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Abstract

This paper presents three theorems concerning stability and stationary points of the
constrained minimization problem:

Min/(x) on M[H,G] = {x e R"\H(x) = 0, G(x) > 0}.
In summary, we prove (s/) that, given the Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ), the feasible set M[H, G] is a topological manifold with boundary, with
specified dimension; (3S) a compact feasible set M[H,G] is stable (perturbations of H
and G produce homeomorphic feasible sets) if and only if MFCQ holds; (#) under a
stability condition, two lower level sets of / with a Kuhn-Tucker point between them are
homotopically related by attachment of a /c-cell (k being the stationary index in the sense
of Kojima).

1. Introduction, main results

Let R" be the n-dimensional Euclidean space and Ck(R", R) the space of real
valued, /c-times continuously differentiable functions on R". For r < k the space
Ck(R", R) will be topologized by means of the strong C-topology (or Cr-Whitney
topology), denoted by C£ (cf. [8]).

In fact, the C/ topology is generated by allowing perturbations of the functions
and their derivatives up to order r which are controlled by continuous positive
functions e(.): R" -» R (rather than only constants e). In particular, the Cf
topology takes asymptotical effects (at infinity) into account since the infimum of
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[2] Stability and stationary points in nonlinear optimization 37

e(x) might be zero. Let us fix the dimension n and two finite index sets /, / , with
/ = {1 , . . . , m }, J = {\,...,s} and m < n.

Unless stated otherwise, we will assume throughout that the functions / , h,, gy,
/ G /, j; G J belong to Cl(R", R). By means of capital H, resp. G, we denote
(h1,...,hm), resp. (gv...,gs).

The optimization problems under consideration will be of the following stan-
dard type:

0>: Minimize/on M[H,G], (1.1)

where the feasible set M[H, G] is defined as

In case we wish to ignore the equality constraints {H), resp. the inequality
constraints (G), we simply write M[G], resp. M[H], instead of M[H,G]. For

R", we denote the set of active (= binding) inequality constraints by / 0 (^) 'x G
i.e.:

J0(x)={jeJ\gj(x) = 0}. (1.3)

Let x G M[H,G] be a local minimum point for f \ M[H G]-H> additionally, an
appropriate constraint qualification holds at 3c, we have a relation of the follow-
ing type (cf. [4]):

iel j

Hj > 0, ; G J0(x)

If relation (1.4) holds at 3c, then we call 3c a Kuhn-Tucker point.
In (1.4), Df stands for the row-vector of first partial derivatives. A condition

on the set {Df, Dht, Dgp i e / , j G ^o(^)} a t ^ which is both necessary and
sufficient in order that the local minimum 3c is a Kuhn-Tucker point is given in
[7, Theorem 4.2].

Two constraint qualifications play an essential role in this study, namely, the
linear independence condition (LI) and the Mangasarian-Fromovitz constraint
qualification (MFCQ) at an 3c G M[H, G]:

(LI) The linear independence condition is said to hold at 3c if the vectors
Dh,(x), Dgj(x), i G /, j G JQ{x) are linearly independent.

(MFCQ) The Mangasarian-Fromovitz constraint qualification is said to hold at
x if the following two conditions are satisfied:

MF 1. The vectors Dh,(x), i G /, are linearly independent.
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38 J. Guddat, H. Th. Jongen and J. Rueckmann 13)

M F 2. There exists a vector £ e R" satisfying:

/>*,(*)« = 0, 1 6 / , (1.5 .a)
Dgj(x)£>0, jeJo(x). (l.5.b)

A vector £ satisfying 1.5.a, b will be called an AfF-vector at 3c.
Obviously, (LI) implies (MFCQ). If (LI) is satisfied at all points of the feasible

set, then M[H, G] is a (C1-) manifold with corners, or a regular constraint set in
the terminology of [11]. In particular, M[H, G] is locally diffeomorphic to
Rp X H*, H* being the nonnegative orthant of R", where p = n - \I\ - |/0(3c)|
and q = |/0(3c)|. Consequently, M[H, G] is a topological manifold with boundary
(i.e., locally homeomorphic to R* X H1, k = n — \I\ — 1). In the case that
(MFCQ) is satisfied at all points of M[H,G], but not necessarily (LI), the
situation becomes much more complicated.

However, as a first result we state:

THEOREM A (Manifold Theorem). Suppose that (MFCQ) is satisfied at all points
x e M[H, G]. Then M[H, G] is a topological manifold with boundary dM[H, G] =
{x e R"\ht(x) = 0, / e /, minJeJ gj(x) = 0} and the dimension of M[H,G]
equals n — \I\.

The Mangasarian-Fromovitz constraint qualification plays an important role in
sensitivity analysis; see e.g. the survey-paper of Fiacco and Kyparisis [3]. In
particular, if 3c is a Kuhn-Tucker point for / 1 M[HtC], then the set of admissible
Lagrange parameters (A,, i e /, ^ , j e /0(3c)) satisfying (1.4) is bounded if and
only if (MFCQ) holds at 3c (Gauvin's result [5]). Further, Kojima was able to
characterize strong stability of Kuhn-Tucker points under the (MFCQ) with the
aid of the derivatives of the appearing functions up to second order (cf. [17]). We
will return to this point later. Next, Jongen, Jonker and Twilt considered generic
one-parameter families of sets defined by (in)equality constraints ([10]). They
classified the possible singularities and studied their topological consequences. As
a special result it turned out—under compactness assumptions—that the failure
of (MFCQ) is necessary for a bifurcation of the sets under consideration.

Kojima and Hirabayashi studied optimization problems depending on one
parameter, again under (MFCQ), and it turned out that, in general, the Kuhn-
Tucker set (one-dimensional) is pieced together from differentiable curves ([18]).
The failure of (MFCQ) may give rise to boundary points of the Kuhn-Tucker
manifold (cf. [12], [13], [23]). Another interesting result where the (MFCQ) plays
an essential role is the following.

In E. S. Levitin [19] and B. Bank et al. [1] a parameter-dependent feasible set

M(\):= {x e tP\h,(x,X) = 0, i e /, *,(*, A) > 0, j e J, X e R*}
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is considered where ht, g} e Cl(R" x R \ R ) , i e / , y e 7. Let X° e R* where
Af(X°) # 0 , x ° £ M(X°) and

-2>xM*°, X°)(X - X°), / e / ,

-J>xS,(*°. X°)(X - X°), j e 70(*°, X0)}.

Then we have the following statement under (MFCQ) at (*°, X°) (E. S. Levitin
[19], Theorem 6.3.3 in B. Bank et al. [1]):

Each selection function y of the point-to-set mapping M^ that is locally
Lipschitzian at X° and satisfies y(X°) = 0 fulfils

where d denotes the distance (cf. the subsequent formula (1.6)).
Finally, in [22] S. M. Robinson already studied local stability of the feasible set

in relation with (MFCQ). All these results gave us the feeling that (MFCQ) is very
closely related to the global stability of the feasible set. This will become clear in
Theorem B, but first we need a definition. The C^-topology for a number of
copies of Ck(R", R) will be the product-topology; in particular, C*(R",R)m =
C*(R",R) X • • • xC*(R",R) (w-times).

DEFINITION 1.1. Let A, e C2(R",R), / e /. The set M[H,G] is called stable if
there exists a Cj-neighborhood 0 of (H, G) in C2(R", R)m X C\R", R)s such that
for every (H,G)£0 the corresponding set M[H,G] is homeomorphic with
M[H,G].

THEOREM B (Stability Theorem). Let A, e C2(R",R), / e 7, and suppose that
M[H, G] is compact. Then M[H, G] is stable if and only if (MFCQ) holds at every
point x e M[H,G].

Now we return to the concept of strongly stable Kuhn-Tucker points ( =
strongly stable stationary solutions) as introduced by Kojima. We refer to [17] for
definitions etc.; in [2] a different, but equivalent characterization of this concept
is given under (LI). To a strongly stable Kuhn-Tucker point, Kojima associated a
nonnegative integer called the stationary index (s. index); moreover, he mentioned
in his basic paper [17] that the s. index is closely related to the Morse-index [20].
We will show that, indeed, the s. index is precisely the Morse index in the sense of
the subsequent deformation theorem (Theorem C). Our result is directly con-
nected with the topology of lower level sets, which, in our opinion is more
adequate with respect to optimization than the rougher information obtained by
exploiting the degree of an associated mapping (cf. [17]).
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It is important to note the following basic fact (cf. [17]):
The existence and local uniqueness of a strongly stable Kuhn-Tucker point as

well as its s. index are preserved under local C2-perturbations of the underlying
functions / , ht> gj.

In order to state Theorem C we need some further definitions.
Let A c R" be nonempty and x e R". By d(x, A) we denote the distance from

x to A, i.e.,

d(x,A) = inf | | J C - ic||. (1.6)
A

For our purpose, we define the normal cone N3 at x e M[H, G] as follows:

iel

(1.7)

The next condition is the appropriate generalization of the Palais-Smale
"Condition C" ([21]) as a substitute of the possible lack of compactness of the
feasible set (cf. also [11]).

CONDITION C*. The function / is said to fulfil Condition C* on M[H,G] with
respect to the interval [a, b] if, for any closed subset S of f~l([a, b]) n M[H, G]
that does not contain Kuhn-Tucker points for /1 M[HtC], we have

inI{d(Df(x),Nx)\x e S) > 0.

For a subset M c R", a,b e R and a given function / we define:

Ma= {xeM\f(x)^a},M^= {x e M\a < f(x) < b).

In the next theorem we use several topological concepts; see [11], [24] for a
detailed expose.

THEOREM C (Deformation Theorem). Let a, 6 e R and a < b. Suppose that
(MFCQ) holds at all points x^Mb

a, with M:= M[H,G], and that /fulfils
Condition C* on M with respect to [a, b].

a. Ifht: e C2(R",R), i e /, and Mb
a contains no Kuhn-Tucker point, then Ma is

a strong deformation retract of Mb.
b. Let f, hj, g;.£C2(R",R), / e J, ; ' e j . Suppose, in addition, that Mb

a

contains exactly one Kuhn-Tucker point x with a < f(x) < b and suppose that x is
strongly stable with s. index equal to k. Then, Mb is homotopy-equivalent to M"
with a k-cell attached.
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The present paper is organized as follows. Section 2 contains a list of lemmas
and preliminary results. In Section 3 we prove the above theorems and give
additional comments. Finally, in Section 4 we present some consequences.

2. Lemmas and preliminary results

LEMMA 2.1. The Mangasarian-Fromovitz constraint qualification is invariant
under local ^-coordinate transformations.

PROOF. Let h,, gj e CHlT.R). / e /, j e J and suppose that | is an MF-vec-
tor at x e M[H, G\. Moreover, let 0, V<z R" be open, x e. (9 and $: 0 -> "V be
a C^-diffeomorphism sending 3c to y. Define h,(y) = h,o®~1(y), ' G ^ and g7

similarly. Then, A,, g, are of class C1 on V and since DO"1(J5)-Z)$(3c) =
Identity, we see that the vector | : = Z)<I>(3c)£ is an MF-vector at y with //, (7
replaced by H, G.

REMARK 2.1. Let 3c e M[H,G] and suppose that (MFCQ) holds at 3c. Then, for
a local analysis, we may delete the equality constraints since the common zero set
of h,, i e /, is a C1-manifold in a neighborhood of 3c. In fact, choose £, e R",

j'• = m + 1,...,«, such that the vectors DTh,(x), / e / = {1 , . . . , m }, £y, y =
m + 1, . . . , « form a basis for R". Put

I v, = /i,(x), i = 1, . . . , m

y = tj(xx) j = m + l n

Then O is of class C1 and the Jacobian matrix D$(3c) is nonsingular. Conse-
quently, <& is locally invertible and hence a local C1-coordinate transformation
sending x to the origin. Now the common zero set of the functions A,, / e / is
locally transformed under $ to the set {0} X R""™, 0 e Rm. Moreover, if all ht

are of class Ck, k > 1, then $ is also of class Ck. Lemma 2.1. implies that
(MFCQ) remains valid in the new coordinates.

The proof of the next lemma only depends on a continuity argument and will
be omitted.

LEMMA 2.2. Suppose that (MFCQ) is satisfied at all points x e M[H,G]. Then,
for every neighborhood 0 of the (closed) set M[H,G] there exists a C\-neighbor-
hood fr of (H, G) in C\R", R)m+S such that every (H, G) e V satisfies:

{i)M[H,G)c0,
(ii) (MFCQ) holds at every point x e M[H, G].
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L E M M A 2.3. Let f ^ C\R",R) and x e R". Then, every C^-neighborhood off
contains an f satisfying:

The proof of Lemma 2.3(i) follows from the fact that C°°(R", R) is Cj-dense in
C\R", R) (cf. [8]); for the validity of (ii) see e.g. [14], [16].

The proof of the following two lemmas (Lemma 2.4, 2.5) is based on smooth
approximation (cf. Lemma 2.3) and subsequently local perturbations with con-
stants resp. linear functions, thereby exploiting Sard's Theorem. Details can be
found in [15], [16] and they will be omitted here.

Let ht, gy G C^R",!*), i e / , j e. J and C\, C 2 c R " be disjoint closed
subsets. Let (H, G) e C\R", R)m+S belong to ^ ( Q , C2) if and only if

(i) H, G coincide with H, G on C1;

(ii) M[H, G] satisfies (LI) a t a U x e M[H, G] n C2.

LEMMA 2.4. ^ ( C ^ Q ) intersects every C\-neighborhood of (H,G) and
^ i ( 0 , C 2 ) isCl-open.

DEFINITION 2.1. (cf. [11]). Let / , h,, gj e C2(R",R), / e /, j e y. Let Jc e
M[//,G] and suppose that (LI) holds at x. Then x is called a critical point for
/ I M[H,C\ if t r i e following relation (with unique X,, /iy) holds:

Df=-ZltDh,+ E My/)gy|x-x. (2.2)
is/ j^Mx)

Moreover, x is a nondegenerate critical point if ND1, ND2 are satisfied (X,, JLj as
in (2.2)):
(ND1) } t # 0 , ; e / „ (*) ,

(ND2) VTD2L(x) V is nonsingular,
where L(x) = f(x) - I , e / X , / i , (x ) - £yeyo(;E)jS;gy(x)(Lagrange-function), D2L
denotes the matrix of partial derivatives of second order, and where V is a matrix
of H-vectors whose columns form a basis for the tangent space

T:= ( I e R"|Z>/i,(3c)| = 0, Z)gy(*)* = 0, i e / , y e / 0 ( j f )} .

The number of negative /a • resp. negative eigenvalues of VTD2L(x)V is called the
linear resp. quadratic index of the nondegenerate critical point x.

Let / , h/, gj e C2(R",R), / e /, j G J and C,, C2 be disjoint closed subsets of
R". Let ( / , H, G) e C2(R", R)1 +m+s belong to ^ ( C j , C2) if and only if

(i) / , H, G coincide with / , H, G on Q ,
(ii) M[H, G] satisfies (LI) at all points x e M[H, G] n C2,

(iii) on M[H, G] n C2 all critical points for / | M[f, ^ are nondegenerate.
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181 Stability and stationary points in nonlinear optimization 43

LEMMA 2.5. ^ . ( C J . C J ) intersects every Cl-neighborhood of (f,H,G) and

The next lemma is almost obvious.

LEMMA 2.6. Let f, ht, g} e C2(R",R), i e / , j & J. Let x e M[H,G] and
suppose that (LI) holds at x. If x is a nondegenerate critical point with vanishing
linear index and quadratic index equal to k, then x is a strongly stable Kuhn-Tucker
point with s. index equal to k.

The proof of the next lemma can be given with the aid of Hager's theorem on
Lipschitz continuity (cf. [6]) in a similar way as in [2, Theorem 2.2].

LEMMA 2.7. LetOdR" be open, K a finite set andfk :0->Rp locally Lipschitzian
for every k e K. Let f: 6 -» Rp be a continuous selection of [fk,k e K}, i.e., fis
continuous and for every x £ 0 we have f(x) = fk(x) for some k e K. Then f is
locally Lipschitzian.

DEFINITION 2.2. Let 0 be an open subset of R" and | : 0 -» R" a map. Then, £
is called a vector field on 0. Consider the initial value problem:

^-€(* ) ; * (0) -3E. (2.3)

If a solution x(t) of (2.3) uniquely exists up to the given integration time i,
then we denote x(t) by 9(x, i). The map 9 is called the flow of the vectorfield £.

LEMMA 2.8. Let 0cRn be open and £: 6 -* R" a vectorfield. If £ is locally
Lipschitzian, or Ck(k > 1) respectively, then the corresponding flow 9 is defined on
an open neighborhood of 0X {0}, and 9 is continuous, or Ck respectively.
Moreover, if 6 = R", £ locally Lipschitzian and bounded, then 9 is defined on
R" X R (i.e., | is "completely integrable" on R").

For the local part of Lemma 2.8 (continuity etc. of 9) we refer to [9], whereas
the globalization (0 = R" etc.) runs along the same lines as exposed in [11].

LEMMA 2.9. Let gj e Cl(R", R), j e / , and 0 an open subset of R". Let
x e M[G] n 0 and p(3c) = 0, where p(x) = min y e y gy(x) . Finally, suppose that
£:0-+Rn is a ^-vector field with flow 9(x, t), that £(Jc) is an MF-vector at x,
and that the point x e 0 lies on the same integral curve of £ as the point x, i.e.,
x = 9(x, -I) for some i e R. Then there exist a neighborhood "V of x, a real
number a > 0 and a unique Lipschitzian function T: ir-* [i —a, i +a] satisfying:

(i) 9(x, t) is well-defined on f X [t - a,t + a],
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(ii) for t G [i —a,i +a] the composite function p[O(x, t)] vanishes exactly at
t = T(x) for all x e ~f and changes sign,

(iii) in particular, all gj, j e J0(x), change sign along the integral curve through
x.

PROOF. The fact, that £(3c) is an MF-vector at 3c implies immediately, that
gj(<b(x, t)) > 0 (resp. < 0) for all j G J0(x) an(^ aH sufficiently small positive
(resp. negative) t. We consider the case Jc =£ x (the proof in case x = x running
along analogous lines) and i > 0. Then, for e > 0 sufficiently small, we have
p($(x, / -e)) < 0 and p(<S>(Jc, / +e)) > 0. But then there exists a neighborhood V
of x such that p[$(x, t)] traverses zero for all x e TT and / sufficiently close to /",
the integration time T needed for traversing the zero level of p being unique,
because £ is of course an MF-vector in a neighborhood of Jc. Moreover, T is
easily seen to be continuous. Note that (reducing the neighborhood 'f if
necessary) T is a continuous selection from the functions TJt j G /0(^) ' e a ch ^
denoting the integration time (close to i) needed for gy($(x, t)) to vanish at
/ = Tj(x). From the implicit function theorem it becomes obvious that TJ}

j G J0(x) is of class C1 (cf. [11]). Since a Cx-function is locally Lipschitz
continuous, Lemma 2.7 can be applied, which completes the proof.

The standard fc-cell Dk and its boundary Sk~l are defined as follows:

Dk = {x G R*|||x||< 1}, Sk~l = {x e RA|||x||= l } . (2.4)

For definitions etc. from algebraic topology we refer to [11] and [24].

LEMMA 2.10. Let 0 < k < n and

Then En k n 0 is not a topological manifold, where 0 is any open neighborhood of
the origin.

PROOF. Put p(x) = -E?_i*,2 + L%k+lxj. Note that Dp(x) = 0 if and only if
x = 0. Hence the set £„ k \ {0} is a differentiable manifold. So, the only point to
be investigated is the origin and we may put 0 = R". We consider the case n > 2,
the lemma in case n = 2 being obvious. If x e En k, then Xx e Y,n k for all
\ G R. Consequently Hn k is contractible in view of the map r(t, x) = (1 - t)x.
In particular, Zn k has the homotopy type of a point. In parametric form
(e = parameter) a point x belongs to Lnk if and only if the following two
equations are simultaneously satisfied for some e > 0:

L*?-e. t x} = e. (2.5)
1
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From (2.5) and the fact that (0, oo) is homeomorphic to R we see that Lnjk \ {0}
is homeomorphic to 5*"1 X S""*"1 X R. Hence En,A{0} has the homotopy
type of the product manifold S*"1 X S"~k~l. Now suppose that En k is a
topological manifold. Then its dimension equals n - 1.

Case 1. k = 1 or fe = « — 1. Then E n ^ \{0} consists of two connected
components. Now £„<k is connected and dim(Ln k) > 2. But then deleting one
point from £„ k cannot disconnect Y.nk, a contradiction.

Case 2. 1 < k < n - 1. Now we derive a contradiction by means of generaliz-
ing the usual connectedness arguments. In fact, let irr denote the rth homotopy
group. Since T.nk is contractible, we have nr(T.nJi) = 0 for all r > 1. Moreover,
since Ln k is assumed to be a manifold of dimension n — 1, we have

»r(EM\{0}) ^ ^ ( E n , J for all 1 < r < n - 2.

So we obtain:

= 0 for all 1 < / • < « - 2 . (2.6)

Next we show, in particular, that "^k~i(X-n,k\ W ) ^ 0, which yields a contradic-
tion with (2.6) since 1 < it — 1 < « — 2. To this aim we use the following two
facts from homotopy theory (cf. [24]):

» , (* ' ) » Z , r > l \
7Tr(XX Y) = 7rr(X) X wr(y) (product rule) / ' v " '

Since Lnk\ {0} has the homotopy type of S*"1 X S"~k~l and it - 1 > 1, we
see with (2.7) that w ^ . ^ ^ X {0}) # 0.

3. Proof of Theorems A, B, C and comments

Proof of Theorem A.
Without loss of generality we may omit the equality constraints (cf. Lemma 2.1

and Remark 2.1). The case J0(x) = 0 being trivial, let 3c e M[G] with J0(x) ¥= 0
and choose an MF-vector £ e R" at 3c. In a sufficiently small, open neighborhood
<P of 3c we consider the vector £ as a constant vectorfield, and we may assume that
£ is an MF-vector at all points of {x e R"|min^eygy(x) = 0} n <S.

Since the integral curve of the constant vector-field £ through x intersects the
zero set of each gp j e J0(x) exactly at 3c (cf. Lemma 2.9), we can choose a point
x on it, near 3c with gy(JE) < 0, j e J0(x). Without loss of generality we assume
jc = 0 and £ = (1,0,... ,0)r. For x near the origin, the function T, as in Lemma
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2.9, is well-defined. Let <t>(x, t) denote the flow of the constant vectorfield £ and
p u t \j>(xv . . . , * „ ) = $ ( ( * ! , x2,..., xn), T(0, x2,..., xj). Then, \p sends an open
neighborhood "V of the origin homeomorphically on an open neighborhood <% of
3c and, moreover, the set {(xv..., xn) | xl ^ 0} n 'V is mapped onto M[G] D <%.

Note. In the proof of Theorem B we sometimes use the expression "we add
locally at 3c a function g to the function h ". By this expression we mean that we
actually add the function g(x) • f(x) to h(x), where f(x) is a smooth function
having the properties:

(i)O«£«je)<l,
(ii) f has a compact support,

(iii) f (x) is identically equal to one in some neighborhood of 3c.

Proof of Theorem B.
Sufficiency-part. Suppose that (MFCQ) holds at every point x e M[H,G].

First we treat the case without equality constraints, i.e., 1=0. Next we indicate
that, with respect to Cj-perturbations, the general consideration can be reduced
to the special case where the equality constraints remain unchanged. In the latter
case, C^-perturbations of the inequality constraints induce perturbations of the
feasible set on a C2-manifold (being a subset of the common zero set of the
equality constraint functions) instead of R".

Case 1: / = 0 . Let 3M[G] denote the boundary of M[G] (cf. Theorem A). At
3c e dM[G] we can choose £s which is an MF-vector at 3c. By continuity there
exists an open neighborhood 0^ such that £5, regarded as a constant vectorfield
on 0S, is an MF-vector at all points x e dM[G] n Os. Then we cover the set
9M[G] with these sets Os, x e dM[G], thus obtaining the open neighborhood 0
of SM[G], where 0 = Us e dM[G] 0s.

With the aid of a C^partition of unity subordinate to the covering {Ox, x e
dM[G]} of 0 (cf. [11]), by picking on each <S^ the constant vector £s and
subsequently glueing them together, we obtain a C^vectorfield £ on 0 with the
property that £(x) is an MF-vector at every point x e dM[G]. The latter
property follows from two facts: first, exploiting a partition of unity means that
one takes (finite) convex combinations of the corresponding vectors £s in some
neighborhood of every point of <S; secondly, if £* is an Aff-vector at 3c e dM[G]
for k = 1, . . . , r, then every convex combination of these vectors is an MF-vectoT
at 3c, too. By reducing the open neighborhood 0 of dM[G] if necessary, we may
assume that 0 is bounded (recall that M[G] is assumed to be compact). Note that
£(x) does not vanish on 0. Then the normed vector field TJ(JC):= £(X)/ | | | (JC) | | is
well-defined on 0 and TJ is of class C1. Let O(x, t) denote the flow of 17. From
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Lemma 2.8 we learn that O is of class C\ hence continuous. Consequently,
noting that 3Af [G] is compact, there exists an a > 0 such that $ is defined on
3Af[G] X [-3a, 3a]. For 0 G (0,3a] we define:

From Lemma 2.9 it follows that JVQ is an open set and hence an open
neighborhood of 3M[G]. Using a continuity argument, we choose a Cj-neighbor-
hood "V of G = (g j , . . . , gs) such that the following two properties hold for any
G = (gi, ...,gs)<=r (cf. Lemma 2.2):

M*[G] <zjVa, where

(P2) Tj (x) is an MF-vector at all points x e M * [ G ].

Note that Theorem A and (P2) imply 3M[G] = M*[G]. Now, choose G G *•".
We J/IOW /Aaf Af [G] anrf M[G] are homeomorphic.

Let <p: 3M[G] -» 3A/[G] be defined by sending 3c G dM[G] to the unique
intersection point of the trajectory through x of the vectorfield TJ and the set
3M[G]. Then q> is easily seen to be bijective. To 3c G 3M[G] we assign the real
number T(x) satisfying O(3c, T(3c)) = <p(3c). Now, T extends uniquely to a
function on jV2a by defining T{x) = T(x) if x and 3c lie on the same trajectory
of TJ. Lemma 2.9 implies T to be locally Lipschitzian on ^V2a- ^

n t n i s waY w e

obtain the following locally Lipschitzian vectorfield TJ on J/~la.

The two sets JV2<X and R" \ ^ form an open covering of R" (" - " denoting the
closure). On the latter set we define the zero vectorfield and on jV2a we consider
the vectorfield i). By means of a C1-partition of unity subordinate to the former
covering we glue the two vectorfields together and obtain a bounded, locally
Lipschitzian vectorfield f on R" which coincides with TJ on J/~a. Let \p(x,t)
denote the flow of f. Then ^(x, t) is continuous on R" X R (cf. Lemma 2.8) and
for each / we have of course: <//(•, t): R" -» R" is a homeomorphism of R" onto
itself. In view of the very construction of the vectorfield f we finally obtain:

) = M[G],

and the proof in the case of / = 0 is complete.

Case 2: I =*= 0 . First we consider the special case without inequality con-
straints, i.e., 7 = 0 . The feasible set M[H] is a compact C2-manifold (cf.
Remark 2.1) then. Given a neighborhood 0 of M[H] we can choose a Cj-neigh-
borhoody of H = (hv...,hm) in C2(R",R)m such that for each H e V the
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following properties hold with respect to the linear homotopy
jr{x,t):= (1 - t)H(x) + tH(x):

(Al) The set Jt:= {(x, ( ) e R " X [0,1] | JT(x, t) = 0} is compact and jft c 0
X[0,l] ;

(A2) At every point (3c, i) e M the Jacobian DxJf?(x, i), as a linear map from
R" to Rm, is surjective.
Note that M is a C2-manifold with boundary and we can regard the parameter /
as a function on Jl. Then, the level sets of t \ j , are "intermediate feasible sets",
in particular, the 0-level, or l-level of t \^, respectively, equals M[H], or M[H],
respectively. Moreover, for t e (0,1) there are no critical points for t \ ̂ . Recall
that J( is of class C2; hence, the tangent spaces depend C1 on the points of Jt'.
But then, with the aid of a Cx-vectorfield tangent to J( and induced by the
orthogonal projection of (0,.. .,0, l ) r (= gradient of t as a function of (n + 1)
variables) on the tangent spaces of Jt, we can integrate the 0-level of /1 ^- with
integration time equal to one up to the l-level. In this way we obtain a
C^diffeomorphism of M[H] onto M[H] (see [10] and, in particular, [14], [16,
Chapter 6] for details on the above construction).

From the above construction we may conclude that in the general case
(/=£ 0,J =£ 0 ) w e may restrict ourselves to C^-perturbations of the inequality
constraint functions only, thus leaving the equality constraints unchanged. But
then, in a neighborhood of the feasible set M[H,G], the common zero set of the
equality constraint functions is a C2-manifold (cf. Remark 2.1) and we can copy
the argument from Case 1 in local coordinates; see, for example, [11] for details
on such constructions. This completes the sketch of the proof of the sufficiency
part.

Necessity-Part. Suppose that (MFCQ) fails to hold at 3c e M[H, G]. By means
of an initial Cj-approximation (cf. Lemma 2.3) we may assume that the functions
h,, gj are of class C°° and, moreover, that the functional values as well as the first
partial derivatives at the point x coincide with the original ones. Now the main
idea is to approximate H, G (arbitrarily well in the Cj-sense) by means of
functions H, G, resp. H, G, such that M[H,G] is not homeomorphic with
M[H,G]. For this purpose we distinguish whether the Jacobian DH(x), consid-
ered as a linear map from R" to Rm, is surjective or not. Without loss of generality
we assume that 3c = 0 in the sequel.

Case 1: DH(x) is not surjective. If /0(^) * 0» w e a(*d locally at 3c a small
positive constant to the functions g,, j e /0(3c), and we obtain that 3c remains
feasible after this perturbation but J0(x) = 0 . Next, we add locally at Jc (= 0)
linear functions (with arbitrary small derivatives) to the functions hit i e /, such
that, after this perturbation, we have at 3c:

Aj • • • \DThm) = r a n k ^ J • • • \DThm^) = m - 1.
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Then, in a neighborhood of x the common zero set of the functions h1,...,hm_1,
denoted by M[m - 1] is a smooth manifold and moreover, the point 3c is a
critical point for hm^Mim_1]. Then, we add locally at jc(= 0) a homogeneous
polynomial of degree two (with arbitrary small coefficients) to the function hm in
order that, after this perturbation, the point x is a nondegenerate critical point for
hm\M[m-i] (cf- Definition 2.1). Finally outside a sufficiently small neighborhood
of x we approximate the functions ht, gy in the C^-sense by means of h,, gj, such
that the set M[H, G] is compact and, except at x, the linear independence
condition holds on M[H, G] (cf. Lemma 2.4). Note that the feasible set M[H, G]
coincides with M[H] in a neighborhood of x. We distinguish two subcases.

Subcase l.a. The point 3c is a local minimum (resp. local maximum) for
^m|M[m-i] (recall that hm and hm coincide in a neighborhood of x). Since 3c, as a
nondegenerate critical point, is isolated, we see that 3c is an isolated feasible
point. If we add locally at 3c a small negative (resp. positive) constant to the
function hm, thereby obtaining the function hm, we get: M[H, G] = M[H, G] U
{3c} (disjoint union), where h, = h, i ¥= m, and G = G. But then the number of
connected components of M[H,G] (finite, since M[H,G] is a compact topologi-
cal manifold with boundary) is one less than the corresponding number for
M[H,G\. Consequently, M[H,G] and M[H, G] cannot be homeomorphic.

Subcase l.b. The point 3c is neither a local minimum, nor a local maximum for
hm\M[m-iy Then, application of the Morse Lemma, in local coordinates for
M[m - 1] (cf. [11]), yields that the feasible set M[H,G] in a neighborhood of 3c
is represented by means of the following set E in R""m+1:

/ n-m + l \

1 = «eR"-m+1| E ±«,2 = 0j, (3.1)
where at least one positive as well as one negative square appears in (3.1). But
then Lemma 2.10 tells us that E is not the germ of a topological manifold at
u = 0. Next we add an arbitrarily small positive constant to ~hm locally at 3c and
we obtain, in view of (3.1), that the linear independence condition is satisfied at
all points of M[H,G] and hence M[H,G] is a topological manifold with
boundary. Here hi = h,, i ¥= m, hm is the perturbed ~hm and G = G.

Consequently we conclude that M[H, G] is not homeomorphic with M[H, G).

Case 2: DH(x) is surjective. In this case the common zero set of the functions
hv-.-,hm is obviously a smooth manifold in a neighborhood of x and so for a
further local analysis we may assume 7 = 0 (cf. Remark 2.1).

Since the (MFCQ) is not satisfied at 3c, it follows that the linear system

Dgj(x)Z>0, jejo(x) (3.2)
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is not solvable. But then, in virtue of Farkas' Lemma, the following dual system
has a solution:

£ UjDgj(x) = 0, Uj>0, jeJ0(x),

y j
ye/0(X)

Next we choose a minimal subset {Dgj(x), j e / } , where J c J0(x), such that
(3.3) is satisfied, replacing /0(3c) by / . The corresponding numbers M, will be
denoted by uJt j e / . Note that the numbers up j e / , are strictly positive. Now
we add locally at 3c a small positive constant to the functions gp j e J0(x)\J.
After this perturbation the feasible set is, locally around x, equal to the following
set:

(x\maxf(x)
V y e / J

where fj = -gj.
We proceed by perturbing exactly one of the functions fp j e / , locally at

3c( = 0) by means of a homogeneous polynomial of degree two (arbitrarily small
coefficients) such that the matrix D := VT(T,jejUjD2fj(x))V is nonsingular after
the perturbation, where V is a matrix whose columns are n-vectors forming a
basis for the linear space {£ e R" | Dfj(x)1- = 0, j e / } of dimension n - \J\ + 1.
Let k denote the number of negative eigenvalues of the above matrix D. Outside
a small neighborhood of 3c we may assume (cf. Lemma 2.4) that (LI) holds at the
feasible points.

Now we are in the following situation: in a neighborhood of 3c the feasible set
has the structure of a lower level set of a function of maximum type in a
neighborhood of a nondegenerate ( + )-Kuhn-Tucker point of quadratic index k
(cf. [11], Chapter 4).

But then, in the spirit of Theorem 4.2.2 in [11], we may conclude:
The local addition of an (arbitrarily) small positive resp. negative constant to

all functions fJf j e / , gives rise to two feasible sets M[H, G] and M[H,G],
respectively, both of them compact and satisfying (LI) at all the feasible points,
with the property that M[H, G] is homotopy-equivalent to M[H, G] with a A:-cell
attached (here we take, without loss of generality, the equality constraints into
account again). But then (cf. [11]), M[H,G] and M[H,G] do not have the same
homotopy type as compact topological manifolds with boundary. As a conse-
quence, they cannot be homeomorphic.

This completes the proof of Theorem B.

REMARK 3.1. In the formulation of the necessity-part of Theorem B it suffices
that /i, is of class C1 instead of C2, / e / .

https://doi.org/10.1017/S033427000000518X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000518X


[161

LOCALLY

Stability and stationary points in nonlinear optimization

GLOBALLY

51

+ e

I

II

figure 3.1

REMARK 3.2. In the necessity-part, Subcase l.b, we cannot simply compare
"regular" levels ±e(e > 0) for the function I ± uf (cf. (3.1)). In fact, globally the
resulting sets M[H,G] and M[H,G] might even be diffeomorphic in case the
number of negative and positive squares in (3.1) coincide. Compare Figure 3.1 for
a picture of this phenomenon in case n = 3, m = 2 and J = 0 (situation II).

REMARK 3.3. Note that the sets M[H, G] and M[H, G] in the sufficiency part
of Theorem B are even isotopic, in the sense that M[H,G] is transformed
continuously into M[H, G] by means of a continuous one-parameter family of
homeomorphisms on R". Isotopy is stronger than homeomorphy; in fact, the sets
Slt S2 c R2 are homeomorphic but not isotopic in R2, where

= {(2,0)}

REMARK 3.4. The sufficiency part of Theorem B remains (obviously by con-
struction) true if we replace the embedding space R" by some compact neighbor-
hood K of M[H,G] and if we subsequently restrict our considerations to this set
K. Then the C^-perturbations can be replaced just by perturbations of the
functions ht, gj, up to derivatives of first order on the compact set K by means
of a positive constant e.

REMARK 3.5. In Theorem B we assumed M[H, G] to be compact. For un-
bounded M[H, G] the necessity part becomes delicate. To see this, consider a
countably infinite discrete subset A of R. Take a point a ^ A. Then A and
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A \ {a} are homeomorphic just in view of the fact that the cardinalities of A and
A \ {a} coincide. In the sufficiency part, one might consider unbounded M[H,G]
in so far as the vector fields constructed analogously are completely integrable.

Proof of Theorem C.
Part a. Let 3c e M* and consider the following auxiliary optimization problem

Minimize \||£ ||
Subject to:
Df(x)t=-\, (3.4)

Since x is not a Kuhn-Tucker point for f\M[H c), we see that the feasible set for
^(x) is not empty. Further, from strict convexity of |||£||2 as well as the
convexity of the feasible set for ^(x), we see that !?(x) has exactly one solution
which we will denote by £(3c). Of course £(3c) need not depend continuously on
3c.

Let us proceed with the proof, assuming that the following contention has been
proved:

Contention: £(x) ls bounded on M%, i.e.,

sup \\S(x)\\<K< oo.

Let 3c G M* and choose a local C2-coordinate system given by $(.x) as in
Formula (2.1). Next consider £(*) generated by £(*) and defined in an open
neighborhood 0S of 3c:

i(x) = DQ-Wx)) • D*{x) • l(x), (3.5)

where |(3c) = |(3c) in case /0(3c) = 0 and |(3c) = £(jc) + £*, £* being an
AfF-vector at 3c with |£>/(3c)£*| < \ otherwise.

Note that | ( x ) is of class C1 and that | (x) is an AfF-vector in a neighborhood
(say, also 0S) of 3c. In particular, | (x) is tangent to the common zero set of the
functions h,, locally considered as a C2-manifold. Moreover, we may assume that
||f (x)|| < 2AT on 0S (cf. the Contention). In this way we obtain an open covering
of A/O

ft with vectorfields of the type | for each covering element. Together with
the zero-vectorfield on the open set R" \ Mj" and a (^-partition of unity of R",
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taking R" \ Mb as a covering element into account, we obtain a vectorfield TJ on
R" having the following properties:

(1) Tj is of class C1 and bounded (on R") (hence, TJ is completely integrable; cf.
Lemma 2.8),

(2) TJ(X) is an MF-vector at all points of Mb,
(3) Df(x)Mx) < - * for all x e Mb,
(4) \f/(-, t)[M] c M for all t > 0, where ip denotes the flow of TJ.
Now, let 3c e Mb. Denote by T(x) that value of t for which f[x^(x, T(x))] = a.

Note that T(x) < 2(b — a) and it is easily verified that T is continuous on Mb.
Finally, we define the mapping r: [0,1] X Mb -* Mb as follows:

, forxeM",

Then r is continuous and r(0, •) is the identity. Moreover, as t varies from zero
to one, Mb is continuously deformed (within Mb) to M°, whereas all points of
M" remain fixed. Hence M" is a strong deformation retract of Mb.

Finally, we have to prove the Contention. In fact, we will show that for all
x e Mb the following inequality holds:

U{x)f > M{d(Df(x),Nx)\x ^Mb). (3.6)
The right-hand-side of (3.6) is positive in view of the absence of Kuhn-Tucker
points in Mb and the validity of Condition C*. So it suffices to show (3.6).

Let x G Mb. Since the constraints in (3.4) are linear, we have, in particular,
that the unique point £(*) is a Kuhn-Tucker point for ̂ (x), i.e.:

i(x) = aDf(x) + I \,Dhi(x) + L HjDgj{x) (3.7)
/<=/ j<=J

where

J={j<= J0(x) I Dgj(x)Z(x) = 0} and ^ > 0, j e 7.
From (3.4) and (3.7) we see that |||(3c)||2 = -a. Since |(3c) # 0 (cf. (3.4)), we have
a < 0. Then, noting that |a| = ||£(x)||2, (3.7) implies:

U(x)\\ - « « ( * ) II" (3.8)

But now (3.6) follows from (3.8), since J c J0(x), -a > 0 and all /xy are
nonnegative.

b. In view of Part a, the actual deformation part, we can reduce the proof
now to those techniques as explained in detail in [11] by means of a preliminary
local perturbation at x. In fact, take a closed ball B with center x and small
radius, and perturb / , ht, gj in the C2-sense in a neighborhood of B such that (ii)
and (iii) of Lemma 2.5 hold with C2 = B.
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Since x is strongly stable, the preceding perturbation replaces x by one new
strongly stable point x in B. But now, Jc is a nondegenerate critical point with
vanishing linear index and quadratic index equal to the j-index of x as a strongly
stable Kuhn-Tucker point. So, together with the global deformation part (Part a),
the cell-attaching takes place in local coordinates around Jc, which in fact reduces
the present situation to well-known techniques (as in [11]).

REMARK 3.6. The converse of Theorem C.a is not true, since M" might be a
strong deformation retract from Mb, even if Af* contains Kuhn-Tucker points (in
fact, create a pair of Kuhn-Tucker points with difference in j.index equal to one).

4. Some consequences

Theorem C implies, in particular, that the so-called Morse relations from
critical point theory (relating certain combinations of nondegenerate critical
points with the topology of the underlying manifold) remain valid for constrained
minimization (under the relaxed assumptions of Theorem C). See [11] for a
detailed expose on the subject of Morse relations.

As an example, we state the following corollary:

COROLLARY 4.1. Letf, ht, gj e C2(R", R), / e / , ; ' e / . Suppose that M[H, G]
is compact and that (MFCQ) is satisfied at all points x e M'.= M[H,G\, put
p = dim M (cf. Theorem A). Suppose moreover, that all Kuhn-Tucker points of
f | M are strongly stable.

(i) //, in addition, M is connected and f \ M has £ local minima, then there exist
at least t' — 1 Kuhn-Tucker points for f \ M with s.index equal to one.

(ii) Let cr, r = 0, 1, . . . , p, denote the number of Kuhn-Tucker points for f \ M
with s.index equal to r and put y = E,p_0(-l)'cr. Then y depends only on the
homeomorphy-type of M. Moreover, y is constant on some C^-neighborhood of
(f,H,G).

(iii) If M is homeomorphic to the unit ball Dp, then the number of Kuhn-Tucker

points for f \ M is odd.

(iv) / / the number of Kuhn-Tucker points for f\M is equal to one, then M is

homeomorphic to the unit ball Dp.

PROOF. We can use the cell-attaching results from [11, Chapter 5], in view of
Theorem C, thereby replacing every entry of a " nondegenerate (+ )-Kuhn-Tucker
point with quadratic index r" by a "strongly stable Kuhn-Tucker point with
j.index r". Now Theorem 5.2.2 and Remark 5.2.5 from [11] imply (i). Remark
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5.2.3 from [11] implies the first statement of (ii) since y turns out to be the
Euler-characteristic of M, hence a homotopy- (and thus, homeomorphy-) in-
variant. Theorem B then implies the second statement of (ii). Since Dp is
contractible, we have y(Dp) = 1, which implies (iii). It remains to prove (iv).
First we may assume, after a C|-perturbation, that (LI) is additionally satisfied at
all points of M and all critical points of / 1 M are nondegenerate (Lemma 2.5 and
Theorem B). Now the unique Kuhn-Tucker point, say 3c, must be the global
minimum for f\M. In view of the generalized Morse Lemma ([11], Theorem
3.2.1), for e > 0 sufficiently small the lower level set Af/(5)+e is homeomorphic to
the set

But the latter set is easily seen to be homeomorphic to Dp. Let c denote the
maximal value of /1M. For / e [e, c] we take g,(x) '•— t — f(x) as an additional
inequality constraint and we see that (MFCQ) remains valid on M(t):= Mn
{x 11 - f(x) > 0} for all / e [e, c]. But then, Theorem B and Remark 3.4 imply
that the homeomorphy type of M(t) is locally constant on [e, c], hence constant.
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