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Large N methods in QCD4

We have encountered the large N expansion, or the 1
N expansion, in Chapter 7 in

the context of two-dimensional field theory, and in particular its application by
’t Hooft to solve the mesonic spectrum of QCD in two dimensions [10]. A natural
question is thus what does this limit tell us about four dimensional QCD, and in
particular can one also solve the mesonic spectrum of QCD in four dimensions in
the large N approximation. These questions will be the topics of this chapter. We
start with the rules of counting powers of N in four-dimensional QCD, and the
relations between Feynman diagrams in the double line notation and Riemann
surfaces. We then briefly discuss certain applications of the expansion to the
mesonic physics and then follow Witten’s seminal analysis of baryons in the
planar approximation [222].

The large N technique was introduced by ’t Hooft in [122]. Since then there
have been many follow-up papers and there is a very rich literature on large N

approximation including review papers and books like [223], [66], [165], [46] and
[160]. In this chapter we use mainly the latter.

19.1 Large N QCD in four dimensions

Let us remind the reader the basic notations and the classical action of QCD in
four dimensions. The two-dimensional ones were presented in (8),

SQC D =
∫

d4x

[
−1

2
Tr[Fμν Fμν ] + Ψ̄i(i 	D −mi)Ψi

]
, (19.1)

where the gauge fields are spanned by N ×N Hermitian matrices TA such
that Aμ = AA

μ TA , Fμν = ∂μAν − ∂ν Aμ + i g√
N

[Aμ,Aν ], the covariant derivative
Dμ = ∂μ + i g√

N
Aμ , the fermions Ψ are in the fundamental representation of the

color group and i = 1, . . . , Nf indicates the flavor degrees of freedom. The gauge
coupling was chosen to be g√

N
, to accommodate a large N approximation with

g fixed. This can be shown for instance in applying the large N expansion to the
β function. The latter, when g is used in the covariant derivatives, is given by
(17.73),

μ
dg

dμ
= −

[
11
3

N − 2
3
Nf

]
g3

16π2 +O(g5), (19.2)
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(a) (b)

(c) (d) (e)

Fig. 19.1. Four-dimensional Feynman rules in the usual form and in the double
line notation.

which obviously is not suitable for a large N expansion whereas if one replaces
g → g√

N
the β function takes the form,

μ
dg

dμ
= −

[
11
3
− 2Nf

3N

]
g3

16π2 +O(g5). (19.3)

The rules of the Feynman diagrams in two-dimensional QCD (see Fig. 10.1)
include the fermion propagator, the gluon propagator and the quark gluon vertex,
all expressed in the double line notation. Using the light-cone in two dimensions
one eliminates the three- and four-gluon vertices. In four dimensions due to the
transverse directions the gluon vertices cannot be eliminated by choosing a gauge.
Thus all together the four-dimensional Feynman rules are expressed in Fig. 19.1.

The figures a,b,c are identical to the two-dimensional ones (Fig. 10.1) whereas
figures d and e are the three- and four-gluon vertices. The quark propagator
(19.1a) is given by,

<ψa(x)ψ̄b(y)> = S(x− y)δab . (19.4)
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Fig. 19.2. Color flow in the double line notation associated with two traces.

The SU(N) gluon propagator in the double line notation reads,

<(Aμ)a
b (x)(Aν )c

d(y)> = Dμν (x− y)
1
2

(
δa
d δc

b −
1
N

δa
b δc

d

)
. (19.5)

For a U(N) gauge group the propagator does not include the term which is
proportional to 1

N . One can view the SU(N) color indices as those of a U(N)
theory plus an additional “ghost” U(1) gauge field that cancels the contribution
of the U(1) gauge field in the U(N) gauge group. For many applications the
distinction between the U(N) and SU(N) in the 1/N expansion is sub-leading.
The three and four gluon vertices (see Fig. 19.1 d,e) emerge obviously from the
Tr[Fμν Fμν ] term in the action. Note that it is a single trace operator and hence
the four-gluon vertex is the one depicted in (19.1 e) and not in Fig. 19.2 which
corresponds to the color flow of a two-trace operator.

To compute the N dependence of Feynman diagrams it is convenient to re-scale
the gluon field and the quark field as follows,

gAμ√
N
→ Âμ ψ →

√
Nψ̂ (19.6)

In terms of the re-scaled field the QCD action reads,

L = N

⎡⎣− 1
2g2 Tr[F̂μν F̂ μν ] +

Nf∑
i=1

¯̂
ψi(i 	D −mi)ψ̂i

⎤⎦ . (19.7)

From this Lagrangian we can read off the powers of N and λ ≡ g2 = N of each
part of a Feynman diagram. The vertex operator scales like N , the propagator as
1
N and every color index loop gives a factor of N . If we combine the dependence
on λ we find for the gluon, that the vertex behaves as N

λ , the propagator as λ
N

and the color loop as N , while for the fermions neither the propagator nor the
quark-gluon vertex depend on the coupling.

Thus a connected vacuum diagram with V vertices, E propagators, namely
edges and F loops, namely faces, is of order (see (7.7)),

NV −E+F λ(E (G )−V (G ) ) = Nχλ(E (G )−V (G ) ) , (19.8)
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λ N 2

λ2N 2

λ3N 2

λ 2

Fig. 19.3. Examples of Feynman diagrams with only gluons.

where,

χ ≡ V − E + F = 2− 2h− b, (19.9)

is the Euler character of the surface, h is the genus, namely, the number of
handles and b is the number of boundaries. E(G) and V(G) are the appropriate
qualities for gluons. For instance the sphere has χ = 2 since it has no handles and
no boundaries, the disk has χ = 1 since it has no handles and one boundary and
the torus has one handle and no boundaries and hence it has χ = 0. Thus the
Feynman diagrams look like triangulated two-dimensional surfaces. In fact all
possible gluon exchange may fill the holes of the triangulated structure forming
a smooth surface with no boundaries for gluon only diagrams, and with bound-
aries for diagrams that include quark loops. It was conjectured that the two-
dimensional surface is the world sheet of a string theory which is dual to QCD.
There has been tremendous progress in this string/gauge duality in recent years
following the seminal AdS/CFT duality of Maldacena [158]. This is beyond the
scope of this book and we refer the reader to the relevant literature, for instance
the review [10].

To further demonstrate the determination of the order of a diagram consider
first the diagrams that involve only gluons which appear in Fig. 19.3. The dia-
gram in (a) has V = 2, E = 3, F = 3 and thus it behaves as N 2λ. Similarly in
(b) and (c) V = 4, E = 6, F = 4 and V = 5, E = 8, F = 5 so that they behave as
N 2λ2 and N 2λ3 , respectively. The three diagrams (a), (b) and (c) are all planar
diagrams and have a topology of a sphere. Note however that diagram (d) which
is non-planar behaves as N 0λ2 , namely of genus one. In the large N limit this
last diagram is obviously suppressed.

So far we have only discussed diagrams with gluons. Quarks propagators are
represented (see Fig. 19.1a) by a single line. A closed quark loop is a boundary
and hence using (19.9) it contributes to the diagram a factor of 1

N . Consider for
example the diagram drawn in Fig. 19.4.
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Fig. 19.4. Four-dimensional Feynman rules in the usual form and in the double
line notation.

(a) (b) (c)

Fig. 19.5. Non-planar diagram with gluons and quarks.

It is a diagram of order N . This follows trivially from the fact that it has zero
genus, h = 0 and one boundary b = 1. Alternatively we have one gluon vertex,
three gluon propagators and three loops and hence N 1−3+3 = N . Obviously this
is also the result when one uses the unrescaled operators where each vertex con-
tributes 1√

N
and each index loop N , so that we get ( 1√

N
)4 ×N 3 = N . Similar to

the non-planar gluon diagram (19.3d), Fig. 19.5 describes a non-planar diagram
that includes both gluons and quarks. This diagram scales like 1

N since there is
no gluon vertex, two gluon propagators and one index loop N 0−2+1 = 1

N .
As was mentioned above the difference between the SU(N) case versus the

U(N) can be accounted by adding a ghost U(1) gauge field whose role is to cancel
the extra U(1) part of the U(N). The U(1) commutes with the U(N) gauge fields
and therefore does not interact with them and hence one has to incorporate only
the coupling of the quark fields to the U(1) gauge field. When we consider a con-
nected diagram with gluons and U(1) ghost gauge fields the contribution to the
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Fig. 19.6. U (1) ghost propagator connecting two otherwise disconnected diagrams.

counting of orders of N due to the gluons is not affected, whereas each U(1) ghost
field contributes a factor of 1

N 2 . The latter follows from the fact that the ghost
U(1) propagator contributes a factor of 1/N and another 1/N factor due to the
two coupling constants at the end of the propagator. This can easily be seen from
the unrescaled action (19.1). For diagrams that are connected with the ghost field
and otherwise disconnected as is depicted in Fig. 19.6 the situation is different.
For instance that diagram is of order N 0 since it has N ×N × 1

N 2 . Note however
that even in this case there is a difference of order 1

N 2 between the SU(N) and
U(N) cases, (actually, in Fig. 19.6 the contribution of SU(N) vanishes).

19.1.1 Counting rules for correlation functions

So far we have described the counting rules for vacuum diagrams. We now
proceed to the counting rules of correlation functions of gluons and quarks
which are vacuum expectation values of gauge invariant operators made out
of gluon and quark fields. The latter should be color singlets, not necessar-
ily local, that cannot be split into color singlet pieces. Thus operators like
ψ̄ψ, Tr[Fμν Fμν ], ψ̄(y)e−i

∫ y
x

Aμ (z )dzμ

ψ(x) are allowed whereas (ψ̄ψ)2 is not. As
usual the procedure to compute correlation functions of such operators is to add
appropriate source terms to the action and differentiate the generating function
with respect to sources that correspond to the operators. If we denote by Ôi a
gauge invariant operator made out of the rescaled fields, we shift the Lagrangian
density as follows, L0 → L0 +

∑
i NJiOi , where L0 is the Lagrangian density

without the sources and Ji is the source that corresponds to Oi . Thus any cor-
relator can be determined as follows,

<Ô1 . . . .Ôn> =
1

iN

∂

∂J1
. . .

1
iN

∂

∂Jn
W (J). (19.10)

In terms of N counting, for correlation functions of only gluon fields W (J) is of
order N 2 and hence the correlator is of order N 2−n . The leading order of W (J)
in the case where quarks fields are also involved is of order N which means
that the correlator is of order N 1−n . Let us denote by Ĝi and M̂i glueball and
meson gauge invariant operators, respectively built from the rescaled fields Âμ

and ψ̂,
¯̂
ψ. The leading order in N of the various correlators are summarized in

the following table. The operator
√

NM̂ is the operator that creates a meson
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Table 19.1. The N counting for glueball and
meson correlators

Correlator N counting

<Ĝ1 Ĝ2>c N 0

<Ĝ1 . . . Ĝn g>c N 2−n g

<M̂1M̂2>c N−1

<
√

NM̂1
√

NM̂2>c N 0

<
√

NM̂1
√

NM̂n h>c N 1− n h
2

<Ĝ1 . . . Ĝn g

√
NM̂1

√
NM̂n h>c N 1−n g − n h

2

with a unit amplitude. In particular we read from the table that the glueball
meson interaction is of order 1√

N
.

19.2 Meson phenomenology

The picture that emerges from N counting is that of mesons and glueballs inter-
acting weakly with a coupling of 1√

N
. At the tree level the singularities are

poles. At one loop, namely at order 1
N the singularities are two particle cuts, at

two loops three-particle cuts and so on. We now describe certain phenomena of
meson physics that are accounted for by 1

N arguments and quite often cannot
be explained in any other way.

� The spectrum at low energies of QCD in the large N limit include infinitely
many narrow glueball and meson resonances. The fact that the number of res-
onances is infinite follows from the need to reproduce the logarithmic running
of QCD correlation functions. A meson two-point function can be written as a
sum of resonances,∫

d4xeiqx <M(x)M(0)>c=
∑ Zi

q2 −m2
i

, (19.11)

since single meson exchange dominates in the large N limit. The logarithmic
dependence on q2 of the left-hand side can be recast only provided that the
sum on the right-hand side includes infinitely many terms. The resonances are
narrow since their decay width goes to zero in the large N limit. This follows
from the fact that the phase space factor is N independent and the coupling
constant behaves like 1√

N
.

� In Chapter 17 we encountered the pion decay constant fπ . Let us check how
it scales with N . Recall its definition <0|ψ̄γ5T

Aψ|πb(p)>= ifπ pμδab . The cor-
responding gauge invariant correlator is <NM̂1

√
NM̂2>, where the first oper-

ator NM̂1 corresponds to the axial current and the second
√

NM̂2 to the
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Fig. 19.7. Zweig’s rule for the decay of a meson into two mesons.

pion produced from the vacuum with a unit amplitude. This correlator scales
like
√

N and hence,

fπ ∼
√

N. (19.12)

� The suppression of exotic states of the form qq̄qq̄ and the fact that the meson
is almost a pure qq̄ state with little impact of the qq̄ sea are straightforward
consequences of large N . Since a quark loop, as we have seen above, is sup-
pressed by a factor of 1

N the qq̄ sea is irrelevant. Since in the leading order the
mesons are non interacting in large N , there is no interaction that will bind
two mesons into a qq̄qq̄ exotic state.

� Consider the two diagrams of Fig. 19.7.
Using the counting rules it is obvious that the right-hand diagram is 1

N sup-
pressed in comparison to the one on the left. Correspondingly the meson will
preferably decay into two mesons of the left-hand side of the figure, what is
referred to as Zweig rule conserving decay, and not to the two mesons on the
right which is a Zweig rule suppressed decay. In this sense large N predicts the
Zweig rule. The same mechanism is in charge of the fact that there is almost
flavor singlet and octet degeneracy. In the leading order in large N the whole
nonet is degenerate since the diagrams that split singlets from octets involve
a qq̄ annihilation which is order of 1

N . In the large N for instance the vector
mesons (ρ,w, φ,K∗) are degenerate.

� It is known that meson decay proceeds mainly via decay into two body states
and not into states of more mesons. Large N tells us that the decay into two
mesons behaves as 1√

N
, whereas a decay into four mesons is of order 1

N 3 / 2 .
This can also be compared to the decay of a meson via creation of a quark

anti-quark pair in the mesonic flux tube [60].
� The N counting rules tell us also that meson scattering amplitudes are given by
an infinite sum of tree diagram of exchange of physical mesons. This fits nicely
the so-called Regge phenomenology, where strong interactions are interpreted
as an infinite sum of tree diagrams with hadron exchange.

� Another very important phenomenon is related to the axial U(1), the theta
term and the mass of the η′. This will be described in detail in Section 22.5,
but here we present the picture in the large N .
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19.2.1 Axial U(1) and the mass of the η′

Consider the full action of four-dimensional YM theory, which includes also the
θ term,

SYM =
∫

d4x

[
−1

4
Tr[Fμν Fμν ] +

θg2

16π2N
Tr[Fμν F̃ μν ]

]
. (19.13)

The normalization of the θ term is such that θ is an angular variable, namely,
under the shift of θ → θ + 2π the action is shifted by 2πn where n is some integer,
so that eiS is unchanged. This result follows from the quantization of the θ term,∫

d4x
g2

16π2N
Tr[Fμν F̃ μν ] = integer. (19.14)

We would like to explore the dependence on θ of the vacuum energy in the
pure YM theory and in the theory with massless quarks. In particular we would
like to determine d2 E

dθ2 |θ=0.
Using the path integral formulation we find that,

d2E

dθ2 |θ=0 =
1

N 2

(
g2

16π2

)2 ∫
d4x <T (Tr[Fμν F̃ μν (x)]Tr[[Fμν F̃ μν ])(0)> . (19.15)

Let us introduce an IR cutoff and take,

d2E

dθ2 |θ=0 =
(

g2

16π2N

)2

lim
k→0

U(k)

U(k) =
∫

d4xe(νkx) <T (Tr[Fμν F̃ μν ](x)Tr[[Fμν F̃ μν (0)])> .

(19.16)

It is easy to check that in perturbation theory U(k) is of order N 2 due to
the contribution of the N 2 degrees of freedom of the gluons. However, perturba-
tively, limk→0 U(k) = 0 since FF̃ is a total derivative. One concludes that per-
turbatively the vacuum energy is θ independent. To better understand (19.16)
we rewrite U(k) in terms of a sum over intermediate single particle states,

U(k) =
∑
gb

N 2(agb)2
n

k2 − (mgb)2
n

+
∑
mes

N(ames)2
n

k2 − (mmes)2
n

, (19.17)

where gb stands for glueball and mes for meson. Nagb and
√

Names are the
amplitudes for Tr[FF̃ ] to create a glueball and meson state, respectively. This
result again follows from the N counting rules,

<0|Tr[FF̃ ]|mes>∼
√

N <0|Tr[FF̃ ]|gb>∼ N. (19.18)

The fact that only single states and not multi-states are taken in the interme-
diate states is since the latter are suppressed in the large N . In the pure YM
without quarks the first term vanishes and hence U(0) ∼ N 2 and d2 E

dθ2 |θ=0 ∼ 1.
In the presence of massless quarks we know that there could not be any θ depen-
dence and thus we should be able to show that the first term is cancelled out.
However, it seems that there is no way that the second term can cancel the first.
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Fig. 19.8. Perturbative correction to the free propagator due to an exchange
of one gluon (left) and two gluons (right).

In fact it is possible if there is one meson state with mass mmes ∼ 1√
N

and if the
two terms have opposite sign. This obviously can cancel the k = 0 term in U(k)
and does not cancel for non-trivial k, but this is exactly what enters (19.16). The
opposite sign follows from the fact that an additional equal time commutator
term has to be added to (19.15) (see the appendix of [221]). Assuming such a
state with mass mmes ∼ 1√

N
the form of U(0) is,

U(0) = N
a2

η ′

M 2
η ′

. (19.19)

Using the axial anomaly equation which will be further discussed in (22.5),

∂μJμ
5 = Nf

g2

4π2N
Tr[FF̃ ], (19.20)

we get,
g2

8π2 <0|Tr[FF̃ ]|η′> =
N

2Nf
<0|∂μJμ

5 |η′>=
N

2Nf
fη ′M 2

η ′ , (19.21)

From this relation we get the Veneziano–Witten formula or the mass of the η′,

M 2
η ′ =

(
2N(f )

f(π )

)2 d2E

dθ2 |θ=0 . (19.22)

The picture that emerges from this discussion is that the η′ is a Goldstone boson
in the large N limit. It has a mass of the order of Mη ′ ∼ 1√

N
. The dependence

on η′ of nonzero amplitudes can be obtained from the dependence on θ in the
theory without quarks by the following replacement,

θ → θ +
(

2N(f )

f(η ′)

)
η′. (19.23)

Note that f(η ′) = f(π ) to leading order in 1
N .

19.3 Baryons in the large N expansion

Whereas we have seen that the large N expansion is very useful in discussing
mesons, it may seem that it is not the case for baryons. Baryonic diagrams
depend on N both via the combinatorial factors associated with the diagrams,
as well as the fact that the diagrams themselves include N quarks.

The problem is clearly demonstrated when computing the perturbative cor-
rection to the free propagator of an N quarks state. The correction occurs due to
an exchange of a gluon between two quarks (see Fig. 19.8). The gluon exchange
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diagram scales as 1
N . However since there are 1

2 N(N − 1) possible pairs the net
effect is of order N . In a similar manner the exchange of two gluons is of order
( 1√

N
)4N 4 ∼ N 2 , where the first factor comes from the four vertices and the sec-

ond from the number of ways to choose the four quarks. Higher-order exchange
diagrams will have higher order divergence in large N . We will now show, that
in spite of this fatal obstacle, there is a large N approximation to the problem of
the baryons. The idea is to divide the problem into two parts, in the first one uses
diagrammatic methods to study the problem of n quark interaction, and then
the effect of these forces on an N quark state. Let us first apply this approach
for determining the dependence of the mass of the baryon on N in the quark
model. Assuming that the mass gets contributions from the quark masses, quark
kinetic energy and quark–quark potential energy, the mass of the baryon reads,

MB = N

[
mq + Tq +

1
2
Vq

]
, (19.24)

where mq is the quark mass, Tq is the kinetic energy of the quark and Vq is
the quark–quark potential energy. Thus we observe that the mass of the baryon
scales as N . This result will be shown to hold even beyond the quark model.
Again we have made use of the fact that the potential energy is combined from
the N 2 combinatorial factor and the 1

N factor that comes from the vertices, or
gluon propagator.

Leaving aside the quark model, we want to address first the baryonic system
made out of very heavy quarks.

19.3.1 The Hartree approximation

In the baryons, the quarks are anti-symmetric in color. Thus they are symmetric
in flavor, space and spin combined. Hence they act like bosons. A natural frame-
work to analyze such a system of bosonic charged particles that are subjected to
a central potential is the Hartree approximation, in which each particle moves
independently of the others in a potential which is determined self consistently by
the motion of all the other particles. The justification of the use of this approxi-
mation is the large N limit which renders the interactions to be weak. Therefore
neglecting the fact that the particle trajectory affects the state of all the other
particles and hence the potential that it feels, is justified. Also it is obvious that
taking the potential created by all particles and not the one created by all the
particles apart from the one we consider, is a 1

N effect. Since, as mentioned above,
the particles in the non-color degrees of freedom are bosons it implies that in
the ground state of the baryon all the particles will sit in the ground state of the
Hartree potential.

Let us take the Hamiltonian of the system to be,

H =
1

2m

∑
a

|�pa |2 +
1

2N

∑
a �=b

V 2(�ra , �rb) +
1

6N 2

∑
a �=b �=c

V 3(�ra , �rb , �rc) + . . . ,

(19.25)
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where we have suppressed the flavor and spin degrees of freedom, V n stands
for the n body interaction and is independent of N and its strength is of order
N 1−n , as explained above. In fact since the number of clusters of n quarks is of
order Nn , each term in the Hamiltonian is proportional to N .

Next one takes for the ground state wave function a product of the wave
functions of each of the particles, namely,

ψ(�ra , . . . �rN ) =
∏
a

φ(�ra) (19.26)

where the particle wave functions are determined by a variational method. The
expectation value of the Hamiltonian,

<ψ|H|ψ> = N

[
1

2m

∫
d3�r|∇φ|2 +

1
2

∫
d3�r1d3�r2V

2(�r1 , �r1)|φ(r1)φ(r2)|2+

+
1
6

∫
d3�r1d3�r2d3�r3V

3(�r1 , �r2 , �r3)|φ|(r1)φ(r2)φ(r3)|2 + . . .

]
, (19.27)

has to be minimized with respect to φ(r) subjected to the constraint that,∫
d3�r|φ|2 = 1. (19.28)

The minimization translates to,[
−∇

2

2m
+ V (�r)

]
φ = εφ, (19.29)

where ε is the Lagrange multiplier associated with the constraint, and the Hartree
potential is,

V =
[∫

d3�r1V
2(�r, �r1)|φ(r1)|2 +

1
2

∫
d3�r1d3�r2V

3(�r, �r1 , �r2)|φ(r1)φ(r2)|2 + . . .

]
.

(19.30)

We will now treat first the case of heavy quarks and subsequently will address,
in a less rigorous manner, the case of light quarks.

19.3.2 Baryons made out of heavy quarks

A non relativistic Schrodinger equation is an adequate framework to deal with
very heavy baryons. In this setup for short distances the quark–quark potential
is an attractive Coulomb potential so that the Hamiltonian takes the form,

H = Nmq −
N∑

i=1

∂2
i

2mq
− g2

N

∑
i<j

1
|xi − xj |

. (19.31)

The system is effectively that of N bosons with a Coulomb interaction with a
strength of 1

N .
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In spite of the fact that the interaction potential behaves like 1
N , we can-

not treat this term as a perturbation since each quark interacts with N other
quarks and hence the total quark–quark interaction of each quark is of order one.
This situation calls for a Hartree approximation where, as explained above, the
quark is exposed to an average effective potential. The fluctuations of the effec-
tive potential are negligible and hence we can consider a background c-number
potential.

For heavy quarks where the potential is taken to be a Coulomb potential we
find,

<ψ|H −Nε|ψ>= N [M + 1
2m

∫
d3�r|∇φ|2 − g 2

2

∫
d3�r
∫

d3�r′ |φ(r)|2 |φ(r ′)|2
|r−r ′|

−ε
∫

d3�r|φ(r)|2 ]. (19.32)

The main point here is that each of the terms is proportional to N and hence
the result of the minimization is N independent. The variation with respect to
φ∗ results in the following Schrodinger equation,

−∇
2φ

2m
− g2φ

∫
d3�r′
|φ(r′)|2
|r − r′| = εφ. (19.33)

One can convert this integro-differential equation into a fourth-order differential
equation

− 1
2m
∇2
(
∇2φ

φ

)
+ 4πg2 |φ|2 = 0. (19.34)

For radial solutions, for instance, the ground state of this equation takes the
form,

− 1
2m

[
d2

dr2 +
2
r
ddr

](
1
φ

[
d2

dr2 +
2
r
ddr

]
φ

)
+ 4πg2 |φ|2 = 0, (19.35)

which is derived by dividing (19.33) by φ and acting with ∇2 .
Even without solving this equation, it is clear that the mass of the baryon is

linear with N and that the charge distribution of the baryon which implies in
particular its size is N independent.

19.3.3 Baryons made out of light quarks

Up to this point we have used a non relativistic Hartree approximation which is
valid only for heavy quarks. However, phenomenologically, one is more interested
in baryons made out of light quarks and in scattering processes that involve
relativistic quarks. We will show now that even for the light quark baryons, a
Hartree-like approximation, namely that each quark moves independently of the
others in a potential which is determined self consistently by the motion of all
the other particles, is still justified. Moreover, it will be argued that just as for the
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Fig. 19.9. Baryon stringy configuration for N = 3.

heavy quark baryons, also for the baryons made out of light quarks, the mass is
linear with N , whereas the size and the shape of the baryon are N independent.

A major difference between the case of heavy quarks versus that of light ones
is that in the latter case one has to introduce on top of the two-body interaction
also a three-body interaction and, in general, n-body interactions. In addition one
has to use a relativistic analog of the Hartree approximation. In two dimensions
one can solve the relativistic Hartree approximation. Unfortunately, the four-
dimensional analog is not known. Let us first discuss a non relativistic Hartree
approximation with n-body interactions and then argue about the relativistic
analog. The Hamiltonian for the case with any n-body interaction takes the form,

H =
1

2m

∑
a

|�pa |2 +
1

2N

∑
a �=b

V 2(�ra , �rb) +
1

6N 2

∑
a �=b �=c

V 3(�ra , �rb , �rc) + . . . ,

(19.36)

where we have suppressed the flavor and spin degrees of freedom, V n stands
for the n-body interaction and is independent of N . The strength of V n is of
order N 1−n since breaking the n quark line costs a factor of N−n and since the
baryon is in a totally antisymmetric representation, each quark line carries a
different color index.

We now substitute this Hamiltonian into <ψ|H|ψ> and use a variational
method as above. Since for each V n term there are Nn ways to choose a set
of n quarks, here again the expectation value of the Hamiltonian is linear in N .

Next we have to introduce a four-dimensional relativistic Hartree approxima-
tion. In two dimensions in the large N limit the Hartree approximation is exact.
The generalization to four dimensions, however, is not known and hence one can
make only the qualitative statement that even in this case the mass is linear in
N and the size and shape are independent of N .

The Hartree approximation of light quarks moving in an effective potential
can be also related to a string model of the baryon. In this model, the N quarks
are attached to a common junction as can be seen in Fig. 19.9 for the case of
N = 3.1 In the large N approximation the junction can be regarded as a heavy
object and its motion can be ignored. The interaction of the quarks with the fixed
junction can be thought of as an interaction with an effective Hartree potential.

1 The modern picture of the latter is that of a wrapped D brane.

https://doi.org/10.1017/9781009401654.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.020


19.3 Baryons in the large N expansion 351

19.3.4 Baryonic excited states

Low-lying excitations of the baryons are described by wave functions where out
of N single particle states, a number nk � N of states are placed in the kth
excited state of the Hamiltonian. The corresponding mass of the excited baryon
is M = M0 +

∑
nk

nk εk where εk is the energy of the kth excited state.
Highly excited states have a finite fraction of single particle excited states.

Denote by p this fraction, namely there are (1− p)N particles in the ground
state and pN ones in excited states which we take to be φ1 so that the baryon
wave function is,

ψ(�ra , . . . �rN ) =
∑

(−1)P

pN∏
a

φ1(�ra)
(1−p)N∏

a

φ0(�ra). (19.37)

Inserting this ansatz into the expectation value of the Hamiltonian one gets a set
of two coupled nonlinear equations for φ0 and φ1 . This structure can obviously
be generalized to states with higher single particle excited states.

Another approach to studying excited states is to apply a time-dependent
Hartree approximation. It is easy to check that starting with the Hartree ansatz
for the wave function but now with single particle wave functions that are
also time dependent, one finds instead of (19.33) the following time-dependent
Schrodinger equation,

−∇
2φ

2m
− g2φ

∫
d3�r′
|φ(r′)|2
|r − r′| = i∂tφ(�r, t). (19.38)

This equation is solved by φ(t, �r) = e−iεtφ(�r) where φ(�r) is a solution of the time-
independent equation. By Galilean boosting along, for instance the x direction,
a static baryon solution, we find the solution,

φ(�r, t) = φ(x− vt)ei(M vx−εt− 1
2 M v 2 t) , (19.39)

which is a baryon travelling with a constant velocity. This is an additional solu-
tion to the time-dependent equation. In fact starting with any function φ(�r, 0)
and substituting it into (19.38) a new solution will be generated. These solutions
will generically be excited states, but not in energy eigenstates, since they will
not have a harmonic form.

To generate excited baryon solutions which are in eigenstates of the energy, we
make use of the DHN procedure discussed in Section 5.5.1 in the context of two-
dimensional field theories. The idea is to look for solutions which are periodic in
time and to quantize them by requiring that the action during a period will obey,∫ T

0
dt <ψ|H − i∂t |ψ> = 2πn, (19.40)

where n is some integer number. Recall that this condition follows from the fact
that the solutions are invariant under time translations, so from ψ(t) we can
also generate a solution ψ(t− t0) for any t0 and also any linear combinations of
them, and in particular a harmonic varying solution

∫ T

0 dt0e−it0 E ψ(t− t0).
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Fig. 19.10. Baryon–baryon scattering. Exchange of a quark on the right, while
on the left, such an exchange plus an exchange of a gluon.

In analogy to the discussion in Section 5.5.1 here as well one can introduce a
non-abelian flavor group, namely construct baryons made out of several flavors.
In this case one introduces into the Hartree wave function a separate single
particle wave function for each flavor.

For very heavy quarks one can neglect the spin-dependent forces, and hence
anticipate that the baryons are spherically symmetric. However, for less heavy
quarks this is no longer the case. For a baryon made out of a single flavor, in the
ground state all the spins are aligned and hence the total spin is 1

2 N . Due to the
fact that the total spin is very large, the effect of the coupling of this large spin
to the orbit is significant and hence the ground state will no longer be spherically
symmetric. If one takes the large N analog of the baryon to be composed of N +1

2
quarks of one flavor and N +1

2 − 1 of the other flavor, then the net spin will be
1
2 since the spin–spin interaction will align the spin of the different flavors in
an antiparallel way. Unlike the one flavor case where the spin is N

2 , the spin 1
2

will be too small to affect the spherically symmetric ground state via spin orbit
interaction, and hence for that case it will remain symmetric.

19.4 Scattering processes

In Section 19.2 it was shown that in the leading order of the large N there
is no meson–meson scattering. The same applies also for meson–glueball and
glueball–glueball scattering. Let us now address the question of baryon–baryon
and baryon–meson scattering.

Baryon–baryon scattering is dominated by an interchange of one quark
between two baryons. Whether the process involves only an interchange or also
in addition an exchange of a gluon, as is shown in Fig. 19.10, the amplitude is of
order N . In the case of no gluon exchange, there is a choice of the interchanging
quark in one of the baryon, which goes like N . Once a quark in one baryon
is chosen it can be interchanged only with a quark in the second baryon that
carries exactly the same color index, hence there is no additional N dependence.
Thus altogether the amplitude is order N . Note also that the diagram (19.10)
comes with a factor of (−1). The amplitude for an interchange that is accom-
panied with an exchange of a gluon is also of order N , which follows from the
fact that there is a factor of N from choosing the quark in the first baryon,
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i j

i j

Fig. 19.11. Annihilation of a quark coming from the baryon and anti-quark
coming from the anti-baryon.

another factor of N from the other baryon and a factor of 1
N from the quark

gluon vertices.
This fact that the amplitude is order N is behind why there is a smooth large

N limit to the baryon–baryon scattering. Recall that the mass of the baryon and
hence also the non-relativistic kinetic energy of the baryon are linear in N . Thus
the total Hamiltonian can be written as H = NĤ where Ĥ is N independent.
The eigenvectors of Ĥ and hence of the scattering process are N independent.

Quantitatively one addresses the question of baryon–baryon scattering using a
non relativistic time-dependent Schrodinger equation for a system of 2N quarks.
Due to the exclusion principle the total wave function should be a product of
two orthonormal space and spin wave functions φi(x, t) where i = 1, 2 in the
following way,

ψ(x1 , . . . , x2N , t) =
∑
P

(−1)P
N∏

i=1

φ1(xi, t)
N∏

j=1

φ2(xj , t). (19.41)

Using again the time-dependent variational principle, we find that in the case
where all the spins of the quarks are parallel so we can ignore them,

i∂tφ1(x, t) =
∇2

2M
φ1(x, t)− g2φ1(x, t)

∫
dyφ∗

1φ1(y, t)
|x− y|

−g2φ1(x, t)
∫

dyφ∗
2φ1(y, t)
|x− y| , (19.42)

and another equation where φ1 ↔ φ2 . Apart from the last term this equation
is identical to the one describing a single baryon (19.38), hence the last term
obviously describes the interaction between the two baryons. To describe baryon–
baryon scattering we start with inital conditions where the wave functions φ are
localized at two far away regions of space, but heading for a collision. When the
two wave functions overlap the interaction term is important and determines the
scattering via (19.42).

The baryon anti-baryon scattering is dominated by an annihilation of a quark
coming from the baryon and an anti-quark from the anti-baryon. The amplitude
of this process is of order N since choosing one quark is order N , choosing an
anti-quark is order N and the coupling is order 1

N (see Fig. 19.11). Again this
is like the scaling of the kinetic term and hence there is a smooth limit. The
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Fig. 19.12. Exchange of a quark and a gluon in meson–baryon scattering.

variational procedure now involves a wave function composed of N quark and N

anti-quark wave functions, namely,

ψ(�ra , . . . , �rN ) =
∏
a

φ(�ra)
∏
b

φ̄(�̄rb), (19.43)

where φ̄(�̄rb) is the wave function of a single anti-quark. The minimization now
yields a pair of coupled equations for φ and φ̄.

The meson–baryon scattering is described in a diagram like Fig. 19.12. The
diagram is of order N 0 since there is a factor of 1

N from the coupling and N

from the number of ways to choose the quark from the baryon. Recall that the
baryon kinetic energy is order N and that of the meson is order one. Hence the
interaction term is negligible from the point of view of the baryon and it does
not feel the meson but the meson motion is affected by the interaction and thus
there is a meson baryon non-trivial scattering. Denoting again the wave function
of a quark of the baryon as φ(x, t) and that of the meson as φM(xM , yM , t), the
trial many body wave function reads,

ψ(�ra , . . . , �rN , xM , yM , t) =
∏
a

φ(�ra , t)φM(xM , yM , t). (19.44)

Again we substitute this wave function into the variational principle∫
dt <ψ|H − i∂t |ψ>. The solution for φ of the corresponding equations is iden-

tical to the solution of the baryon and hence indeed the baryon is not affected
by the presence of the meson. On the other hand the equation for φM is affected
by the presence of φ. The equation will be that of a free meson plus two additional
terms describing the interaction that take the form,

Hint = −g2φ(x)
[∫

dzφ∗(z, t)φM(z, yM , t)
|xM − z| +

∫
dzφ∗(z, t)φM(z, yM , t)

|z − yM |

]
.

(19.45)
Thus the interaction term and hence the whole equation is linear in φM.
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