A PAPPUS TYPE THEOREM IN THE AFFINE GROUP
R. Paré

(received February 12, 1968)

Introduction. In [3] H. Schwerdtfeger embedded the one-dimensional
affine group over the real numbers in the projective plane. The relationship
between group-theoretical properties and geometrical concepts was studied.

In this paper the methods of [3] are used to prove Pappus' theorem.

In the final section we give a similar theorem for (4n+2)-gons.

This paper is a generalization of part of my master's thesis, written

under the direction of Professor H. Schwerdtfeger.

1. Preliminaries. Let ( be the affine group over the real numbers,

{(a, b) | a, be R, a#0 }
with the operation
(a, b) (a', b') = (aa', ab' + b)) .

Embed G in the cartesian model of the projective plane, m, by
associating with the element (a, b) e G, the point with the cartesian
coordinates (a, b).

There are two '"exceptional'" lines of m whose points are not
elements of (, the y-axis and the line at infinity, which we shall call
530 and £°° respectively. Two lines that intersect in a point of £0 are

said to be 0-parallel and two lines that intersect in a point of £°0 are
said to be - parallel. The point of intersection of £0 and SOO will
be called L.

Given a line in the projective plane, we shall call the set of all
elements of G which correspond to points on this line, a @-line. If
P and Q are two points of the plane, we shall represent the -line

through P and Q by (P; Q). In what follows, we shall identify a
G-line with the line to which it corresponds.
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In [3] it is shown that all G-lines are the cosets of normalizers
of single elements. It is easily seen that if A, B¢ G, then

(A; B) = h(AB_i)B = Bh(B-1A)

where by definition

n(Q = {XeG| XC=CX}.

Two w-parallel lines are shown to be left cosets of the same
normalizer whereas O-parallel lines are the right cosets. It is also
shown that ¥ =n((4, 1)) is the commutator subgroup of G. Itis
easily seen that ¥ must pass through W .

The conjugate classes of G are {I}, ¥\ {I}, and the proper
cosets of ¥, where I is the unit element of G.

2. In this section we prove a proposition needed for our proof
of Pappus' theorem. First we prove the following special case:

PROPOSITION 1. Let G, Gy & and G, G, £ with

3
G #W, i=1,2 3, 4. Let A e (G ;G
-1
A G ;G).
Agh, Ay el Q)

1+1)’ tE

Figure 1

Proof. Let the line (Gi; GZ) = A1h(B) for some B €(. Azh(B)
N =(G,; G, ).
is o-parallel to A1h(B) and A2 € A2 n(B), thus Azh(B) (GZ, 3)

(See Figure 1.) It is easily shown that
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-1
A, N(B) =N(A,BA," )A,.

_1)A3 is 0-parallel to h(AZBA -1)A and

Now h(AZBA 5 2

2

-1
A3€h(A2BA2 )A3, thus

-1
n(.AZBA‘Z )A3 = ((13, (14 ) .

- -1
1)A A_ "A_. This line is 0O-parallel to

Consider the line T’l(AiBA1 185 3

-1
= n = : .
n(aBA A, = A N(B) = (G5 G,)
Also
n(A BA '1)A A ta —aata n(A “1aBa ta )
171 1772 37 T2 3 3 2772 3
is oo-parallel to
A_nh(A 1o Ba A ) = h(A_BA '1)A = ( G,)
3 3 272 37 7 27772 3 = (G35 Gy
Therefore
n(ABA-i)AA-iA = (G ;G)
17771 1772 37 Y471

-1
and consequently AiAZ A3e (64, Gi ).

The following proposition is easily proved by induction using
Proposition 1.

PROPOSITION 2. Let C.e & and Q. €
— i 0 — i+1

2n -1, and suppose Gi £y for i=1,2, ..., 2n. I AiE(Gi;Gi+1)

£ for i=1, 3, 5,...,
o 2L

._ -1 -1 )
for i=1, 2, ..., 2n-1, then the product A1A2 A3 '”AZn—ZAZn—ie(GZn’Gi)'

3. Pappus' theorem.

THEOREM. I the vertices of a simple hexagon lie alternately on
two straight lines, then the three pairs of opposite sides intersect in

collinear points.
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Figure 2

»

Proof. Since there exist collineations transforming any two
distinct lines into any other two distinct lines, there will be no loss in
generality if we suppose that the vertices of the hexagon lie on 530 and £ -

a Q £ G i
Let Y3 OS € 0 and GZ, 04, 6 € .SZOO be the vertices of
the hexagon. We may assume that (11 , GZ, 63, 04, (15, (16 ,AA are all
different, for otherwise the hexagon has coinciding sides and the theore
then is trivial.

Let

n

{a}
{B}

(Gi; az)n(a4; 05)

1

(G, (13)0(05; Q)
{C} = (Ga; (14)(\((16; (11)
(see Figure 2).

- -1 - -
By Proposition 2, AB 1CA B¢ ((11; 06). Also AB 1CA 1BN= CH,

. : . -1 ., -1
since Q/M is abelian, thus AB "CA "Be CH. But CH passes through

W and ((11; 06) does not, therefore they cut in a point of (.
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-1 1
Consequently {AB "CA B} = CHN(G,s 06) but { C} = Chn(ai;a )s

6

therefore C = AB™'CA 'B

1 1

-1 -1 - - - -
= AB C=CB A '_——-—#ABicB = CB 1AB

=y cs ™t eh(AB_i) — Ceh(AB_i)B;

therefore A, B, C are collinear.
4. Generalization.

Definition. In what follows a non-degenerate simple m-gon will

mean a polygon consisting of m distinct points and m distinct lines
joining these points in their given order.

THEOREM. Given two lines £1 and £2 and 2n points Ai

not on ;‘,1 or 5:2, then there exists a line £ such that if a non-degenerate

simple (4n+2)- gon with vertices, Gi, lying alternately on £1 and £2 ,

is such that

(A} =G50 )0y 1500 4:)

for ig 2n, then (G.2n ; G ) and (G4n

t £.
+1° Y2n +2 Gy) cuton

+2°

(Figure 3 illustrates the case where n = 2.)

Figure 3
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Proof. Asin §3, we shall assume that £ =& and £ =4
— 1 0 2 0

Let
-1 -1
AZnAZn—'l T2
and

-1 -1
A A

=D.
1 2 AZn—i AZn

Since (/Y is commutative CH= D} and thus C is a conjugate of D,

i.e. there exists E ¢ (G such that C:EDE-i.
Let £ = En(D) and
. . f
(Gt 1d Oong2 NGy o5 04) = (B},

We shall show that B ¢ En(D).

Note that G. # 1k for otherwise (G, =W for all j, and our polygon
1 J

would be degenerate. By Proposition 2, the product

G ).

-1
A B = G ;
A A A A A_A A n C "BD ¢( 2t Y

12 3 2n 1 2°3 2
-1
But C BD eBH and BMn(G4n+2, (11) = {B} thus

-1

C BD =B
-1 -
-1 -1 -1
——> (E B)D(E B) =D

= E—iB €n(D)

It would be interesting to find a geometrical description of the line
£ defined above. The following partial results are noteworthy.
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(1) I A'l’ AZ’ A3, ey AZn—i are collinear, then £ passes

A .
through on

Assume that A , A, A, ..., A e L(K), then A, = LK,
1 2 3 2n -1 i i

where Ki e N(K). We see that

-1 -1 -1_-1
c= AZnKZn— 1K2n—2K2n—3 T K2K1 L

and

-1 -1 -1 -1 _-1
D‘Ka K2K3 "‘K2n-3K2n-2K2n-1L A2n'

Now h(Ki) is the line passing through K, and I, and sois Nn(K),
i
thus h(Ki) =n(K) = n(Kj ), therefore Ki commutes with Kj and

-1
Kj . We conclude that
c-a_ pa !
2n 2n

and thus £= A_ h(D). Therefore A_ ¢ £.
2n 2n

(2) By relabeling the Ai’ we show that if AZ, A, ..., A

3 2n

are collinear, then £ passes through A1

(3) I all the Ai are collinear, then by combining (1) and (2)

we see that £ must pass through A, and A_ . If A, # A then
2n 1 2n

1
£ must pass through all the Ai .

Pappus' theorem is a special case of this last result.
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