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1. Introduction and Summary

Recently, attention has been drawn to the problem of estimation of a k-
variate probability density and its partial derivatives of various orders. Specifi-
cally, let Xl,---,Xn be i.i.d. fc-variate random variables with common density /
wrt Lebesgue measure [i on the fc-dimensional er-field 3&k. Parzen (1962) in the
k = 1 case and Cacoullos (1966) in the k 5; 1 case gave the asymptotic properties
of a class of kernel estimates /„(*), xeRk, of /(x) based on Xu •••,.XB. The
asymptotic properties given in the above two papers concern consistency, asymp-
totic unbiasedness, bounds for the mean squared error and asymptotic normality
of /„. Also in the context of an empirical Bayes two-action problem, Johns and
Van Ryzin (1972) introduced kernel estimates for /(x) and the derivative f'(x)
for xeR1 when / is a mixture of univariate exponential densities wrt Lebesgue
measure on SS1. They also investigated the asymptotic unbiasedness and the
mean squared error convergence properties of these estimates. Lin (1968) stated
some generalizations of the results of Johns and Van Ryzin, with applications
to empirical Bayes decision problems.

In a sequence-compound empirical non-Bayes context, one of the authors
(Susarla (1974)) exhibited a class of L2-convergent estimators for the average of
the densities (and its first partials) of Xu---,Xn when these random variables
are independent and for each i, Xt has the fc-variate normal distribution with
covariance matrix / and unknown mean 6t in the fc-sphere of radius a. In
Susarla (1974a), similar results have been given when the random variables
X1,---,Xn have gamma densities.

Now we let Xu---,Xn be independent random variables with densities
(wrt Lebesgue measure /z on 3Sk) Pt,-",Pn belonging to a family of densities J5".
The purpose of this paper is to exhibit estimators for ri~1'Z]=iPj and its various
partial derivatives which are asymptotically unbiased (Corollary 3.1), quadratic
mean consistent (Corollary 3.2), and asymptotically normal (Corollary 3.3)

230

https://doi.org/10.1017/S1446788700020541 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020541


[2] Estimation of partial derivatives 231

under varying conditions on 3F and the kernel function involved in the definition
of estimators. Also, we have given (Lemma 3.3) a generalization of the results
stated in the previous paragraph. Wherever possible, we compare our results
with the corresponding results of Cacoullos (1966) and Parzen (1962).

Section 2 is devoted to describing some of the notation required here. In
Section 3, we introduce (and derive the asymptotic properties of) a class of
estimators for the z;th partial derivative of n~12," = 1Pj wrt the argument i,
i = 1, •••,&. We use the well known method of divided differences to define the
class of estimators for partial derivatives of the average rf1 £"= 1p,- . In Sec-
tion 4, we exhibit the kernel function which satisfies conditions imposed on it for
proving the main results of Section 3. We conclude the paper with a few remarks.

2. Notation

Let fi denote the Lebesgue measure on the fc-dimensional Borel cr-field 3Sk.
Let Xx,---,Xn,--- be independent random variables with densities />i, ••-,/>„,•••
respectively wrt ft. We abbreviate rf1S" = t pj by p. For any real valued function
/ on Rk, /m

(v) denotes the vth order partial derivative of / wrt the mth coordinate.
Also for non-negative integers vu---,vk, / (vi) (Vk) denotes the mixed partial
derivative of / wrt the mth component vm times for m = 1, ••-,&. Throughout,
1 :£ v1 + ••• + vk ^ s, a fixed positive integer. Throughout the rest of the paper,
x will be an arbitrary (but fixed) point in Rk. u and v with coordinates ux, •••,uk

and vu •••,vk are generally used as generic points in Rk and as variables of inte-
gration in Rk. For u in Rk, || M|| denotes its distance from the origin. For any
real valued function / on Rk and u, v in Rk,fj" denotes / («) - f(v).

We suppress the arguments of functions involved whenever and wherever
it is convenient. E stands for expectation wrt the joint distribution of the random
variables involved inside square brackets. Integration will be over all possible
values of the variable unless otherwise stated.

3. Results

We first introduce the kernel function Kv which is used in defining the estima-
tors. For a fixed non-negative integer v, let Kv be a ^-measurable function
from Rk to R1. In the results to be stated later on, this function Kv satisfies one
or more of the following conditions:

(Aj) Kv is bounded,

(A2) j\Kv(u)nk
m = 1u:-"\dn(u) < oo for Z* = 1vm = 0 , l , - , v ,

and, for a fixed positive integer s ( > v),

(A3) [*,(«>£ = 1iC*fo(«) = 0 for Z£ = 1vm = v +1 , -,s - 1,
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< oo for L* = 1 v m = s .

For fixed i in {1, •••, fc}, let, for u in Rk,

(3.1) K*(u) = 2r
v

=0 ( - 1 / O (v - r + 1) - 'KXUv, r)u)

where J,(v>r) is the modification of the fc x fc identity matrix obtained by re-
placing the ith diagonal element unity by (v — r + I ) " 1 . Motivated by the esti-
mators (2.1) of Cacoullos (1966) and (1.7) of Parzen (1962) and a technique of
of divided differences, we define the estimator j5/v)of p\v\x) (for each fixed x in Rk)
as follows:

(3.2) p}v> = n~x ZJ=lpj? where p)v> = e~iv+k)K*((Xj - x)/g)

for j = 1, •••, n and 0 < e = e(n) -* 0 as n -> oo. We assume that the family
of densities #" satisfies the following conditions in most of the results to follow.

(BO sup sup|p ( v i ) (Vk)(u)| < oo for L* =1vm = v.
PE? U

(B2) sup p(x) < oo .

As a step towards reducing symbols, the sums Z* = 1, £r
v=0 and the product

7r£ = i_will be abbreviated by E, £ ' and n respectively. Our purpose now is to show
that p\v) is asymptotically unbiased, quadratic mean consistent and asymptotically
normal under different sets of conditions on the function Ky and the family of
densities J*. Also, we show how one can use conditions (A3) and (A4) to obtain
a result concerning the rate of convergence for the bias of pjv) as an estimator of
P\v)(x).

3a. Asymptotic unbiasedness of / / v )

The asymptotic unbiasedness of / / v ) can be obtained as a corollary to the
following theorem which is similar to Theorem 2.1 of Cacoullos (1966) or Theorem
1A of Parzen (1962).

THEOREM 3.1. Let f be a real valued function on Rk with vth order partial
derivatives continuous at x and

(3.3) sup |/(V1) (v*>(u)| < oo for 2vm = v.
u

/ / Kv satisfies (AJ and (A2), then, as n -> oo,

(3.4) £-<
v+(t> fK*(u/e)/(x + u)dn(u) ->^(v)(x) I Kv{u)u?dn(u).

J J
REMARK. The conditions reduce to those of Theorem 1A of Parzen (1962),

except (3.3), when specialized to v = 0 and fc = 1. In the v = 0 and fc = 1 case,
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the condition corresponding to (3.3) is that / be integrable. For v = 0, and any
general k, see Theorem 2.1 of Cacoullos (1966).

PROOF. We first note that the following properties are satisfied by the
function K* defined by (3.1):

(3.5) K* is bounded (follows from (Aj)),

(3.6) J | Kt(u)nu^ | dfi(u) < oo for Ivm = 0,1, - , v (follows from (A2)),

and
(u) for Vj = v, vm = 0 for m

for V; # v, 0 ^ Svm ^ v.

(Equation (3.7) follows from the following two equalities. The definition of
K* and change of variables imply that

H 71 [K*(,ATTU ^d,i(u\ - /V !
(3.7) j Kv(u)num dti") - (0

J = S'(- l )Tr) (v- r

(3.8) Z ' ( - l)r C) (v - r + 1)" = 0 or v! according as

rj = 0, •••, v — 1 or = v.

(3.8) can be obtained from (12.17), page 63 of Feller (1957).)
By (3.7) and change of variables, we obtain that

fi-(v+*) rx*(M/g)/(x+u)^(M)-//v)(jc) fx,(«K«*M«)
(3.9) J J

where L v denotes the sum over non-negative integers v1; •••, vt such that vt + •••

+ vk = v. Replacing f(x +u) by its vth order Taylor expansion with Lagrange's

form of remainder, and with the help of (3.7), we obtain that the rhs of (3.9) is

£-(v + *)

J o<e<i

We complete the proof of the theorem by showing that the summands of
the rhs of the last inequality go to zero as n -*• oo. Each summand can be bounded
by

sup sup
\\u\\<S 0 < 9 < l

SUp SUp
]u||>« o<e<i

I f \K (")
where S > 0. Since the second sup is bounded due to (3.3), letting n -* oo (or
e -> 0) and then 5 -* 0, (A2) and the continuity of vth partials of / imply that
the summand goes to zero completing the proof.
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As a consequence of the above theorem, we obtain

COROLLARY 3.1. If the vth order partial derivatives of the densities in 8F
are continuous at x, !F satisfies (Bj), Kv satisfies (At) and (A2) and

fKv(u)u?dfi(u) = 1,
then J

ELP\V)] — PIV)(X) -> 0 as n -» co.

NOTE. Observe that the condition (Bx) is sufficient to conclude that
0 as n -» oo which in turn implies the corollary.

3b. Quadratic Mean Consistency of p\v)

For the purpose of obtaining a result about the quadratic mean consistency
Pi"\ we need the following theorem which is similar to Lemma 2.1 of

Cacoullos(1966).

THEOREM 3.2. Let the conditions of Theorem 3.1 be satisfied, then for any
5 2: 1, as n -» oo,

\)5f{x + u)dn{u) -+/(x) | \K*(u)\ddn(u) .

PROOF. Since / has vth order partials continuous at x, an application of
Taylor's theorem with Lagrange's form of remainder to f(x + u) and a triangle
inequality with intermediate function 2 t v / ( v i ) (Vk) (x), give that, for each u
in R\

\f(x + u) -f(x)\ ^ SI £rJ>n>m!) ~1\fVl) M(x)nuv
m

mI
(3.10)

0<9<l

where Lr denotes the sum over non-negative integers vu •••, vk such that Zvm = r.
Also, we have, by a change of variable,

| difference between the left and right sides of the result |

(3 11) = I £~k I I K*(u/£) l ' ( / ( x + u) -f&MvW I
g Zy S L ^ V J ) - 1 ! / ^ (Vk)W| \\K*(u)\6\nul-\dli{u)

+ ev
£-(v+t) ZLv ! |(Kv*(u/e))V!" | sup \fM (Vk)]f""

J 0<9<l

where the inequality follows from (3.10) and the triangle inequality.
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Since (A2) implies (3.6) which implies that the integrals in the first term of
rhs of (3.11) are bounded, the first term of the rhs of (3.11) goes to zero as n -> oo.
Since <5 ^ 1 and K* is bounded by (3.5), the second term on the rhs of (3.11) is
exceeded by a constant multiple of

^ f | K*(u/
J

s u p |
o<e<i

This last expression was shown to converge to zero as n ->• oo in the proof of
Theorem 3.1. The proof is complete in view of (3.11).

In stating the above theorem, we have the restriction that (5 5; 1 which is
slightly weaker than required for Lemma 2.1 of Cacoullos (1966). Now we state
the quadratic mean consistency property of p\v\

COROLLARY 3.2. Let the conditions of Corollary 3.1 be satisfied. If
ne2v+k -> oo and (B2) is satisfied, then p\v) — p\v)(x) -* 0 in quadratic mean.

PROOF. First note that

(3.12) £ [ | # v ) - pf\x) | 2 ] = v a r ( ^ ) + {E\jf?*] - Aw(x))2-

By Corollary 3.1, the second term converges to zero as n -» oo. Also, for

; = ! , • • • ,« ,

(3.13) £ [ | /W | 2 ] = | | e ~(¥+4)X,*(«/e) \2Pj(x + « )^(«) .

But by Theorem 3.2 (with 5 = 2) and the condition (BJ, we obtain that
*j-iEl\Pj?\2] ~ wTi2y*y p(x) J \K*(u)\2dn(u) as n -> oo where n#x)
= 2J = 1 p / x ) . Thus var(p[v)(x)) -^ 0 since ne2v+k -> oo and (B2) is satisfied.
The proof of the corollary is complete.

3c. Asymptotic normality of p\v)

To establish the asymptotic normality result, we need the following asymptotic
result about cov(^(v)(x1),^(v)(x2)) where xy and x2 are fixed points in Rk at which
the vth order partial derivatives of each p (pe^) are continuous. Since part of
the proof of the following lemma is similar to Lemma 2.2 of Cacoullos (1966), we
state the lemma and indicate the method of its proof only.

LEMMA 3.1. / / the conditions of Corollary 3.1 are satisfied at xt and x2,
then ne2v+kcov(J^)(x1),p

<:v\x2)) - > O a s n - » o o i J Kv(u) -* 0 as \\ u \\ -> oo.

INDICATION OF PROOF. We first observe that the independence of Xu ••-,Xn

gives the equality

(3.14)
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Uniformity of the condition (BJ in p belonging to SF and in u in Rk and an
application of Theorem 3.1 to pj for,/ = 1, •••,/! give that, for sufficiently large n,
the second term of the rhs of (3.14) is bounded in magnitude by

i + n- 1 z;= 1{ I p^(Xl)P^(x2) | +1 p™(Xl) | +1 p};»(x2) |}

which in turn is bounded due to (Bt). Since £ -»0 , s2v+k times the second term of
the rhs of (3.14) goes to zero.

We also obtain by change of variables that n~1ev+k T.j = 1E[p(j?(Xl)p
(j"?(x2')]

can be expressed as §K*(u)K* (u+ s"1(xl— x2))p(x1 + su)djx(u). By following
an argument similar to Lemma 2.2 of Cacoullos (1966), we can show that the above
integral converges to zero since Kv(u) -> 0 as || u |-> oo.

To prove the asymptotic normality result, we need the following result of
Hoeffding and Robbins (1948).

LEMMA 3.2. Given a sequence (Xn/), Yn/t) (n = 1,2, •••, p = I,••-,)>,y = y{ri);

limn_+0O
iy = oo) of sets of random vectors in R2, independent for each n with

E[Xnf] = E(yB,] = 0, let

pi, = max {£[ | Xm, | 3 ] , £ [ | YHf \
3]}, p3

n = L } = lP
3
nfi.

If

and

lim y~1/2pn = 0,
n-'oo

then y~1/2(Xnl + ••• + Xny, Ynl-\— + Yny) has a limiting normal distribution
with mean (0, 0) and covariances n^.

COROLLARY 3.3. / / the conditions of Lemma 3.1 are satisfied at x t and x2,
(B2) is satisfied, ne2v+k -> oo, and p(xN) ->• c(xN) for N = 1, 2, then

converges in law to the bivariate normal distribution with mean (0,0) and
covariance matrix

0 -.

C(X2)J | *:(!!) pdrtll) J
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NOTE: Extension of this result to JV > 2 is trivial and, therefore, is omitted.
The conditions p(xN) -> c(xN) as n -» co for N = 1,2 are trivially satisfied if
Xlf---,Xn, ••• are identically distributed random variables.

PROOF. In the proof, we use without further reference the fact that the
conditions (BJ and (B2) are uniform in p belonging to !F. By definition of^,(v)

in (3.2), we have, for N = 1,2,

Now we apply Lemma 3.2 of Hoeffding and Robbins to the double sequence of

random variables {(XnJ,YnJ); n = 1,2, •••, j = 1, •••, «} where for j = 1, •••,n,

and
XnJ =

Ynj =

We first show that n" 1 2y- "x cov(ZBJ-, rnj) -^ 0 as n -+ oo,

and

Since

Lemma 3.1 implies that n~l Ej"= t cov(XBJ-, YnJ) -* 0.

Now we consider n" 1 Z"= 1 var(Xnj) which is equal to

The condition (BJ and an application of Theorem 3.2 show that

Again (Bj) and an application of Theorem 3.1 to pj forj = 1, •••,«, show that
for large n,

«- 1 6 2 v + t E; = 1 (£[^ : ) (x 1 ) ] ) 2 ^ £
2 v + t ( n - 1

 Z /^CPJ - 'CX, ) ) 2 + 2p?\Xl) + 1).
(Bj) implies that the rhs goes to zero as n -» oo. Hence

Similarly, the other variance result follows.
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We now show that n"1 / 2(S" = 1 £ [ | Z n j |
3 ] ) 1 / 2 -> 0 as n -* oo. By definition

of Xnj and the inequality £ [ | R - ER | 3] ^ 8£[ \R | 3] for any random variable R,
we obtain that £[ |Z n ; - | 3 ] S 8E 3 ( 2 v + k ; / 2 £ [ |p^ ( x i ) | 3 1 - BY applying Theorem
3.2 with 8 = 3 to pj, we obtain that

as n -» oo. Hence, n~1/2(S" = 1JE[ | Z n ; |
3 ] ) 1 / 3 ^ a constant multiple of

(n£*) "^(p^))1^ J | KM

This bound goes to zero as n -*• oo since ne11 -> oo and ^(Xi) -» c(xt). Similarly,
«~1 / 2 (2J= 1£[ |Fn j |

3 ] ) 1 / 3 -»• 0 completing the proof of asymptotic normality
result.

3d. Rate of convergence for E\_\pw -p\v) | ] .

Lemma 3.3 to follow is a direct generalization of the corresponding results
stated in Parzen (1962) for v = 0 and k = 1 and in Cacoullos (1966) for v = 0 and
k 2i 1 when Xlt ••-,.Xn, ••• are i.i.d. random variables. (See the inequalities (4.6)
and (4.8) of Susarla (1974) and (2.10) and (2.11) of Susarla (1974a) when
Xu •••,Xn, ••• are independent, but not identically distributed random variables.)

LEMMA 3.3. If Kv satisfies (A1),(A2),(A3) and (A4) and J Kv(u)u?dn(u) = l,
and !F satisfies (Bx) with v replaced by s, then

sup[E[p\v)(x)~] — plv)(x)\ g; ces~v for some constant c.

PROOF. By (3.7) and change of variables,

where 2Lw denotes the sum over fc-tuples of non-negative integers (v1( •••, vk) such

that vx + ••• + vk = v. By replacing p(x + eu) by its sth order Taylor expansion

with Lagrange's form of remainder and then using (3.7) and the orthogonality

condition (A3), we obtain that

| £ [ # v ) ( x ) ] - p } ¥ ) ( * ) | ^ es"v SL s (\K:(u)nu:-\ \p^ ^ ( x + 6u)\dn{u)
J

where 0 is a function of u, x, e and s. By using (Bt) and (A4), the rhs can be uni-
formly bounded by a constant multiple of £s~v. This completes the proof.

NOTE: If the conditions (At) through (A4) and (B^ and (B2) are satisfied and
J Kv(u)u1dfi(u) = 1, then the proof of Corollary 3.2 and the above result show
that

£[ |A( v ) - j5 ( v ) (*) | 2] ^ c a n e 2 ^ " ) - 1 +e2(s~v)) for some constant c.
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[10] Estimation of partial derivatives 239

Solving for e in terms of powers of n so that the expression in the bracket goes to
zero at an optimal rate, we obtain that e = n~ll(-2s+k). For this choice of e, we
obtain

is bounded. Special cases of this order relation are given in Cacoullos (1966),
Parzen (1962), Susarla (1974) and Susarla (1974a).

4. Existence of Kv

From various statements of the results obtained in Section 3, it can be seen
that the conditions can be divided into two categories, namely, those related to
the kernel function Kv and those related to the family of densities J5". Our objective
in this section is to show that the kernel function Kv satisfying (Aj) through (A4),
Kv -> 0 as || u I -> oo and J Kv(u)u^dfi(u) = 1 does exist. Since discussion of
conditions on Kv is similar for all k, we consider only the case k = 2 and i = 1
for easy exposition.

As in Section 5 of Susarla (1974), for any two positive integers M and N, let
[_apq]MiN denote a M x N matrix whose p, qth element is aM. Then, it has been
noted in Section 5 of Susarla (1974) that, for any two sets of distinct positive
integers alJ---,aM and bu •••,bN, the vectors

(4-1) [pa'qb%,N,-,[paMqbNlM,N

form a basis for RMN.
With Rp'q representing the indicator function of the set {(a, b) 10 :g a ^ p,

0 ^ b ;£ q} for p, q in {1, •••,$}, we determine [apJS;S such that

(4-2) Kv = z;,€

satisfies conditions (Ax) through (A4) and the condition n[Kv(u)u*] = 1. Since
all apq will be finite, K, of (4.2) satisfies conditions (AJ, (A2), and (A4) specialized
to k = 2 case trivially. The conditions (A3) and pi[Kv(u)ul] = 1 on Kv in (4.2)
specialize to the following requirements on the inner product. (Inner product
is taken in Rs* space.)

for vx = v + 1, v2 = 1
(4-3) ( K L . [ p V L ) = ( 0 f o r V i + V2 = v + 3!...)S + l i

(Here v1; v2 are positive integers.)
As a solution of the above Equation (4.3), we take [ap,]s>s to be the projection

of[pv + 1«]. , ,onto

1 flyV'Lsl1 ^ V1.V2 ^ S,(V,,V2) ^ (V+ 1,1)}

divided by its squared norm.
The squared norm mentioned above is different from zero due to the afore-
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noted linear independence of vectors in (4.1) for (M, N) = (s,s). This completes
the discussion of the existence of the function Kv.

5. Final Remarks

The straightforward generalization of our results to the problem of estimation
of mixed partial derivatives requires fc-tuple sums which are similar to (3.8).
Below, we describe an estimator pia° ("k) for^( a i ) ("fc)(x) where al + ---+ak = v
and show that it is consistent. Other proofs are similar to the corresponding
ones for / v ) . With Kv satisfying the requirements imposed on it in Section 3, let

* ; • (« ) = K-o - Z £ - O K { ( - l)rm(am ~rm+ l)-

where J is the k x k matrix obtained by modifying the identity matrix by re-
placing the mth diagonal element by (am — rm + I ) " 1 for m = 1,•••,&. Then it
follows from (3.8) that

[naj J K,(u)nu%"dii{u) for vm = am for
I m = l,—,fc

some m and 0 ^ 2vm ^ v.

The intent and a result of the above equality is that if / is a function on
Rk with /(V1) (Vk)(x) < oo for vt + ••• + vk = v, then (3.9) follows with
//v)(x) jKM"idKu) replaced by

Consequently, the argument succeeding (3.9) gives that if / satisfies conditions
of Theorem 3.1, then

e_(,+4) jK**(u/e)f(x + uW{u) _ / ( . , ) (.k)(

as n -> oo. This result then implies (as in Corollary 3.1) that

is a consistent estimator of /><ai) (ak)(x) §Kv(u)num"mdn(u) under the hypothesis
of Corollary 3.1.

The estimate ^,(v) exhibited in this paper can be shown to be strongly con-
sistent under certain Lipschitz conditions on Kv and some restrictions on e and !F.
We omit the proof of this result since it is similar to Theorem 1 of Van Ryzin
(1969). For this result, we need the following conditions:
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(1) Kv and & satisfy conditions of Theorem 3.2.

(2) Kv satisfies Lipschitz conditions (7) and (8) of Van Ryzin (1969). (Ky of

Section 4 satisfies this condition.)

(3) There exists a 5 > 0 such that

sup |/Q*+en" I ^ c(x) ( < oo) for all n ^ N.

(This condition is implied by (B2)).

(4) 2n/sn+1 -> 1 as n - oo, In<°=1 ( m ^ * ) " 2 < oo and

S-«, xCne-2*"1"*"')"^ a-Vi - 8."X| ' < °o with 2P = min{l,2a}

where a is a parameter occurring in Condition (2).
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