since by (i),

$$\phi = \sum_{\omega \in Q_{kr}} f(\det\{(Hx_{i_s}, x_{i_l})\}), \qquad s, t = 1, \dots, r,$$
$$= \sum_{\omega \in Q_{kr}} f(\det\{h_{i_s} \delta_{i_s i_l}\}) = \sum_{\omega \in Q_{kr}} f\left(\prod_{s=1}^r h_{i_s}\right)$$
$$= E_r(f(h_1), \dots, f(h_k)).$$

(7) is proved similarly.

^IThis inequality holds for any continuous convex function *f* defined on the spectrum of *H*. The inequality is reversed if *f* is concave.

²This equality holds for any function f defined on the spectrum of H and satisfying the relation $f(xy)^3 = f(x) f(y)$.

Theorem 3 is our main result. Theorem 2 is a special case. However, it is the first step in the proof of the general theorem, and its proof appears to be of some interest in itself.

THEOREM 2. Let A be an arbitrary n-square complex matrix with singular values $\alpha_i \ge \alpha_{i+1}$ (i = 1, ..., n - 1). Let

$$\phi(x_1,\ldots,x_k;U) = \left|\sum_{\omega \in Q_{kr}} (C_r(UA)x_{\omega},x_{\omega})\right|,$$

where $1 \leq r \leq k \leq n$. Then

(10)
$$\max \phi = E_r(\alpha_1, \ldots, \alpha_k),$$

where the maximum is taken over all sets of k o.n. vectors x_1, \ldots, x_k and all unitary U.

Proof. Since A = VH, where V is unitary and $H = (A^*A)^{\frac{1}{2}}$ is n.n.h., we may without loss in generality replace A by H. Set $y_j = U^{-1}x_j$, (j = 1, ..., k). By the notation $\sum \bigoplus C_r(A)$ we mean the direct sum of $C_r(A)$ taken $\binom{k}{r}$ times; and similarly for $\sum \bigoplus x_{\omega}$. Since $\sum \bigoplus C_r(H)$ is n.n.h. by (iv),

The last inequality follows from (6) applied to each of the square roots. Equality holds when the x_j are suitable eigenvectors of H and U is the identity matrix.

THEOREM 3. Let A_1, \ldots, A_m be arbitrary n-square complex matrices with singular values $\alpha_{\sigma i}$, where $\alpha_{\sigma i} \ge \alpha_{\sigma,i+1}$ $(i = 1, \ldots, n-1; \sigma = 1, \ldots, m)$. Let

$$\phi(x_1,\ldots,x_k; U_1,\ldots,U_m) = \left| \sum_{\omega \in Q_{kr}} (C_r(U_1A_1\ldots,U_mA_m)x_\omega,x_\omega) \right|,$$

where $1 \leq r \leq k \leq n$. Then

(11)
$$\max \phi = E_r \left(\prod_{\sigma=1}^m \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^m \alpha_{\sigma k} \right)$$

where the maximum is taken over all sets of k o.n. vectors x_1, \ldots, x_k , and all unitary matrices U_1, \ldots, U_m .

Proof. For a fixed U_2, \ldots, U_m , let $\beta_1 \ge \beta_2 \ge \ldots \ge \beta_n$ be the singular values of $B = A_1(U_2A_2) \ldots (U_mA_m)$. By Theorem 2

(12)
$$\phi \leqslant E_{\tau} (\beta_1, \ldots, \beta_k).$$

The singular values of $U_{\sigma}A_{\sigma}$ are the $\alpha_{\sigma i}$ (i = 1, ..., n). By a result of Ostrowski (6, p. 283, equation 106a),

$$E_r(\beta_1,\ldots,\beta_k) \leqslant E_r\left(\prod_{\sigma=1}^m \alpha_{\sigma 1},\ldots,\prod_{\sigma=1}^m \alpha_{\sigma k}\right).$$

There remains to show that the right side of (11) is taken on for a suitable choice of the x's and U's. As in Theorem 2 we may replace each A_{σ} by $H_{\sigma} = (A_{\sigma}^* A_{\sigma})^{\frac{1}{2}}$. Let $x_{\sigma 1}, \ldots, x_{\sigma n}$ ($\sigma = 1, \ldots, m$) be an o.n. set of characteristic vectors of H_{σ} corresponding to $\alpha_{\sigma 1}, \ldots, \alpha_{\sigma n}$. Choose the U_{σ} so that

$$U_{\sigma} x_{\sigma i} = x_{\sigma-1,i}, \qquad \sigma = 2, \ldots, m,$$

$$U_{1} x_{1i} = x_{mi},$$

for i = 1, ..., n. Set

 $x_{\sigma\omega} = x_{\sigma i_1} \wedge \ldots \wedge x_{\sigma i_r}$

and

$$\alpha_{\sigma\omega} = \prod_{j=1}^{\tau} \alpha_{\sigma ij}$$

where ω is the set $\{i_1, \ldots, i_r\}$. Then

$$\begin{vmatrix} \sum_{\omega \in Q_{kr}} (C_r(U_1H_1 \dots U_mH_m) \ x_{m\omega}, x_{m\omega}) \end{vmatrix} \\ = \left| \sum \alpha_{m\omega} C_r(U_1H_1 \dots U_{m-1}H_{m-1}) \ x_{m-1,\omega}, x_{m\omega}) \right| \\ = \sum \alpha_{m\omega} \dots \alpha_{1\omega}(x_{m\omega}, x_{m\omega}) \\ = \sum \left(\prod_{\sigma=1}^m \alpha_{\sigma i_1} \dots \prod_{\sigma=1}^m \alpha_{\sigma i_r} \right) \\ = E_r \left(\prod_{\sigma=1}^m \alpha_{\sigma 1}, \dots, \prod_{\sigma=1}^m \alpha_{\sigma k} \right). \end{aligned}$$

This completes the proof of the theorem.

Remarks. I. By setting r = 1 in (11) we obtain (1); by setting r = k we obtain (2).

II. Theorem 3 does not follow immediately from (1) applied to the compound because the lexicographic ordering of the eigenvalues does not necessarily correspond to the ordering by magnitude.

III. Let A_{σ} , $\sigma = 1, \ldots, m$, have eigenvalues $\lambda_{\sigma i}$, ordered so that $|\lambda_{\sigma i}| \ge |\lambda_{\sigma,i+1}|$ $(i = 1, \ldots, n-1)$. We can find unitary V_{σ} such that $V_{\sigma}^* A_{\sigma} V_{\sigma} = T_{\sigma}$, triangular, with the diagonal elements ordered by absolute

magnitude. Then if $U_{\sigma} = V_{\sigma-1} V_{\sigma}^*$ ($\sigma = 2, ..., m$), $U_1 = V_m U V_1^*$ where U is the diagonal matrix with

$$\exp\left(-\sum_{\sigma=1}^m \arg \lambda_{\sigma i}\right)$$

in the *i*th row and *i*th column; and if $x_j = V_m e_j$ (j = 1, ..., k), where e_j is the unit vector with 1 in the *i*th position; then

$$\left|\sum_{\omega \in Q_{kr}} \left(C_r(U_1 A_1 \ldots U_m A_m) x_{\omega}, x_{\omega} \right) \right| = E_r \left(\prod_{\sigma=1}^m |\lambda_{\sigma 1}|, \ldots, \prod_{\sigma=1}^m |\lambda_{\sigma k}| \right)$$

It follows from Theorem 3 that

(13)
$$E_r\left(\prod_{\sigma=1}^m |\lambda_{\sigma 1}|, \ldots, \prod_{\sigma=1}^m |\lambda_{\sigma k}|\right) \leq E_r\left(\prod_{\sigma=1}^m \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^m \alpha_{\sigma k}\right).$$

The case m = 1, r = k is Weyl's inequality. Actually, (13) also follows easily from Ostrowski's discussion of Schur-convex functions.

5. Applications. Let X = AB, where A and B are arbitrary *n*-square complex matrices. Consider the convex sum

$$Y = \sigma X^* X + \delta X X^*,$$

where $\sigma + \delta = 1$, $\sigma \ge 0$, $\delta \ge 0$. Let $\phi_i \ge \phi_{i+1}$, $\alpha_i \ge \alpha_{i+1}$, $\beta_i \ge \beta_{i+1}$ (i = 1, ..., n - 1) be respectively the non-negative square roots of the characteristic roots of Y and the singular values of A and B. In the Theorem 4 we shall use the following concavity property of the elementary symmetric functions:³

If (a) and (b) are sets of n non-negative numbers and $1 \leq r \leq n$, then

$$E_r^{1/r}(a+b) \ge E_r^{1/r}(a) + E_r^{1/r}(b).$$

THEOREM 4. For $0 \leq s \leq 1$ and $1 \leq r \leq k \leq n$,

$$E_r(\phi_n^{2s},\ldots,\phi_{n-k+1}^{2s})$$

$$\geqslant (2\sigma^{\sigma}\delta^{\delta})^{r(s-1)} \bigg(\prod_{j=1}^{r} \alpha_{n-j+1}^{\sigma} \beta_{n-j+1}^{\delta}\bigg)^{2s} E_{r}^{\sigma}(\beta_{n}^{2s}, \ldots, \beta_{n-k+1}^{2s}) E_{r}^{\delta}(\alpha_{n}^{2s}, \ldots, \alpha_{n-k+1}^{2s}).$$

Proof. Let x_1, \ldots, x_k be an o.n. set of characteristic vectors of Y corresponding respectively to

$$\phi_n^2,\ldots,\phi_{n-k+1}^2.$$

Then

³This property follows from a concavity property proved by W. Fenchel (2). This inequality also follows directly as a corollary of a similar property for symmetric functions proved by Lopes and Marcus in (4).

$$\begin{split} E_{r}^{1/r}(\phi_{n}^{2s},\ldots,\phi_{n-k+1}^{2s}) &= E_{r}^{1/r}[(Yx_{j},x_{j})^{s}] \\ &= E_{r}^{1/r}[\{\sigma(X^{*}X x_{j},x_{j}) + \delta(XX^{*}x_{j},x_{j})\}^{s}] \\ &\geqslant E_{r}^{1/r}[2^{s-1}\{\sigma^{s}(X^{*}X x_{j},x_{j})^{s} + \delta^{s}(XX^{*} x_{j},x_{j})^{s}\}] \\ &\geqslant 2^{s-1}\{E_{r}^{1/r}[\sigma^{s}(X^{*}X x_{j},x_{j})^{s}] + E_{r}^{1/r}[\delta^{s}(XX^{*}x_{j},x_{j})^{s}]\} \\ &= 2^{s-1}\{\sigma^{s} E_{r}^{1/r}[(X^{*}X x_{j},x_{j})^{s}] + \delta^{s} E_{r}^{1/r}[(XX^{*} x_{j},x_{j})^{s}]\}. \end{split}$$

,

It follows from the Hadamard determinant theorem that

$$E_{\tau}[(X^*X x_j, x_j)^s] = \sum_{\substack{1 \leq i_1 < \ldots < i_r \leq k}} \left(\prod_{l=1}^r (X^*X x_{i_l}, x_{i_l}) \right)^s$$

$$\geq \sum_{\omega \in Q_{k_\tau}} (C_{\tau}(X^*X) x_{\omega}, x_{\omega})^s.$$

Thus

$$\begin{split} E_{\tau}^{1/r}(\phi_{n}^{2s},\ldots,\phi_{n-k+1}^{2s}) &\geq 2^{s-1} \sigma^{s} \bigg\{ \sum \left(C_{\tau}(X^{*}X) x_{\omega},x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &+ 2^{s-1} \delta^{s} \bigg\{ \sum \left(C_{\tau}(XX^{*}) x_{\omega},x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &= 2^{s-1} \sigma^{s} \bigg\{ \sum \left(C_{\tau}(A^{*}A) C_{\tau}(B) x_{\omega}, C_{\tau}(B) x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &+ 2^{s-1} \delta^{s} \bigg\{ \sum \left(C_{\tau}(BB^{*}) C_{\tau}(A^{*}) x_{\omega}, C_{\tau}(A^{*}) x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &\geq 2^{s-1} \sigma^{s} \bigg(\prod_{j=1}^{r} \alpha_{n-j+1}^{s} \bigg)^{2/r} \bigg\{ \sum \left(C_{\tau}(B^{*}B) x_{\omega}, x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &+ 2^{s-1} \delta^{s} \bigg(\prod_{i=1}^{r} \beta_{n-j+1}^{s} \bigg)^{2/r} \bigg\{ \sum \left(C_{\tau}(AA^{*}) x_{\omega}, x_{\omega} \right)^{s} \bigg\}^{1/r} \\ &\geq \sigma \bigg\{ 2^{s-1} \sigma^{s-1} \bigg(\prod_{j=1}^{r} \alpha_{n-j+1}^{s} \bigg)^{2/r} E_{\tau}^{1/r} (\beta_{n}^{2s}, \ldots, \beta_{n-k+1}^{2s}) \bigg\} \\ &+ \delta \bigg\{ 2^{s-1} \delta^{s-1} \bigg(\prod_{j=1}^{r} \beta_{n-j+1}^{s} \bigg)^{2/r} \bigg\}^{2/r} \bigg\} \end{split}$$

The last inequality follows by Theorem 1. The result follows by a classical inequality and by taking *r*th powers of both sides.

We remark that when σ is zero, σ^{σ} is to be taken as 1.

Theorem 4 may be used to relate the characteristic polynomials of the matrices involved. For example,

$$|p_{\tau}((ABB^*A^*)^s)| \ge 2^{\tau(s-1)} \prod_{j=1}^{\tau} \alpha_{n-j+1}^{2s} |p_{\tau}((B^*B)^s)|,$$

where

$$x^{n} + \sum_{r=1}^{n} p_{r}(M) x^{n-r}$$

is the characteristic polynomial of the matrix M.

•

In (9) B. Sz. Nagy proves that if A and B are complex n-square matrices, then

(14)
$$\alpha_n \beta_n \leqslant |\lambda_i| \leqslant \alpha_1 \beta_1,$$

where $\alpha_i \ge \alpha_{i+1}$, $\beta_i \ge \beta_{i+1}$ are the singular values of A and B, and λ_i , $|\lambda_i| \ge |\lambda_{i+1}|$, are the characteristic roots of AB. By Theorem 3,

(15)
$$E_r(|\lambda_1|,\ldots,|\lambda_k|) \leqslant E_r(\alpha_1\,\beta_1,\ldots,\alpha_k\,\beta_k),$$

for $1 \le r \le k \le n$. By setting r = k = 1, we obtain the upper inequality of (14). If $\alpha_n \beta_n = 0$, the lower inequality is trivial. Otherwise A and B are non-singular. The characteristic roots of $(AB)^{-1}$ are the λ_i^{-1} , and the singular values of A^{-1} and B^{-1} are the α_i^{-1} and β_i^{-1} . Hence

(16)
$$E_r(|\lambda_n|^{-1},\ldots,|\lambda_{n-k+1}|^{-1}) \leq E_r(\alpha_n^{-1}\beta_n^{-1},\ldots,\alpha_{n-k+1}^{-1}\beta_{n-k+1}^{-1}).$$

Again setting r = k = 1, we obtain the lower inequality of (14).

Both (15) and (16) have immediate generalizations in two directions: first, to a product of more than two matrices, and second, to the more general class of Schur-convex functions.

References

- 1. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. N.A.S. (U.S.A.), 37 (1951), 760-766.
- 2. W. Fenchel, Généralisation du théorème de Brunn-Minkowski concernant les corps convexes, C.R. des Sci. de l'Acad. des Sci., 203 (1936), 764-766.
- **3.** A. Horn, On the singular values of a product of completely continuous operators, Proc. N.A.S. (U.S.A.), 36 (1950), 374–375.
- M. D. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, Can. J. Math., 9 (1957), 305–312.
- M. D. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices, Can. J. Math., 8 (1956), 524-531.
- A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. pures et appl. (9), 31 (1952), 253-292.
- 7. G. Pólya, Remark on Weyl's note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 36 (1950), 49-51.
- 8. S. N. Roy, A useful theorem in matrix theory, Proc. Amer. Math. Soc., 5 (1954), 635-638.
- B. Sz. Nagy, Remark on S. N. Roy's paper: A useful theorem in matrix theory, Proc. Amer. Math. Soc., 7 (1956), 1.
- J. von Neumann, Some matrix-inequalities and metrization of matrix-space, Tomsk Univ. Rev., 1 (1937), 286-300.
- J. H. M. Wedderburn, Lectures on Matrices, Amer. Math. Soc. Colloq. Publications, 17 (1934).
- H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 35 (1949), 408-411.

University of British Columbia