A NOTE ON HARDY-ORLICZ SPACES

BY
ZHANG JIANZHONG

Abstract

W. Deeb, R. Khalil and M. Marzuq have studied some properties of $H(\phi)$, the Hardy-Orlicz spaces. They introduced the functions class $N_{p}(0<p \leqq 1)$ and discussed some properties of N_{p}. In the present short note we prove that $N_{p}=N^{+}$for $0<p \leqq 1$. We also give a condition of $H(\phi)=H(\psi)$.

Introduction. Let us first recall some definitions. We call a real-valued function ϕ defined on $[0, \infty)$ a modulus function if ϕ is an increasing continuous subadditive function and satisfies the condition that $\phi(x)=0$ iff $x=0$. Let D denote the unit disc in the complex plane and $H(D)$ the class of analytic functions in D. For a given modulus function ϕ, the Hardy-Orlicz space $H(\phi)$ is defined as

$$
H(\phi)=\left\{f \in H(D): \sup _{0 \leqq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta<\infty\right\}
$$

Let

$$
H^{+}(D)=\left\{f \in H(D): \lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=f\left(e^{i \theta}\right) \quad \text { a.e. on } \partial D\right\}
$$

and

$$
\begin{array}{r}
H(\phi)^{+}=\left\{f \in H^{+}(D) \cap H(\phi): \sup _{0 \leqq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta\right. \\
\left.=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta\right\} .
\end{array}
$$

See [1] and [2] for more details about $H(\phi)$ and $H(\phi)^{+}$.
For $0<p \leqq 1, \phi_{p}(x)=\log \left(1+x^{p}\right)$ is a modulus function. Let N_{p} denote the space $H\left(\phi_{p}\right)^{+}$. (See [1]). Since $\phi_{p}\left(e^{t}\right)=\log \left(1+e^{p t}\right)$ is an increasing convex function of t, the function $\phi_{p}(|f(z)|)=\phi_{p}\left(e^{\log |f(z)|}\right)$ is subharmonic provided that $f(z)$ is an analytic function in D. Thus, from Theorem 1.6 in [3],

$$
M \phi_{p}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi_{p}\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta
$$

[^0]AMS Classification: 46A06, 46E20.
© Canadian Mathematical Society 1988.
is an increasing function of r, so we can rewrite N_{p} as following

$$
\begin{aligned}
& N_{p}=\left\{f \in H^{+}(D) \cap H\left(\phi_{p}\right):\right. \lim _{r \rightarrow 1} \\
& \int_{0}^{2 \pi} \log \left(1+\left|f\left(r e^{i \theta}\right)\right|^{p}\right) d \theta \\
&\left.=\int_{0}^{2 \pi} \log \left(1+\left|f\left(e^{i \theta}\right)\right|^{p}\right) d \theta\right\}
\end{aligned}
$$

Let N denote the Nevanlinna class as usual and N^{+}its subclass

$$
N^{+}=\left\{f \in N: \lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t=\int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t\right\} .
$$

In [1] W. Deeb, R. Khalil and M. Marzuq studied some properties of N_{p}. In this short note we prove $N_{p}=N^{+}$for all $0<p \leqq 1$ and discuss the conditions for $H(\phi)=H(\psi)$.

We can now prove our main result.
Proposition 1. For all $0<p \leqq 1, N_{p}=N^{+}$.
Proof. Fix $p, 0<p \leqq 1$. Suppose $f(z)$ is an analytic function in D. Let $h(z)=$ $\log \left(1+|f(z)|^{p}\right)-p \log ^{+}|f(z)|$ for $z \in D$. It is not hard to see that $0 \leqq h(z) \leqq \log 2$.

Now suppose $f \in N^{+}$, then the radial limit of $f\left(r e^{i t}\right)$, and hence of $h\left(r e^{i t}\right)$, exists almost everywhere. We have

$$
\begin{aligned}
h\left(e^{i t}\right) & =\lim _{r \rightarrow 1} h\left(r e^{i t}\right) \\
& =\log \left(1+\left|f\left(e^{i t}\right)\right|^{p}\right)-p \log ^{+}\left|f\left(e^{i t}\right)\right| \quad \text { a.e. }
\end{aligned}
$$

and

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t=\int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t<\infty
$$

By dominated convergence we then have

$$
\begin{aligned}
& \lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log \left(1+\left|f\left(r e^{i t}\right)\right|^{p}\right) d t \\
& \quad=\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left(h\left(r e^{i t}\right)+p \log ^{+}\left|f\left(r e^{i t}\right)\right|\right) d t \\
& \quad=\lim _{r \rightarrow 1} \int_{0}^{2 \pi} h\left(r e^{i t}\right) d t+p \lim _{r \rightarrow 1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i t}\right)\right| d t \\
& \quad=\int_{0}^{2 \pi} h\left(e^{i t}\right) d t+p \int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t \\
& \quad=\int_{0}^{2 \pi} \log \left(1+\left|f\left(e^{i t}\right)\right|^{p}\right) d t
\end{aligned}
$$

and from the above

$$
\begin{aligned}
\int_{0}^{2 \pi} \log & \left(1+\left|f\left(e^{i t}\right)\right|^{p}\right) d t \\
& =\int_{0}^{2 \pi} h\left(e^{i t}\right) d t+p \int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t \\
& \leqq 4 \pi+p \int_{0}^{2 \pi} \log ^{+}\left|f\left(e^{i t}\right)\right| d t \\
& <\infty
\end{aligned}
$$

This shows $f \in N_{p}$.
Conversely, let $f \in N_{p}$. By similar reasoning we can prove $f \in N^{+}$. Hence $N_{p}=N^{+}$ for $0<p \leqq 1$.

We now want to know when it follows that $H(\phi)^{+}=H(\psi)^{+}$. Although necessary and sufficient conditions on ϕ and ψ are not known, we have the following observation.

Suppose ϕ is a modulus function such that $\phi_{c}(t)=\phi\left(e^{t}\right)$ is a convex function of t. Since $\phi(x)$ is increasing, so is $\phi_{c}(t)$. If f is an analytic function then $\log |f(z)|$ is subharmonic, and we have that $\phi(|f(z)|)=\phi_{c}(\log |f(z)|)$ is a subharmonic function. Some examples of such modulus ϕ are: $x^{p}(0<p \leqq 1), \log \left(1+x^{p}\right)(0<p \leqq 1)$, and $x /(\log)_{n}\left(e_{n}+x\right)$, where $e_{1}=e, e_{n}=e^{e_{n-1}}$, and

$$
(\log)_{n}\left(e_{n}+x\right)=\overbrace{\log \ldots \log }^{n \text {th }}\left(e_{n}+x\right), \quad n=1,2,3, \ldots
$$

Lemma 2. Let $f \in N^{+}$, then

$$
\phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t .
$$

Proof. From Theorem 5.4 in [4, p. 71], we have

$$
\log \left|f\left(r e^{i \theta}\right)\right| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \log \left|f\left(e^{i t}\right)\right| d t .
$$

Observing that $\phi_{c}(t)$ is increasing, we obtain by Jensen's inequality

$$
\begin{aligned}
\phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) & =\phi_{c}\left(\log \left|f\left(r e^{i \theta}\right)\right|\right) \\
& \leqq \phi_{c}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \log \left|f\left(e^{i t}\right)\right| d t\right) \\
& \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \phi_{c}\left(\log \left|f\left(e^{i t}\right)\right|\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t .
\end{aligned}
$$

Proposition 3. Let $f \in H(\phi) \cap N^{+}$, then

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta
$$

Proof. By Lemma 2,

$$
\phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t
$$

hence

$$
\begin{aligned}
\int_{0}^{2 \pi} \phi & \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta \\
& \leqq \int_{0}^{2 \pi} \frac{1}{2 \pi} \int_{0}^{2 \pi} p(r, \theta-t) d \theta \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t \\
& =\int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t
\end{aligned}
$$

On the other hand, by the Fatou's lemma,

$$
\int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta \leqq \lim _{r \rightarrow 1} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta
$$

Thus we have

$$
\lim _{r \rightarrow 1} \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i \theta}\right)\right|\right) d \theta=\int_{0}^{2 \pi} \phi\left(\left|f\left(e^{i \theta}\right)\right|\right) d \theta
$$

Remark 4. From Proposition 3, we know that $H(\phi) \cap N^{+} \subset H(\phi)^{+}$. We believe that $H(\phi) \cap N^{+}=H(\phi)^{+}$, so that $H(\phi)^{+}=H(\psi)^{+}$if and only if $H(\phi)=H(\psi)$.

We have the following
Proposition 5. Let ϕ and ψ be modulus functions. If

$$
\varlimsup_{x \rightarrow \infty} \frac{\phi(x)}{\psi(x)}<\infty
$$

then $H(\psi) \subset H(\phi)$.
Proof. Suppose

$$
\varlimsup_{x \rightarrow \infty} \frac{\phi(x)}{\psi(x)}<\infty
$$

then there are $x_{0}>0$ and $0<M<\infty$ such that $\phi(x)<M \psi(x)$ for $x>x_{0}$. Let $f \in H(\psi)$, then

$$
\begin{aligned}
\frac{1}{2 \pi} & \int_{0}^{2 \pi} \phi\left(\left|f\left(r e^{i t}\right)\right|\right) d t \\
& =\frac{1}{2 \pi} \int_{\left\{\theta:|f| \leq x_{0}\right\}} \phi\left(\left|f\left(r e^{i t}\right)\right|\right) d t+\frac{1}{2 \pi} \int_{\left\{\theta:|f|>x_{0}\right\}} \phi\left(\left|f\left(e^{i t}\right)\right|\right) d t \\
& \leqq \phi\left(x_{0}\right)+\frac{1}{2 \pi} \int_{\left\{\theta:|f|>x_{0}\right\}} M \psi\left(\left|f\left(r e^{i t}\right)\right|\right) d t \\
& \leqq \phi\left(x_{0}\right)+M \frac{1}{2 \pi} \int_{0}^{2 \pi} \psi\left(\left|f\left(r e^{i t}\right)\right|\right) d t<M_{0}
\end{aligned}
$$

where M_{0} is a finite positive constant independent of r. Therefore $f \in H(\phi)$. This shows that $H(\psi) \subset H(\phi)$.

Remark 6. From Proposition 5, we know that $H(\phi)=H(\psi)$ if

$$
0<\varliminf_{x \rightarrow \infty} \frac{\phi(x)}{\psi(x)} \leqq \varlimsup_{x \rightarrow \infty} \frac{\phi(x)}{\psi(x)}<\infty .
$$

Acknowledgments. The author wishes to thank Professors Yao Wenxin, Yuan Changnian and Chang Xinyi for their helpful suggestions.

References

1. W. Deeb, R. Khalil and M. Marzuq, Isometric multiplication of Hardy-Orlicz spaces, Bull. Austral. Math. Soc. 34 (1986), 177-189.
2. W. Deeb and M. Marzuq, $H(\phi)$ spaces, Canad. Math. Bull. 29(3) (1986), 295-301.
3. P. L. Duren, Theory of H^{p} spaces, Acad. Press, New York and London (1970).
4. J. B. Garnett, Bounded Analytic Functions, Acad. Press, New York (1981).

Department of Mathematics
Shaanxi Teachers University
Xi'an
China

[^0]: Received by the editors March 21, 1988.

