ON THE MAXIMUM PRINCIPLE OF KY FAN

M. MARCUS and B. N. MOYLS

1. Introduction. In 1951 Fan (1) proved the following interesting extreme value result: Let A_{1}, \ldots, A_{m} be completely continuous operators on a Hilbert space \mathfrak{j}. For $\sigma=1,2, \ldots, m$ let $\lambda_{\sigma i} \geqslant \lambda_{\sigma, i+1}$ be the characteristic roots of $A_{\sigma}{ }^{*} A_{\sigma}$. Then, for any positive integer k,

$$
\begin{align*}
& \max \left|\sum_{i=1}^{k}\left(U_{1} A_{1} \ldots U_{m} A_{m} x_{i}, x_{i}\right)\right|=\sum_{i=1}^{k}\left(\prod_{\sigma=1}^{m} \lambda_{\sigma i}\right)^{\frac{1}{2}}, \tag{1}\\
& \max _{i, j=1,2, \ldots, k}\left|\operatorname{det}\left\{\left(U_{1} A_{1} \ldots U_{m} A_{m} x_{i}, x_{j}\right)\right\}\right|^{2}=\prod_{i=1}^{k} \prod_{\sigma=1}^{m} \lambda_{\sigma i}, \tag{2}
\end{align*}
$$

where both maxima are taken over all unitary operators U_{1}, \ldots, U_{m} and all sets of k orthonormal (o.n.) vectors.

Fan proved (1) for $m=1$ and then applied an inequality of Pólya (7) and a recent result of Horn (3) to obtain the theorem for $m \geqslant 2$. This result is a generalization of a result of von Neumann (10), which states that if A and B are n-square complex matrices with singular values (12) $\alpha_{i} \geqslant \alpha_{i+1}$, $\beta_{i} \geqslant \beta_{i+1}(i=1,2, \ldots, n-1)$, then

$$
\begin{equation*}
\max |\operatorname{tr}(U A V B)|=\sum_{i=1}^{n} \alpha_{i} \beta_{i}, \tag{3}
\end{equation*}
$$

where the maximum is taken over all unitary U and V.
In this paper we shall confine our attention to the case of finite matrices. We shall show that both (1) and (2) are special cases of a general maximum result for compound operators (Theorem 3). As applications we obtain inequalities analogous to those of Horn (3) and Ostrowski on the singular values of a product. An inequality of S. N. Roy (8) (later published with a different proof by B. Sz. Nagy (9)) is a special case of Theorem 3 and Ostrowski's inequalities (6) connecting Schur-convex functions of singular values and characteristic roots.
2. Fan's first result. Before proceeding, we point out that for finite matrices (1) follows immediately from (3). Following Fan we need only prove (1) in the case $m=1$.

Let x_{1}, \ldots, x_{k} be an o.n. set of vectors, $k \leqslant n$, and let P denote the orthogonal projection into the subspace spanned by x_{1}, \ldots, x_{k}. Then

[^0]\[

\left.$$
\begin{aligned}
\left|\sum_{i=1}^{k}\left(U_{1} A_{1} x_{i}, x_{i}\right)\right| & =\left|\begin{array}{c}
\sum_{i=1}^{k}\left(U_{1} A_{1} x_{i}, P x_{i}\right) \\
\\
\end{array}\right| \begin{array}{l}
\sum_{i=1}^{k} \\
k
\end{array}\left(P U_{1} A_{1} x_{i}, x_{i}\right)
\end{aligned}
$$ \right\rvert\,
\]

by (3), where the ρ_{j} are the singular values of P. Since $\rho_{j}=1$ for $j=1, \ldots, k$, and $\rho_{j}=0$ for $j \geqslant k+1$, (1) follows for $m=1$.
3. Properties of the Grassmann algebra. Let $x_{i}(i=1, \ldots, r), 1 \leqslant r \leqslant n$ be vectors in unitary n-space V_{n}. Then

$$
\begin{equation*}
z=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{r} \tag{4}
\end{equation*}
$$

denotes the Grassmann exterior product of the x_{i}; it is a vector in V_{m} where $m=\binom{n}{r}$. If A is a linear transformation of V_{n}, the r th induced compound of A is a linear transformation of V_{m}, defined by

$$
\begin{equation*}
C_{r}(A) x_{1} \wedge \ldots \wedge x_{r}=A x_{1} \wedge \ldots \wedge A x_{r} \tag{5}
\end{equation*}
$$

The following properties, which we list for later reference, can be found in (11, pp. 63-67):
(i) $\left(x_{1} \wedge \ldots \wedge x_{r}, y_{1} \wedge \ldots \wedge y_{r}\right)=\operatorname{det}\left\{\left(x_{i}, y_{j}\right)\right\}_{i, j=1, \ldots, r}$.
(ii) $C_{r}(A B)=C_{r}(A) C_{r}(B), C_{r}\left(A^{-1}\right)=C_{r}^{-1}(A), C_{r}\left(A^{*}\right)=\left[C_{r}(A)\right]^{*}$, where A^{*} is the transposed conjugate of A.
(iii) The characteristic roots of $C_{r}(A)$ are the $\binom{n}{r}$ products of the characteristic roots of A taken r at a time.
(iv) If A has any of the following properties, so does $C_{r}(A)$: non-singular, normal, Hermitian, non-negative Hermitian (n.n.h.), unitary.

To prune some of the foliage of indices usually necessary in discussing these objects we introduce some notation. The set of $\binom{k}{r}$ distinct sequences of positive integers i_{1}, \ldots, i_{r} satisfying $1 \leqslant i_{1}<\ldots<i_{r} \leqslant k$ will be denoted by $Q_{k r}$, and a typical such sequence will be called ω. If x_{1}, \ldots, x_{k} is a set of k vectors in V_{n}, and ω is the set $\left\{i_{1}, \ldots, i_{r}\right\}$ in $Q_{k r}$, we set

$$
x_{\omega}=x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} .
$$

If (a) is a set of n numbers $a_{1}, \ldots, a_{n}, E_{r}(a)=E_{r}\left(a_{1}, \ldots, a_{n}\right)$ will denote the r th elementary symmetric function of (a).
4. Results.The following theorem is a generalization of the result in (5):

Theorem 1. Let H be n.n.h. with characteristic roots $h_{j} \geqslant h_{j+1}, j=1, \ldots$, $n-1$. Let $f(t)=t^{s}$, s real, and

$$
\phi\left(x_{1}, \ldots, x_{k}\right)=\sum_{\omega \in Q_{k r}} f\left[\left(C_{r}(H) x_{\omega}, x_{\omega}\right)\right],
$$

where $1 \leqslant r \leqslant k \leqslant n$. Then, if $s \geqslant 1$,

$$
\begin{equation*}
\max \phi=E_{r}\left[f\left(h_{1}\right), \ldots, f\left(h_{k}\right)\right] ; \tag{6}
\end{equation*}
$$

and if $0 \leqslant s \leqslant 1$,

$$
\begin{equation*}
\min \phi=E_{r}\left[f\left(h_{n-k+1}\right), \ldots, f\left(h_{n}\right)\right] ; \tag{7}
\end{equation*}
$$

where the maximum and minimum are taken over all sets of k o.n. vectors x_{1}, \ldots, x_{k} in V_{n}.

Proof. For the case $s=1$, the theorem is proved in (5). The present proof is an application of this result to $f(H)$.

First note that ${ }^{1}$ if $\|x\|=1$,

$$
\begin{equation*}
f[(H x, x)] \leqslant(f(H) x, x) . \tag{8}
\end{equation*}
$$

For, if x_{1}, \ldots, x_{n} are o.n. characteristic vectors of H corresponding to h_{1}, \ldots, h_{n}, then

$$
\begin{aligned}
f[(H x, x)] & =f\left[\sum_{j=1}^{n} h_{j}\left|\left(x, x_{j}\right)\right|^{2}\right] \\
& \leqslant \sum_{j=1}^{n} f\left(h_{j}\right)\left|\left(x, x_{j}\right)\right|^{2} \\
& =(f(H) \cdot x, x) .
\end{aligned}
$$

Secondly, ${ }^{2}$

$$
\begin{equation*}
f\left(C_{r}(H)\right)=C_{r}(f(H)) . \tag{9}
\end{equation*}
$$

For, if U is a unitary matrix such that $U^{*} H U=D$, diagonal,

$$
\begin{aligned}
f\left(C_{r}(H)\right) & =f\left(C_{r}\left(U D U^{*}\right)\right)=C_{r}(U) f\left(C_{r}(D)\right) C_{r}\left(U^{*}\right) \\
& =C_{r}(U) C_{r}(f(D)) C_{r}\left(U^{*}\right)=C_{r}\left(f\left(U D U^{*}\right)\right)=C_{r}(f(H)) .
\end{aligned}
$$

To establish (6) we observe that by (8), (9) and the remark at the beginning of the proof,

$$
\begin{aligned}
\phi & \leqslant \sum_{\omega \in Q_{k r}}\left(f\left(C_{r}(H)\right) x_{\omega}, x_{\omega}\right)=\sum_{\omega \in Q_{k r}}\left(C_{r}(f(H)) x_{\omega}, x_{\omega}\right) \\
& \leqslant E_{r}\left(f\left(h_{1}\right), \ldots, f\left(h_{k}\right)\right) .
\end{aligned}
$$

Equality can be achieved by choosing x_{1}, \ldots, x_{k} to be an o.n. set of characteristic vectors of H corresponding to h_{1}, \ldots, h_{k}, since by (i),

$$
\begin{aligned}
\phi & =\sum_{\omega \in Q_{k r}} f\left(\operatorname{det}\left\{\left(H x_{i_{s}}, x_{i_{t}}\right)\right\}\right), \quad s, t=1, \ldots, r, \\
& =\sum_{\omega \in Q_{k r}} f\left(\operatorname{det}\left\{h_{i_{s}} \delta_{\left.i_{s} i_{t}\right\}}\right\}\right)=\sum_{\omega \in Q_{k r}} f\left(\prod_{s=1}^{r} h_{i_{s}}\right) \\
& =E_{r}\left(f\left(h_{1}\right), \ldots, f\left(h_{k}\right)\right) .
\end{aligned}
$$

(7) is proved similarly.

[^1]Theorem 3 is our main result. Theorem 2 is a special case. However, it is the first step in the proof of the general theorem, and its proof appears to be of some interest in itself.

Theorem 2. Let A be an arbitrary n-square complex matrix with singular values $\alpha_{i} \geqslant \alpha_{i+1}(i=1, \ldots, n-1)$. Let

$$
\phi\left(x_{1}, \ldots, x_{k} ; U\right)=\left|\sum_{\omega \in Q_{k r}}\left(C_{r}(U A) x_{\omega}, x_{\omega}\right)\right|
$$

where $1 \leqslant r \leqslant k \leqslant n$. Then

$$
\begin{equation*}
\max \phi=E_{r}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \tag{10}
\end{equation*}
$$

where the maximum is taken over all sets of k o.n. vectors x_{1}, \ldots, x_{k} and all unitary U.

Proof. Since $A=V H$, where V is unitary and $H=\left(A^{*} A\right)^{\frac{1}{2}}$ is n.n.h., we may without loss in generality replace A by H. Set $y_{j}=U^{-1} x_{j},(j=1, \ldots, k)$. By the notation $\sum \oplus C_{r}(A)$ we mean the direct sum of $C_{r}(A)$ taken $\binom{k}{r}$ times; and similarly for $\sum \oplus x_{\omega}$. Since $\sum \oplus C_{r}(H)$ is n.n.h. by (iv),

$$
\begin{aligned}
\phi & =\left|\sum_{\omega \in Q_{k r}}\left(\iota_{r}(H) x_{\omega}, C_{r}\left(\iota^{-1}\right) x_{\omega}\right)\right| \\
& =\left|\left(\sum \oplus C_{r}(H) \sum \oplus x_{\omega}, \sum \oplus y_{\omega}\right)\right| \\
& \leqslant\left(\sum \oplus C_{r}(H) \sum \oplus x_{\omega}, \sum \oplus x_{\omega}\right)^{\frac{1}{2}} \\
& =\left[\sum_{\omega \in Q_{k r}}\left(C_{r}(H) x_{\omega}, x_{\omega}\right)\right]^{\frac{1}{2}}\left[\sum_{\omega \in Q_{k r}}\left(C_{r}(H) y_{\omega}, y_{\omega}\right)\right]^{\frac{1}{2}} \\
& \leqslant E_{r}\left(\alpha_{1}, \ldots, \alpha_{k}\right) .
\end{aligned}
$$

The last inequality follows from (6) applied to each of the square roots. Equality holds when the x_{j} are suitable eigenvectors of H and U is the identity matrix.

Theorem 3. Let A_{1}, \ldots, A_{m} be arbitrary n-square complex matrices with singular values $\alpha_{\sigma i}$, where $\alpha_{\sigma i} \geqslant \alpha_{\sigma, i+1}(i=1, \ldots, n-1 ; \sigma=1, \ldots, m)$. Let

$$
\phi\left(x_{1}, \ldots, x_{k} ; U_{1}, \ldots, U_{m}\right)=\left|\sum_{\omega \in Q_{k r}}\left(C_{r}\left(U_{1} A_{1} \ldots U_{m} A_{m}\right) x_{\omega}, x_{\omega}\right)\right|
$$

where $1 \leqslant r \leqslant k \leqslant n$. Then

$$
\begin{equation*}
\max \phi=E_{r}\left(\prod_{\sigma=1}^{m} \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^{m} \alpha_{\sigma k}\right) \tag{11}
\end{equation*}
$$

where the maximum is taken over all sets of k o.n. vectors x_{1}, \ldots, x_{k}, and all unitary matrices U_{1}, \ldots, U_{m}.

Proof. For a fixed U_{2}, \ldots, U_{m}, let $\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{n}$ be the singular values of $B=A_{1}\left(U_{2} A_{2}\right) \ldots\left(U_{m} A_{m}\right)$. By Theorem 2

$$
\begin{equation*}
\phi \leqslant E_{\tau}\left(\beta_{1}, \ldots, \beta_{k}\right) \tag{12}
\end{equation*}
$$

The singular values of $U_{\sigma} A_{\sigma}$ are the $\alpha_{\sigma i}(i=1, \ldots, n)$. By a result of Ostrowski (6, p. 283, equation 106a),

$$
E_{r}\left(\beta_{1}, \ldots, \beta_{k}\right) \leqslant E_{r}\left(\prod_{\sigma=1}^{m} \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^{m} \alpha_{\sigma k}\right) .
$$

There remains to show that the right side of (11) is taken on for a suitable choice of the x 's and U 's. As in Theorem 2 we may replace each A_{σ} by $H_{\sigma}=\left(A_{\sigma}{ }^{*} A_{\sigma}\right)^{\frac{1}{2}}$. Let $x_{\sigma 1}, \ldots, x_{\sigma n}(\sigma=1, \ldots, m)$ be an o.n. set of characteristic vectors of H_{σ} corresponding to $\alpha_{\sigma 1}, \ldots, \alpha_{\sigma n}$. Choose the U_{σ} so that

$$
\begin{array}{lr}
U_{\sigma} x_{\sigma i}=x_{\sigma-1, i}, & \sigma=2, \ldots, m, \\
U_{1} x_{1 i}=x_{m i} &
\end{array}
$$

for $i=1, \ldots, n$. Set

$$
x_{\sigma \omega}=x_{\sigma i_{1}} \wedge \ldots \wedge x_{\sigma i_{r}}
$$

and

$$
\alpha_{\sigma \omega}=\prod_{j=1}^{r} \alpha_{\sigma i j}
$$

where ω is the set $\left\{i_{1}, \ldots, i_{r}\right\}$. Then

$$
\begin{aligned}
& \left|\sum_{\omega \in Q_{k r}}\left(C_{r}\left(U_{1} H_{1} \ldots U_{m} H_{m}\right) x_{m \omega}, x_{m \omega}\right)\right| \\
& \left.\quad=\mid \sum \alpha_{m \omega} C_{r}\left(U_{1} H_{1} \ldots U_{m-1} H_{m-1}\right) x_{m-1, \omega}, x_{m \omega}\right) \mid \\
& \quad=\sum \alpha_{m \omega} \ldots \alpha_{1 \omega}\left(x_{m \omega}, x_{m \omega}\right) \\
& \quad=\sum\left(\prod_{\sigma=1}^{m} \alpha_{\sigma i_{1}} \ldots \prod_{\sigma=1}^{m} \alpha_{\sigma i_{r}}\right) \\
& \quad=E_{r}\left(\prod_{\sigma=1}^{m} \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^{m} \alpha_{\sigma k}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Remarks. I. By setting $r=1$ in (11) we obtain (1); by setting $r=k$ we obtain (2).
II. Theorem 3 does not follow immediately from (1) applied to the compound because the lexicographic ordering of the eigenvalues does not necessarily correspond to the ordering by magnitude.
III. Let $A_{\sigma}, \sigma=1, \ldots, m$, have eigenvalues $\lambda_{\sigma i}$, ordered so that $\left|\lambda_{\sigma i}\right| \geqslant\left|\lambda_{\sigma, i+1}\right| \quad(i=1, \ldots, n-1)$. We can find unitary V_{σ} such that $V_{\sigma}{ }^{*} A_{\sigma} V_{\sigma}=T_{\sigma}$, triangular, with the diagonal elements ordered by absolute
magnitude. Then if $U_{\sigma}=V_{\sigma-1} V_{\sigma}{ }^{*}(\sigma=2, \ldots, m), U_{1}=V_{m} U V_{1}{ }^{*}$ where U is the diagonal matrix with

$$
\exp \left(-\sum_{\sigma=1}^{m} \arg \lambda_{\sigma i}\right)
$$

in the i th row and i th column; and if $x_{j}=V_{m} e_{j}(j=1, \ldots, k)$, where e_{j} is the unit vector with 1 in the i th position; then

$$
\left|\sum_{\omega \in Q_{k r}}\left(C_{r}\left(U_{1} A_{1} \ldots U_{m} A_{m}\right) x_{\omega}, x_{\omega}\right)\right|=E_{r}\left(\prod_{\sigma=1}^{m}\left|\lambda_{\sigma 1}\right|, \ldots, \prod_{\sigma=1}^{m}\left|\lambda_{\sigma k}\right|\right) .
$$

It follows from Theorem 3 that

$$
\begin{equation*}
E_{r}\left(\prod_{\sigma=1}^{m}\left|\lambda_{\sigma 1}\right|, \ldots, \prod_{\sigma=1}^{m}\left|\lambda_{\sigma k}\right|\right) \leqslant E_{r}\left(\prod_{\sigma=1}^{m} \alpha_{\sigma 1}, \ldots, \prod_{\sigma=1}^{m} \alpha_{\sigma k}\right) . \tag{13}
\end{equation*}
$$

The case $m=1, r=k$ is Weyl's inequality. Actually, (13) also follows easily from Ostrowski's discussion of Schur-convex functions.
5. Applications. Let $X=A B$, where A and B are arbitrary n-square complex matrices. Consider the convex sum

$$
Y=\sigma X^{*} X+\delta X X^{*}
$$

where $\sigma+\delta=1, \quad \sigma \geqslant 0, \quad \delta \geqslant 0$. Let $\phi_{i} \geqslant \phi_{i+1}, \quad \alpha_{i} \geqslant \alpha_{i+1}, \quad \beta_{i} \geqslant \beta_{i+1}$ ($i=1, \ldots, n-1$) be respectively the non-negative square roots of the characteristic roots of Y and the singular values of A and B. In the Theorem 4 we shall use the following concavity property of the elementary symmetric functions: ${ }^{3}$

If (a) and (b) are sets of n non-negative numbers and $1 \leqslant r \leqslant n$, then

$$
E_{r}^{1 / \tau}(a+b) \geqslant E_{r}^{1 / \tau}(a)+E_{\tau}^{1 / \tau}(b)
$$

Theorem 4. For $0 \leqslant s \leqslant 1$ and $1 \leqslant r \leqslant k \leqslant n$,

$$
\begin{gathered}
E_{r}\left(\phi_{n}^{2 s}, \ldots, \phi_{n-k+1}^{2 s}\right) \\
\geqslant\left(2 \sigma^{\sigma} \delta^{\delta}\right)^{\tau(s-1)}\left(\prod_{j=1}^{r} \alpha_{n-j+1}^{\sigma} \beta_{n-j+1}^{\delta}\right)^{2 s} E_{r}^{\sigma}\left(\beta_{n}^{2 s}, \ldots, \beta_{n-k+1}^{2 s}\right) E_{r}^{\delta}\left(\alpha_{n}^{2 s}, \ldots, \alpha_{n-k+1}^{2 s}\right) .
\end{gathered}
$$

Proof. Let x_{1}, \ldots, x_{k} be an o.n. set of characteristic vectors of Y corresponding respectively to

$$
\phi_{n}^{2}, \ldots, \phi_{n-k+1}^{2} .
$$

Then

[^2]\[

$$
\begin{aligned}
& E_{r}^{1 / r}\left(\phi_{n}^{2 s}, \ldots, \phi_{n-k+1}^{2 s}\right)=E_{r}^{1 / r}\left[\left(Y x_{j}, x_{j}\right)^{s}\right] \\
& \quad=E_{r}^{1 / \tau}\left[\left\{\sigma\left(X^{*} X x_{j}, x_{j}\right)+\delta\left(X X^{*} x_{j}, x_{j}\right)\right\}^{s}\right] \\
& \quad \geqslant E_{r}^{1 / r}\left[2^{s-1}\left\{\sigma^{s}\left(X^{*} X x_{j}, x_{j}\right)^{s}+\delta^{s}\left(X X^{*} x_{j}, x_{j}\right)^{s}\right\}\right] \\
& \quad \geqslant 2^{s-1}\left\{E_{r}^{1 / r}\left[\sigma^{s}\left(X^{*} X x_{j}, x_{j}\right)^{s}\right]+E_{r}^{1 / \tau}\left[\delta^{s}\left(X X^{*} x_{j}, x_{j}\right)^{s}\right]\right\} \\
& \quad=2^{s-1}\left\{\sigma^{s} E_{r}^{1 / r}\left[\left(X^{*} X x_{j}, x_{j}\right)^{s}\right]+\delta^{s} E_{r}^{1 / r}\left[\left(X X^{*} x_{j}, x_{j}\right)^{s}\right]\right\}
\end{aligned}
$$
\]

It follows from the Hadamard determinant theorem that

$$
\begin{aligned}
E_{r}\left[\left(X^{*} X x_{j}, x_{j}\right)^{s}\right]= & \sum_{1 \leqslant i_{1}<\ldots<i_{r}<k}\left(\prod_{t=1}^{r}\left(X^{*} X x_{i_{t}}, x_{i_{t}}\right)\right)^{s} \\
& \geqslant \sum_{\omega \in Q_{k r}}\left(C_{r}\left(X^{*} X\right) x_{\omega}, x_{\omega}\right)^{s} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& E_{r}^{1 / r}\left(\phi_{n}^{2 s}, \ldots, \phi_{n-k+1}^{2 s}\right) \geqslant 2^{s-1} \sigma^{s}\left\{\sum\left(C_{r}\left(X^{*} X\right) x_{\omega}, x_{\omega}\right)^{s}\right\}^{1 / r} \\
& +2^{s-1} \delta^{s}\left\{\sum\left(C_{r}\left(X X^{*}\right) x_{\omega}, x_{\omega}\right)^{s}\right\}^{1 / r} \\
& =2^{s-1} \sigma^{s}\left\{\sum\left(C_{r}\left(A^{*} A\right) C_{r}(B) x_{\omega}, C_{r}(B) x_{\omega}\right)^{s}\right\}^{1 / r} \\
& +2^{s-1} \delta^{s}\left\{\sum\left(C_{r}\left(B B^{*}\right) C_{r}\left(A^{*}\right) x_{\omega}, C_{r}\left(A^{*}\right) x_{\omega}\right)^{s}\right\}^{1 / r} \\
& \geqslant 2^{s-1} \sigma^{s}\left(\prod_{j=1}^{r} \alpha_{n-j+1}^{s}\right)^{2 / r}\left\{\sum\left(C_{r}\left(B^{*} B\right) x_{\omega}, x_{\omega}\right)^{s}\right\}^{1 / r} \\
& +2^{s-1} \delta^{s}\left(\prod_{i=1}^{r} \beta_{n-j+1}^{s}\right)^{2 / r}\left\{\sum\left(C_{r}\left(A A^{*}\right) x_{\omega}, x_{\omega}\right)^{s}\right\}^{1 / r} \\
& \geqslant \sigma\left\{2^{s-1} \sigma^{s-1}\left(\prod_{j=1}^{\tau} \alpha_{n-j+1}^{s}\right)^{2 / \tau} E_{r}^{1 / \tau}\left(\beta_{n}^{2 s}, \ldots, \beta_{n-k+1}^{2 s}\right)\right\} \\
& +\delta\left\{2^{s-1} \delta^{s-1}\left(\prod_{j=1}^{r} \beta_{n-j+1}^{s}\right)^{2 / r} E_{r}^{1 / \tau}\left(\alpha_{n}^{2 s}, \ldots, \alpha_{n-k+1}^{2 s}\right)\right\} .
\end{aligned}
$$

The last inequality follows by Theorem 1. The result follows by a classical inequality and by taking r th powers of both sides.

We remark that when σ is zero, σ^{σ} is to be taken as 1 .
Theorem 4 may be used to relate the characteristic polynomials of the matrices involved. For example,

$$
\left|p_{r}\left(\left(A B B^{*} A^{*}\right)^{s}\right)\right| \geqslant 2^{r(s-1)} \prod_{j=1}^{r} \alpha_{n-j+1}^{2 s}\left|p_{r}\left(\left(B^{*} B\right)^{s}\right)\right|
$$

where

$$
x^{n}+\sum_{r=1}^{n} p_{r}(M) x^{n-r}
$$

is the characteristic polynomial of the matrix M.

In (9) B. Sz. Nagy proves that if A and B are complex n-square matrices, then

$$
\begin{equation*}
\alpha_{n} \beta_{n} \leqslant\left|\lambda_{i}\right| \leqslant \alpha_{1} \beta_{1} \tag{14}
\end{equation*}
$$

where $\alpha_{i} \geqslant \alpha_{i+1}, \beta_{i} \geqslant \beta_{i+1}$ are the singular values of A and B, and λ_{i}, $\left|\lambda_{i}\right| \geqslant\left|\lambda_{i+1}\right|$, are the characteristic roots of $A B$. By Theorem 3,

$$
\begin{equation*}
E_{r}\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{k}\right|\right) \leqslant E_{r}\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{k} \beta_{k}\right), \tag{15}
\end{equation*}
$$

for $1 \leqslant r \leqslant k \leqslant n$. By setting $r=k=1$, we obtain the upper inequality of (14). If $\alpha_{n} \beta_{n}=0$, the lower inequality is trivial. Otherwise A and B are nonsingular. The characteristic roots of $(A B)^{-1}$ are the $\lambda_{i}{ }^{-1}$, and the singular values of A^{-1} and B^{-1} are the α_{i}^{-1} and β_{i}^{-1}. Hence

$$
\begin{equation*}
E_{r}\left(\left|\lambda_{n}\right|^{-1}, \ldots,\left|\lambda_{n-k+1}\right|^{-1}\right) \leqslant E_{r}\left(\alpha_{n}^{-1} \beta_{n}^{-1}, \ldots, \alpha_{n-k+1}^{-1} \beta_{n-k+1}^{-1}\right) . \tag{16}
\end{equation*}
$$

Again setting $r=k=1$, we obtain the lower inequality of (14).
Both (15) and (16) have immediate generalizations in two directions: first, to a product of more than two matrices, and second, to the more general class of Schur-convex functions.

References

1. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. N.A.S. (U.S.A.), 37 (1951), 760-766.
2. W. Fenchel, Généralisation du théorème de Brunn-Minkowski concernant les corps convexes, C.R. des Sci. de 1'Acad. des Sci., 203 (1936), 764-766.
3. A. Horn, On the singular values of a product of completely continuous operators, Proc. N.A.S. (U.S.A.), 36 (1950), 374-375.
4. M. D. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, Can. J. Math., 9 (1957), 305-312.
5. M. D. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices, Can. J. Math., 8 (1956), 524-531.
6. A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. pures et appl. (9), 31 (1952), 253-292.
7. G. Pólya, Remark on Weyl's note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 36 (1950), 49-51.
8. S. N. Roy, A useful theorem in matrix theory, Proc. Amer. Math. Soc., 5 (1954), 635-638.
9. B. Sz. Nagy, Remark on S. N. Roy's paper: A useful theorem in matrix theory, Proc. Amer. Math. Soc., 7 (1956), 1.
10. J. von Neumann, Some matrix-inequalities and metrization of matrix-space, Tomsk Univ. Rev., 1 (1937), 286-300.
11. J. H. M. Wedderburn, Lectures on Matrices, Amer. Math. Soc. Colloq. Publications, 17 (1934).
12. H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 35 (1949), 408-411.

University of British Columbia

[^0]: Received May 23, 1956. This research was supported by the U.S. Air Force under contract No. AF 18 (603)-83.

[^1]: ${ }^{1}$ This inequality holds for any continuous convex function f defined on the spectrum of H. The inequality is reversed if f is concave.
 ${ }^{2}$ This equality holds for any function f defined on the spectrum of H and satisfying the relation $f(x y)^{*}=f(x) f(y)$.

[^2]: ${ }^{3}$ This property follows from a concavity property proved by W. Fenchel (2). This inequality also follows directly as a corollary of a similar property for symmetric functions proved by Lopes and Marcus in (4).

